fast-agent-mcp 0.0.8__py3-none-any.whl → 0.0.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of fast-agent-mcp might be problematic. Click here for more details.

Files changed (28) hide show
  1. {fast_agent_mcp-0.0.8.dist-info → fast_agent_mcp-0.0.11.dist-info}/METADATA +15 -9
  2. {fast_agent_mcp-0.0.8.dist-info → fast_agent_mcp-0.0.11.dist-info}/RECORD +28 -26
  3. mcp_agent/app.py +4 -4
  4. mcp_agent/cli/commands/bootstrap.py +4 -0
  5. mcp_agent/cli/commands/setup.py +1 -1
  6. mcp_agent/core/fastagent.py +498 -369
  7. mcp_agent/event_progress.py +5 -2
  8. mcp_agent/human_input/handler.py +6 -2
  9. mcp_agent/logging/rich_progress.py +10 -5
  10. mcp_agent/mcp/mcp_aggregator.py +2 -1
  11. mcp_agent/mcp/mcp_connection_manager.py +67 -37
  12. mcp_agent/resources/examples/data-analysis/analysis.py +1 -1
  13. mcp_agent/resources/examples/data-analysis/fastagent.config.yaml +2 -0
  14. mcp_agent/resources/examples/internal/job.py +83 -0
  15. mcp_agent/resources/examples/workflows/agent_build.py +61 -0
  16. mcp_agent/resources/examples/workflows/chaining.py +0 -1
  17. mcp_agent/resources/examples/workflows/human_input.py +0 -1
  18. mcp_agent/resources/examples/workflows/orchestrator.py +1 -7
  19. mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py +63 -65
  20. mcp_agent/workflows/llm/augmented_llm.py +9 -1
  21. mcp_agent/workflows/llm/augmented_llm_anthropic.py +28 -23
  22. mcp_agent/workflows/llm/model_factory.py +25 -11
  23. mcp_agent/workflows/orchestrator/orchestrator.py +106 -100
  24. mcp_agent/workflows/orchestrator/orchestrator_prompts.py +11 -6
  25. mcp_agent/workflows/router/router_llm.py +13 -2
  26. {fast_agent_mcp-0.0.8.dist-info → fast_agent_mcp-0.0.11.dist-info}/WHEEL +0 -0
  27. {fast_agent_mcp-0.0.8.dist-info → fast_agent_mcp-0.0.11.dist-info}/entry_points.txt +0 -0
  28. {fast_agent_mcp-0.0.8.dist-info → fast_agent_mcp-0.0.11.dist-info}/licenses/LICENSE +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fast-agent-mcp
3
- Version: 0.0.8
3
+ Version: 0.0.11
4
4
  Summary: Define, Prompt and Test MCP enabled Agents and Workflows
5
5
  Author-email: Shaun Smith <fastagent@llmindset.co.uk>, Sarmad Qadri <sarmad@lastmileai.dev>
6
6
  License: Apache License
@@ -246,21 +246,27 @@ Description-Content-Type: text/markdown
246
246
 
247
247
  ## Overview
248
248
 
249
- **`fast-agent`** lets you define, test and compose agents and tools in minutes.
249
+ **`fast-agent`** lets you define, test and interact with agents, tools and workflows in minutes.
250
250
 
251
- ### Get started:
251
+ The simple declarative syntax lets you concentrate on the prompts, MCP Servers and compositions to build effective agents.
252
252
 
253
- Install the [uv package manager](https://docs.astral.sh/uv/).
253
+ Quickly compare how different models perform at Agent and MCP Server calling tasks, and build mixed multi-model workflows using the best provider for each task.
254
254
 
255
- `uv pip install fast-agent-mcp` - download fast-agent
255
+ ### Get started:
256
256
 
257
- `fast-agent setup` - setup an agent and configuration files.
257
+ Start by installing the [uv package manager](https://docs.astral.sh/uv/) for Python. Then:
258
258
 
259
- `uv run agent.py` - run and interact with your first agent.
259
+ ```bash
260
+ uv pip install fast-agent-mcp # install fast-agent
261
+ fast-agent setup # create an example agent and config files
262
+ uv run agent.py # run your first agent
263
+ uv run agent.py --model=o3-mini.low # specify a model
264
+ fast-agent bootstrap workflow # create "building effective agents" examples
265
+ ```
260
266
 
261
- `fast-agent bootstrap workflow` - generate example agents demonstrating each of the workflows from Anthropic's "[Building Effective Agents](https://www.anthropic.com/research/building-effective-agents)" paper.
267
+ Other bootstrap examples include a Researcher (with Evaluator-Optimizer workflow) and Data Analysis (similar to ChatGPT experience), demonstrating MCP Roots support.
262
268
 
263
- It's built on top of [mcp-agent](todo).
269
+ > Windows Users - there are a couple of configuration changes needed for the Filesystem and Docker MCP Servers - necessary changes are detailed within the configuration files.
264
270
 
265
271
  ### llmindset.co.uk fork:
266
272
 
@@ -1,10 +1,10 @@
1
1
  mcp_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- mcp_agent/app.py,sha256=LJ8-9_hTnDOjX0KxRYRu9OPqDcj-fAQSSfS4Oo2m0D8,10550
2
+ mcp_agent/app.py,sha256=0_C1xmNZlk9qZoewnNI_mC7sSfO9oJgkOyiKkQ62MHU,10606
3
3
  mcp_agent/config.py,sha256=mShpoyIAGeyQKMH9gUCAXBZ2HNF3SM2KoMjSMpPQnmg,10210
4
4
  mcp_agent/console.py,sha256=Gjf2QLFumwG1Lav__c07X_kZxxEUSkzV-1_-YbAwcwo,813
5
5
  mcp_agent/context.py,sha256=qzwUrexZXVBzFiNkYI4xjztdGxuuiDWZbWrQgVhA-vE,8126
6
6
  mcp_agent/context_dependent.py,sha256=TGqRLzYCOnsWGoaD1HtrliYtWo8MeaWCQk6ePUmyYCw,1446
7
- mcp_agent/event_progress.py,sha256=uolrsdEuXQ8_8iAspb_w3HHp_yY22QfVyysuQaAhnOg,2641
7
+ mcp_agent/event_progress.py,sha256=25iz0yyg-O4glMmtijcYpDdUmtUIKsCmR_8A52GgeC4,2716
8
8
  mcp_agent/mcp_server_registry.py,sha256=5x30L1IlmC18JASl7NQbZYHMqPWS3ay0f_3U3uleaMM,9884
9
9
  mcp_agent/progress_display.py,sha256=GeJU9VUt6qKsFVymG688hCMVCsAygG9ifiiEb5IcbN4,361
10
10
  mcp_agent/agents/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -13,12 +13,12 @@ mcp_agent/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  mcp_agent/cli/__main__.py,sha256=bhxe66GYqy0q78OQhi7dkuubY1Tn0bQL6hU5Nn47E34,73
14
14
  mcp_agent/cli/main.py,sha256=wyOvUg0BihD1NpoiFcIaOruevgaHxs1-Xy_bnwb1Ik4,2449
15
15
  mcp_agent/cli/terminal.py,sha256=5fqrKlJvIpKEuvpvZ653OueQSYFFktBEbosjr2ucMUc,1026
16
- mcp_agent/cli/commands/bootstrap.py,sha256=mVng2bZPKfVEULrOPI7sQQaENAJwU-3SsGZb10mbu6Q,10614
16
+ mcp_agent/cli/commands/bootstrap.py,sha256=lVWMAt3Uzd6HHvEJ3X28bbKdX6o1_F-Vs6682fdol20,10798
17
17
  mcp_agent/cli/commands/config.py,sha256=32YTS5jmsYAs9QzAhjkG70_daAHqOemf4XbZBBSMz6g,204
18
- mcp_agent/cli/commands/setup.py,sha256=Km4-EFJljjMU5XjsSa-srg_7lbPuH5e40sx4lQDkia4,6198
18
+ mcp_agent/cli/commands/setup.py,sha256=dI_01B5nye707Rcd15gvZZCYlZGSiKajlnuLf6hJf2A,6197
19
19
  mcp_agent/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
20
  mcp_agent/core/exceptions.py,sha256=xDdhYh83ni3t0NiXQTEL0_Yyx0qQxBPQL1gSwRToeaw,1469
21
- mcp_agent/core/fastagent.py,sha256=WuT0B9XpGM7XowJivNkRcIm-0BthlObVtoNwcBaNKCA,40641
21
+ mcp_agent/core/fastagent.py,sha256=obVbZ8AwqxpeHg-LQvlwukswDxvk3sMPzkvPYk1QJSk,47127
22
22
  mcp_agent/core/server_validation.py,sha256=_59cn16nNT4HGPwg19HgxMtHK4MsdWYDUw_CuL-5xek,1696
23
23
  mcp_agent/eval/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
24
  mcp_agent/executor/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -29,14 +29,14 @@ mcp_agent/executor/temporal.py,sha256=U-wyltgWlVmzJoyivT6rR0Z1U3S6TbMXpeCxyuXako
29
29
  mcp_agent/executor/workflow.py,sha256=lA6r7PNEvxCVFHp4XkEJkaR0QCTf-J6iw9JwNx-tzNY,6727
30
30
  mcp_agent/executor/workflow_signal.py,sha256=3PWwSgXhz3PhkA8SRX3u0BDVoSlQqRGqC9d1qLC25vE,11210
31
31
  mcp_agent/human_input/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
- mcp_agent/human_input/handler.py,sha256=__DtS3LDGMwrDHOFnE8a0d2EnEupN0fQNSrovAAkn_U,1688
32
+ mcp_agent/human_input/handler.py,sha256=_gVIyvjDo53Aj8NFoKCiM8nBdQIuCxiStvgEtRBwYv8,1812
33
33
  mcp_agent/human_input/types.py,sha256=ZvuDHvI0-wO2tFoS0bzrv8U5B83zYdxAG7g9G9jCxug,1489
34
34
  mcp_agent/logging/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
35
  mcp_agent/logging/events.py,sha256=qfYJnrqgXdujV-nl-iOwBEBh6HMraowBI4zeAWPPU4A,3461
36
36
  mcp_agent/logging/json_serializer.py,sha256=pa_mf0i0YKpLsGq3THuITFUdAbmae-dv1OPOLbcS0to,5782
37
37
  mcp_agent/logging/listeners.py,sha256=lx2Pq_SE0rsG3nF3TwDSxkmsWzdXxIUjuaWct-KOtJ8,6631
38
38
  mcp_agent/logging/logger.py,sha256=Tr009BnfGUKuZcdinnSin0Z_zIsfDNGdcnamw2rDHRQ,10604
39
- mcp_agent/logging/rich_progress.py,sha256=ExVCEPfk01BaspOy60o5rnsfnr1aT6UKO0OWGDXYT5s,4560
39
+ mcp_agent/logging/rich_progress.py,sha256=IEVFdFGA0nwg6pSt9Ydni5LCNYZZPKYMe-6DCi9pO4Y,4851
40
40
  mcp_agent/logging/tracing.py,sha256=jQivxKYl870oXakmyUk7TXuTQSvsIzpHwZlSQfy4b0c,5203
41
41
  mcp_agent/logging/transport.py,sha256=Oo7Rx5t7REZTnH-uVljK0JlehnBj-wInc_fx0zhd_zY,16139
42
42
  mcp_agent/mcp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -44,18 +44,20 @@ mcp_agent/mcp/gen_client.py,sha256=u0HwdJiw9YCerS5JC7JDuGgBh9oTcLd7vv9vPjwibXc,3
44
44
  mcp_agent/mcp/mcp_activity.py,sha256=CajXCFWZ2cKEX9s4-HfNVAj471ePTVs4NOkvmIh65tE,592
45
45
  mcp_agent/mcp/mcp_agent_client_session.py,sha256=NtWcQhjmnnaR3yYcYj2d2lh-m563NexZUa57K1tAjeM,9477
46
46
  mcp_agent/mcp/mcp_agent_server.py,sha256=xP09HZTeguJi4Fq0p3fjLBP55uSYe5AdqM90xCgn9Ho,1639
47
- mcp_agent/mcp/mcp_aggregator.py,sha256=SQNErk20jTT_5cHTQ9zQBYEsAedd6QEweQj-YSzkdOo,14602
48
- mcp_agent/mcp/mcp_connection_manager.py,sha256=tdz2B2BxmO2gBDPe4r6eEnUp4QpwD0p0-ag5J_hle-w,11750
47
+ mcp_agent/mcp/mcp_aggregator.py,sha256=RVsgNnSJ1IPBkqKgF_Gp-Cpv97FVBIdppPey6FRoHB0,14751
48
+ mcp_agent/mcp/mcp_connection_manager.py,sha256=LH9ZmK-fXC-_7exAFclzWEjfFjwwdPqO_ZERqoHI_JM,13166
49
49
  mcp_agent/mcp/stdio.py,sha256=tW075R5rQ-UlflXWFKIFDgCbWbuhKqxhiYolWvyEkFs,3985
50
- mcp_agent/resources/examples/data-analysis/analysis.py,sha256=LrfbuK68JqcB9Y21NMedJ8RiEVU5Kr6jOIRLGmwz524,1379
51
- mcp_agent/resources/examples/data-analysis/fastagent.config.yaml,sha256=VwoXyaxAuLNUm7dtRj5rTxeFDSM_wRhhX_HZunb8jUI,422
50
+ mcp_agent/resources/examples/data-analysis/analysis.py,sha256=Sp-umPPfwVjG3yNrHdQA6blGtG6jc5of1e_0oS4njYc,1379
51
+ mcp_agent/resources/examples/data-analysis/fastagent.config.yaml,sha256=eTKGbjnTHhDTeNRPQvG_fr9OQpEZ5Y9v7X2NyCj0V70,530
52
52
  mcp_agent/resources/examples/data-analysis/mount-point/WA_Fn-UseC_-HR-Employee-Attrition.csv,sha256=pcMeOL1_r8m8MziE6xgbBrQbjl5Ijo98yycZn7O-dlk,227977
53
+ mcp_agent/resources/examples/internal/job.py,sha256=uqIqc1i5PfWynobwNaWWcQ6FP_BRifINd4ncmPvzwm0,4093
53
54
  mcp_agent/resources/examples/mcp_researcher/researcher-eval.py,sha256=NI1vujVuLeTrcF8dM_ipZZ3Tg-1AL35CaltmuzxWrU4,1807
54
55
  mcp_agent/resources/examples/mcp_researcher/researcher.py,sha256=jPRafm7jbpHKkX_dQiYGG3Sw-e1Dm86q-JZT-WZDhM0,1425
55
- mcp_agent/resources/examples/workflows/chaining.py,sha256=o9vf45BtJP6PT7kCYfIyNTcJrVGnMeKCUD37vI0cepw,770
56
+ mcp_agent/resources/examples/workflows/agent_build.py,sha256=vdjS02rZR88RU53WYzXxPscfFNEFFe_niHYE_i49I8Q,2396
57
+ mcp_agent/resources/examples/workflows/chaining.py,sha256=QD_r_PKIoDedWqOTzg7IBnTY8OVoDSMot5WnArJubnc,751
56
58
  mcp_agent/resources/examples/workflows/evaluator.py,sha256=ByILFY7PsA8UXtmNa4YtLIGSsnVfZVjKlHGH9G0ie2I,3069
57
- mcp_agent/resources/examples/workflows/human_input.py,sha256=RlUch5A8N9pb3REusiIAZKfAGTxWWE82s1Npmkfbg1Y,625
58
- mcp_agent/resources/examples/workflows/orchestrator.py,sha256=pt6HTyJl5r5zR6FUICi05-Eaulyh_W-PAfh9XCbuuRc,2986
59
+ mcp_agent/resources/examples/workflows/human_input.py,sha256=c8cBdLEPbaMXddFwsfN3Z7RFs5PZXsdrjANfvq1VTPM,605
60
+ mcp_agent/resources/examples/workflows/orchestrator.py,sha256=kHUDDALqjA8TRjkbsDP2MwspEj1a5DdSUOPAiI17izQ,2545
59
61
  mcp_agent/resources/examples/workflows/parallel.py,sha256=cNYcIcsdo0-KK-S7KEPCc11aWELeVlQJdJ2LIC9xgDs,3090
60
62
  mcp_agent/resources/examples/workflows/router.py,sha256=XT_ewCrxPxdUTMCYQGw34qZQ3GGu8TYY_v5Lige8By4,1707
61
63
  mcp_agent/telemetry/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -66,7 +68,7 @@ mcp_agent/workflows/embedding/embedding_base.py,sha256=-c20ggQ8s7XhMxRX-WEhOgHE7
66
68
  mcp_agent/workflows/embedding/embedding_cohere.py,sha256=OKTJvKD_uEafd4c2uhR5tBjprea1nyvlJOO-3FDqOnk,1540
67
69
  mcp_agent/workflows/embedding/embedding_openai.py,sha256=dntjJ5P-FSMGYuyPZC8MuCU_ehwjXw9wDfzZZuSQN1E,1480
68
70
  mcp_agent/workflows/evaluator_optimizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
69
- mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py,sha256=njAJiLK-0zQ79Kdc39Rh548n9pbfA_52s-XVpC0FZK8,13399
71
+ mcp_agent/workflows/evaluator_optimizer/evaluator_optimizer.py,sha256=ddAfHu8jFGwdVGbHwm7CZQnmtMeDnIl1gIB_lfkXx_E,13628
70
72
  mcp_agent/workflows/intent_classifier/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
73
  mcp_agent/workflows/intent_classifier/intent_classifier_base.py,sha256=zTbOmq6EY_abOlme4zl28HM4RWNNS6bbHl3tF7SshJ0,4004
72
74
  mcp_agent/workflows/intent_classifier/intent_classifier_embedding.py,sha256=_bWZGukc_q9LdA_Q18UoAMSzhN8tt4K_bRHNUhy7Crw,3997
@@ -76,15 +78,15 @@ mcp_agent/workflows/intent_classifier/intent_classifier_llm.py,sha256=WSLUv2Casb
76
78
  mcp_agent/workflows/intent_classifier/intent_classifier_llm_anthropic.py,sha256=Hp4454IniWFxV4ml50Ml8ip9rS1La5FBn5pd7vm1FHA,1964
77
79
  mcp_agent/workflows/intent_classifier/intent_classifier_llm_openai.py,sha256=zj76WlTYnSCYjBQ_IDi5vFBQGmNwYaoUq1rT730sY98,1940
78
80
  mcp_agent/workflows/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
79
- mcp_agent/workflows/llm/augmented_llm.py,sha256=o5Vdn1sAgVBhmetilbiYJuVz5BAtEhNcwGMEBGNzU_A,22960
80
- mcp_agent/workflows/llm/augmented_llm_anthropic.py,sha256=jowYvWBdVspxQhcvZt14iL_1kEZK2t4f6Wzgn_8zLaY,21048
81
+ mcp_agent/workflows/llm/augmented_llm.py,sha256=BQ7xhYVzloE7_VeuJvvjABYs7sNxJjfS14QdvHUUvjY,23209
82
+ mcp_agent/workflows/llm/augmented_llm_anthropic.py,sha256=_Td5UTNfnaFtqN3XNV5bX1w7ituRjzoWMOyaobz9vO4,21127
81
83
  mcp_agent/workflows/llm/augmented_llm_openai.py,sha256=RqsbX0Fc5By1AvQ2N85hxzz0d84mVwuPggslxwqSJVM,24190
82
84
  mcp_agent/workflows/llm/llm_selector.py,sha256=G7pIybuBDwtmyxUDov_QrNYH2FoI0qFRu2JfoxWUF5Y,11045
83
- mcp_agent/workflows/llm/model_factory.py,sha256=cAjG8UxzUC_wcB6mPaMfEhwnGnVS4-IOmOXDabO1_0g,6119
85
+ mcp_agent/workflows/llm/model_factory.py,sha256=5JrMXZ5jbE8isiteF2A912gGuCyomGpjtC_BCVSAM9s,6806
84
86
  mcp_agent/workflows/orchestrator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
85
- mcp_agent/workflows/orchestrator/orchestrator.py,sha256=tSRMCRFT_gAQApRRiXXznCbk_x11o86oi5LfKLnXzdk,15146
87
+ mcp_agent/workflows/orchestrator/orchestrator.py,sha256=Fn5r0uUGNAiUq5NLFDjaJ04t19MnGEgr9iknbUj0DSA,14733
86
88
  mcp_agent/workflows/orchestrator/orchestrator_models.py,sha256=UWn7_HFLcqFGlcjZ1Rn2SYQfm5k9seS6QJN_FRST5Kc,4513
87
- mcp_agent/workflows/orchestrator/orchestrator_prompts.py,sha256=AQ9-1WyMIl6l36yAMh1dtJ6Vhi1jPrvGXF2CNNAtlpA,3946
89
+ mcp_agent/workflows/orchestrator/orchestrator_prompts.py,sha256=-ogkjDoCXBDOyYE9yk3qhjqq0LofsSpRvRZfWVzrVTE,4396
88
90
  mcp_agent/workflows/parallel/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
89
91
  mcp_agent/workflows/parallel/fan_in.py,sha256=EivpUL5-qftctws-tlfwmYS1QeSwr07POIbBUbwvwOk,13184
90
92
  mcp_agent/workflows/parallel/fan_out.py,sha256=J-yezgjzAWxfueW_Qcgwoet4PFDRIh0h4m48lIbFA4c,7023
@@ -94,13 +96,13 @@ mcp_agent/workflows/router/router_base.py,sha256=1Qr3Fx9_KxpotMV-eaNT79etayAxWuQ
94
96
  mcp_agent/workflows/router/router_embedding.py,sha256=wEU49li9OqTX-Xucm0HDUFLZjlND1WuewOcQVAo0s2E,7944
95
97
  mcp_agent/workflows/router/router_embedding_cohere.py,sha256=aKZVzzQfBuz0by9k0zWLAA0Db_unDIMYL4ynVzzx8C4,1975
96
98
  mcp_agent/workflows/router/router_embedding_openai.py,sha256=KqW2IFLdQoAJ2lIz1X18WQJFjXF-YSFSTtsqVnp1JeI,1975
97
- mcp_agent/workflows/router/router_llm.py,sha256=ySyYvpsMOgDpWmbBG7l0z0vxbKFo4kVi9Bw54Vvz9KM,10099
99
+ mcp_agent/workflows/router/router_llm.py,sha256=xRLzFt8UvJT9PZNHIVDr8DguWqHFi-MJ-uGALL5Ahzw,10639
98
100
  mcp_agent/workflows/swarm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
99
101
  mcp_agent/workflows/swarm/swarm.py,sha256=-lAIeSWDqbGHGRPTvjiP9nIKWvxxy9DAojl9yQzO1Pw,11050
100
102
  mcp_agent/workflows/swarm/swarm_anthropic.py,sha256=pW8zFx5baUWGd5Vw3nIDF2oVOOGNorij4qvGJKdYPcs,1624
101
103
  mcp_agent/workflows/swarm/swarm_openai.py,sha256=wfteywvAGkT5bLmIxX_StHJq8144whYmCRnJASAjOes,1596
102
- fast_agent_mcp-0.0.8.dist-info/METADATA,sha256=tPypBpbGkwNNIRHnJJF7Nn68O1bJHIdV3WFvVup3xyI,15914
103
- fast_agent_mcp-0.0.8.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
104
- fast_agent_mcp-0.0.8.dist-info/entry_points.txt,sha256=2IXtSmDK9XjWN__RWuRIJTgWyW17wJnJ_h-pb0pZAxo,174
105
- fast_agent_mcp-0.0.8.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
106
- fast_agent_mcp-0.0.8.dist-info/RECORD,,
104
+ fast_agent_mcp-0.0.11.dist-info/METADATA,sha256=p3Q0Gcx-dzK-vJA6F2s2iaw6NNm2RoWrB5VakfLIp00,16504
105
+ fast_agent_mcp-0.0.11.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
106
+ fast_agent_mcp-0.0.11.dist-info/entry_points.txt,sha256=2IXtSmDK9XjWN__RWuRIJTgWyW17wJnJ_h-pb0pZAxo,174
107
+ fast_agent_mcp-0.0.11.dist-info/licenses/LICENSE,sha256=cN3FxDURL9XuzE5mhK9L2paZo82LTfjwCYVT7e3j0e4,10939
108
+ fast_agent_mcp-0.0.11.dist-info/RECORD,,
mcp_agent/app.py CHANGED
@@ -135,8 +135,8 @@ class MCPApp:
135
135
  "MCPAgent initialized",
136
136
  data={
137
137
  "progress_action": "Running",
138
- "target": self.name,
139
- "agent_name": "mcp_application_loop",
138
+ "target": self.name or "mcp_application",
139
+ "agent_name": self.name or "fastagent loop",
140
140
  },
141
141
  )
142
142
 
@@ -150,8 +150,8 @@ class MCPApp:
150
150
  "MCPAgent cleanup",
151
151
  data={
152
152
  "progress_action": ProgressAction.FINISHED,
153
- "target": self.name,
154
- "agent_name": "mcp_application_loop",
153
+ "target": self.name or "mcp_application",
154
+ "agent_name": self.name or "fastagent loop",
155
155
  },
156
156
  )
157
157
  try:
@@ -19,6 +19,7 @@ EXAMPLE_TYPES = {
19
19
  "'Building Effective Agents' paper. Some agents use the 'fetch'\n"
20
20
  "and filesystem MCP Servers.",
21
21
  "files": [
22
+ "agent_build.py",
22
23
  "chaining.py",
23
24
  "evaluator.py",
24
25
  "human_input.py",
@@ -269,6 +270,9 @@ def _show_completion_message(example_type: str, created: list[str]):
269
270
  )
270
271
  console.print("2. The dataset is available in the mount-point directory:")
271
272
  console.print(" - mount-point/WA_Fn-UseC_-HR-Employee-Attrition.csv")
273
+ console.print(
274
+ "On Windows platforms, please edit the fastagent.config.yaml and adjust the volume mount point."
275
+ )
272
276
  else:
273
277
  console.print("\n[yellow]No files were created.[/yellow]")
274
278
 
@@ -19,7 +19,7 @@ FASTAGENT_CONFIG_TEMPLATE = """
19
19
  # If not specified, defaults to "haiku".
20
20
  # Can be overriden with a command line switch --model=<model>, or within the Agent constructor.
21
21
 
22
- default_model: sonnet
22
+ default_model: haiku
23
23
 
24
24
  # Logging and Console Configuration:
25
25
  logger: