fabricatio 0.2.9.dev4__cp312-cp312-win_amd64.whl → 0.2.10.dev1__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fabricatio/actions/article.py +11 -107
- fabricatio/actions/article_rag.py +33 -2
- fabricatio/actions/rag.py +40 -18
- fabricatio/capabilities/check.py +2 -1
- fabricatio/capabilities/rag.py +41 -231
- fabricatio/constants.py +20 -0
- fabricatio/decorators.py +23 -0
- fabricatio/models/adv_kwargs_types.py +35 -0
- fabricatio/models/events.py +6 -6
- fabricatio/models/extra/advanced_judge.py +2 -2
- fabricatio/models/extra/aricle_rag.py +120 -0
- fabricatio/models/extra/article_base.py +2 -186
- fabricatio/models/extra/article_essence.py +8 -7
- fabricatio/models/extra/article_main.py +12 -107
- fabricatio/models/extra/problem.py +12 -17
- fabricatio/models/extra/rag.py +98 -0
- fabricatio/models/extra/rule.py +1 -2
- fabricatio/models/generic.py +19 -11
- fabricatio/models/kwargs_types.py +6 -36
- fabricatio/models/task.py +3 -3
- fabricatio/models/usages.py +73 -5
- fabricatio/rust.cp312-win_amd64.pyd +0 -0
- fabricatio/rust.pyi +35 -6
- fabricatio/utils.py +14 -1
- {fabricatio-0.2.9.dev4.data → fabricatio-0.2.10.dev1.data}/scripts/tdown.exe +0 -0
- {fabricatio-0.2.9.dev4.dist-info → fabricatio-0.2.10.dev1.dist-info}/METADATA +1 -4
- {fabricatio-0.2.9.dev4.dist-info → fabricatio-0.2.10.dev1.dist-info}/RECORD +29 -27
- fabricatio/models/utils.py +0 -148
- {fabricatio-0.2.9.dev4.dist-info → fabricatio-0.2.10.dev1.dist-info}/WHEEL +0 -0
- {fabricatio-0.2.9.dev4.dist-info → fabricatio-0.2.10.dev1.dist-info}/licenses/LICENSE +0 -0
fabricatio/capabilities/rag.py
CHANGED
@@ -3,28 +3,22 @@
|
|
3
3
|
try:
|
4
4
|
from pymilvus import MilvusClient
|
5
5
|
except ImportError as e:
|
6
|
-
raise RuntimeError(
|
6
|
+
raise RuntimeError(
|
7
|
+
"pymilvus is not installed. Have you installed `fabricatio[rag]` instead of `fabricatio`?"
|
8
|
+
) from e
|
7
9
|
from functools import lru_cache
|
8
10
|
from operator import itemgetter
|
9
|
-
from
|
10
|
-
from pathlib import Path
|
11
|
-
from typing import Any, Callable, Dict, List, Optional, Self, Union, Unpack, cast, overload
|
11
|
+
from typing import List, Optional, Self, Type, Unpack
|
12
12
|
|
13
13
|
from more_itertools.recipes import flatten, unique
|
14
14
|
from pydantic import Field, PrivateAttr
|
15
15
|
|
16
16
|
from fabricatio.config import configs
|
17
17
|
from fabricatio.journal import logger
|
18
|
-
from fabricatio.models.
|
19
|
-
|
20
|
-
|
21
|
-
EmbeddingKwargs,
|
22
|
-
FetchKwargs,
|
23
|
-
LLMKwargs,
|
24
|
-
RetrievalKwargs,
|
25
|
-
)
|
18
|
+
from fabricatio.models.adv_kwargs_types import CollectionConfigKwargs, FetchKwargs
|
19
|
+
from fabricatio.models.extra.rag import MilvusDataBase
|
20
|
+
from fabricatio.models.kwargs_types import ChooseKwargs
|
26
21
|
from fabricatio.models.usages import EmbeddingUsage
|
27
|
-
from fabricatio.models.utils import MilvusData
|
28
22
|
from fabricatio.rust_instances import TEMPLATE_MANAGER
|
29
23
|
from fabricatio.utils import ok
|
30
24
|
|
@@ -78,40 +72,6 @@ class RAG(EmbeddingUsage):
|
|
78
72
|
raise RuntimeError("Client is not initialized. Have you called `self.init_client()`?")
|
79
73
|
return self
|
80
74
|
|
81
|
-
@overload
|
82
|
-
async def pack(
|
83
|
-
self, input_text: List[str], subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
|
84
|
-
) -> List[MilvusData]: ...
|
85
|
-
@overload
|
86
|
-
async def pack(
|
87
|
-
self, input_text: str, subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
|
88
|
-
) -> MilvusData: ...
|
89
|
-
|
90
|
-
async def pack(
|
91
|
-
self, input_text: List[str] | str, subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
|
92
|
-
) -> List[MilvusData] | MilvusData:
|
93
|
-
"""Asynchronously generates MilvusData objects for the given input text.
|
94
|
-
|
95
|
-
Args:
|
96
|
-
input_text (List[str] | str): A string or list of strings to generate embeddings for.
|
97
|
-
subject (Optional[str]): The subject of the input text. Defaults to None.
|
98
|
-
**kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
|
99
|
-
|
100
|
-
Returns:
|
101
|
-
List[MilvusData] | MilvusData: The generated MilvusData objects.
|
102
|
-
"""
|
103
|
-
if isinstance(input_text, str):
|
104
|
-
return MilvusData(vector=await self.vectorize(input_text, **kwargs), text=input_text, subject=subject)
|
105
|
-
vecs = await self.vectorize(input_text, **kwargs)
|
106
|
-
return [
|
107
|
-
MilvusData(
|
108
|
-
vector=vec,
|
109
|
-
text=text,
|
110
|
-
subject=subject,
|
111
|
-
)
|
112
|
-
for text, vec in zip(input_text, vecs, strict=True)
|
113
|
-
]
|
114
|
-
|
115
75
|
def view(
|
116
76
|
self, collection_name: Optional[str], create: bool = False, **kwargs: Unpack[CollectionConfigKwargs]
|
117
77
|
) -> Self:
|
@@ -152,29 +112,27 @@ class RAG(EmbeddingUsage):
|
|
152
112
|
Returns:
|
153
113
|
str: The name of the collection being viewed.
|
154
114
|
"""
|
155
|
-
|
156
|
-
raise RuntimeError("No collection is being viewed. Have you called `self.view()`?")
|
157
|
-
return self.target_collection
|
115
|
+
return ok(self.target_collection, "No collection is being viewed. Have you called `self.view()`?")
|
158
116
|
|
159
|
-
def add_document[D:
|
160
|
-
self, data: D |
|
117
|
+
async def add_document[D: MilvusDataBase](
|
118
|
+
self, data: List[D] | D, collection_name: Optional[str] = None, flush: bool = False
|
161
119
|
) -> Self:
|
162
120
|
"""Adds a document to the specified collection.
|
163
121
|
|
164
122
|
Args:
|
165
|
-
data (Union[Dict[str, Any],
|
123
|
+
data (Union[Dict[str, Any], MilvusDataBase] | List[Union[Dict[str, Any], MilvusDataBase]]): The data to be added to the collection.
|
166
124
|
collection_name (Optional[str]): The name of the collection. If not provided, the currently viewed collection is used.
|
167
125
|
flush (bool): Whether to flush the collection after insertion.
|
168
126
|
|
169
127
|
Returns:
|
170
128
|
Self: The current instance, allowing for method chaining.
|
171
129
|
"""
|
172
|
-
if isinstance(data,
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
130
|
+
if isinstance(data, MilvusDataBase):
|
131
|
+
data = [data]
|
132
|
+
|
133
|
+
data_vec = await self.vectorize([d.prepare_vectorization() for d in data])
|
134
|
+
prepared_data = [d.prepare_insertion(vec) for d, vec in zip(data, data_vec, strict=True)]
|
135
|
+
|
178
136
|
c_name = collection_name or self.safe_target_collection
|
179
137
|
self.check_client().client.insert(c_name, prepared_data)
|
180
138
|
|
@@ -183,84 +141,33 @@ class RAG(EmbeddingUsage):
|
|
183
141
|
self.client.flush(c_name)
|
184
142
|
return self
|
185
143
|
|
186
|
-
async def
|
187
|
-
self,
|
188
|
-
source: List[PathLike] | PathLike,
|
189
|
-
reader: Callable[[PathLike], str] = lambda path: Path(path).read_text(encoding="utf-8"),
|
190
|
-
collection_name: Optional[str] = None,
|
191
|
-
) -> Self:
|
192
|
-
"""Consume a file and add its content to the collection.
|
193
|
-
|
194
|
-
Args:
|
195
|
-
source (PathLike): The path to the file to be consumed.
|
196
|
-
reader (Callable[[PathLike], MilvusData]): The reader function to read the file.
|
197
|
-
collection_name (Optional[str]): The name of the collection. If not provided, the currently viewed collection is used.
|
198
|
-
|
199
|
-
Returns:
|
200
|
-
Self: The current instance, allowing for method chaining.
|
201
|
-
"""
|
202
|
-
if not isinstance(source, list):
|
203
|
-
source = [source]
|
204
|
-
return await self.consume_string([reader(s) for s in source], collection_name)
|
205
|
-
|
206
|
-
async def consume_string(self, text: List[str] | str, collection_name: Optional[str] = None) -> Self:
|
207
|
-
"""Consume a string and add it to the collection.
|
208
|
-
|
209
|
-
Args:
|
210
|
-
text (List[str] | str): The text to be added to the collection.
|
211
|
-
collection_name (Optional[str]): The name of the collection. If not provided, the currently viewed collection is used.
|
212
|
-
|
213
|
-
Returns:
|
214
|
-
Self: The current instance, allowing for method chaining.
|
215
|
-
"""
|
216
|
-
self.add_document(await self.pack(text), collection_name or self.safe_target_collection, flush=True)
|
217
|
-
return self
|
218
|
-
|
219
|
-
@overload
|
220
|
-
async def afetch_document[V: (int, str, float, bytes)](
|
144
|
+
async def afetch_document[D: MilvusDataBase](
|
221
145
|
self,
|
222
146
|
vecs: List[List[float]],
|
223
|
-
|
147
|
+
document_model: Type[D],
|
224
148
|
collection_name: Optional[str] = None,
|
225
149
|
similarity_threshold: float = 0.37,
|
226
150
|
result_per_query: int = 10,
|
227
|
-
) -> List[
|
228
|
-
|
229
|
-
@overload
|
230
|
-
async def afetch_document[V: (int, str, float, bytes)](
|
231
|
-
self,
|
232
|
-
vecs: List[List[float]],
|
233
|
-
desired_fields: str,
|
234
|
-
collection_name: Optional[str] = None,
|
235
|
-
similarity_threshold: float = 0.37,
|
236
|
-
result_per_query: int = 10,
|
237
|
-
) -> List[V]: ...
|
238
|
-
async def afetch_document[V: (int, str, float, bytes)](
|
239
|
-
self,
|
240
|
-
vecs: List[List[float]],
|
241
|
-
desired_fields: List[str] | str,
|
242
|
-
collection_name: Optional[str] = None,
|
243
|
-
similarity_threshold: float = 0.37,
|
244
|
-
result_per_query: int = 10,
|
245
|
-
) -> List[Dict[str, Any]] | List[V]:
|
246
|
-
"""Fetch data from the collection.
|
151
|
+
) -> List[D]:
|
152
|
+
"""Asynchronously fetches documents from a Milvus database based on input vectors.
|
247
153
|
|
248
154
|
Args:
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
155
|
+
vecs (List[List[float]]): A list of vectors to search for in the database.
|
156
|
+
document_model (Type[D]): The model class used to convert fetched data into document objects.
|
157
|
+
collection_name (Optional[str]): The name of the collection to search within.
|
158
|
+
If None, the currently viewed collection is used.
|
159
|
+
similarity_threshold (float): The similarity threshold for vector search. Defaults to 0.37.
|
160
|
+
result_per_query (int): The maximum number of results to return per query. Defaults to 10.
|
254
161
|
|
255
162
|
Returns:
|
256
|
-
|
163
|
+
List[D]: A list of document objects created from the fetched data.
|
257
164
|
"""
|
258
165
|
# Step 1: Search for vectors
|
259
166
|
search_results = self.check_client().client.search(
|
260
167
|
collection_name or self.safe_target_collection,
|
261
168
|
vecs,
|
262
169
|
search_params={"radius": similarity_threshold},
|
263
|
-
output_fields=
|
170
|
+
output_fields=list(document_model.model_fields),
|
264
171
|
limit=result_per_query,
|
265
172
|
)
|
266
173
|
|
@@ -270,104 +177,42 @@ class RAG(EmbeddingUsage):
|
|
270
177
|
# Step 3: Sort by distance (descending)
|
271
178
|
sorted_results = sorted(unique_results, key=itemgetter("distance"), reverse=True)
|
272
179
|
|
273
|
-
logger.debug(
|
180
|
+
logger.debug(
|
181
|
+
f"Fetched {len(sorted_results)} document,searched similarities: {[t['distance'] for t in sorted_results]}"
|
182
|
+
)
|
274
183
|
# Step 4: Extract the entities
|
275
184
|
resp = [result["entity"] for result in sorted_results]
|
276
185
|
|
277
|
-
|
278
|
-
return resp
|
279
|
-
return [r.get(desired_fields) for r in resp] # extract the single field as list
|
186
|
+
return document_model.from_sequence(resp)
|
280
187
|
|
281
|
-
async def aretrieve(
|
188
|
+
async def aretrieve[D: MilvusDataBase](
|
282
189
|
self,
|
283
190
|
query: List[str] | str,
|
191
|
+
document_model: Type[D],
|
284
192
|
final_limit: int = 20,
|
285
193
|
**kwargs: Unpack[FetchKwargs],
|
286
|
-
) -> List[
|
194
|
+
) -> List[D]:
|
287
195
|
"""Retrieve data from the collection.
|
288
196
|
|
289
197
|
Args:
|
290
198
|
query (List[str] | str): The query to be used for retrieval.
|
199
|
+
document_model (Type[D]): The model class used to convert retrieved data into document objects.
|
291
200
|
final_limit (int): The final limit on the number of results to return.
|
292
201
|
**kwargs (Unpack[FetchKwargs]): Additional keyword arguments for retrieval.
|
293
202
|
|
294
203
|
Returns:
|
295
|
-
List[
|
204
|
+
List[D]: A list of document objects created from the retrieved data.
|
296
205
|
"""
|
297
206
|
if isinstance(query, str):
|
298
207
|
query = [query]
|
299
|
-
return
|
300
|
-
"List[str]",
|
208
|
+
return (
|
301
209
|
await self.afetch_document(
|
302
210
|
vecs=(await self.vectorize(query)),
|
303
|
-
|
211
|
+
document_model=document_model,
|
304
212
|
**kwargs,
|
305
|
-
)
|
213
|
+
)
|
306
214
|
)[:final_limit]
|
307
215
|
|
308
|
-
async def aretrieve_compact(
|
309
|
-
self,
|
310
|
-
query: List[str] | str,
|
311
|
-
**kwargs: Unpack[RetrievalKwargs],
|
312
|
-
) -> str:
|
313
|
-
"""Retrieve data from the collection and format it for display.
|
314
|
-
|
315
|
-
Args:
|
316
|
-
query (List[str] | str): The query to be used for retrieval.
|
317
|
-
**kwargs (Unpack[RetrievalKwargs]): Additional keyword arguments for retrieval.
|
318
|
-
|
319
|
-
Returns:
|
320
|
-
str: A formatted string containing the retrieved data.
|
321
|
-
"""
|
322
|
-
return TEMPLATE_MANAGER.render_template(
|
323
|
-
configs.templates.retrieved_display_template, {"docs": (await self.aretrieve(query, **kwargs))}
|
324
|
-
)
|
325
|
-
|
326
|
-
async def aask_retrieved(
|
327
|
-
self,
|
328
|
-
question: str,
|
329
|
-
query: Optional[List[str] | str] = None,
|
330
|
-
collection_name: Optional[str] = None,
|
331
|
-
extra_system_message: str = "",
|
332
|
-
result_per_query: int = 10,
|
333
|
-
final_limit: int = 20,
|
334
|
-
similarity_threshold: float = 0.37,
|
335
|
-
**kwargs: Unpack[LLMKwargs],
|
336
|
-
) -> str:
|
337
|
-
"""Asks a question by retrieving relevant documents based on the provided query.
|
338
|
-
|
339
|
-
This method performs document retrieval using the given query, then asks the
|
340
|
-
specified question using the retrieved documents as context.
|
341
|
-
|
342
|
-
Args:
|
343
|
-
question (str): The question to be asked.
|
344
|
-
query (List[str] | str): The query or list of queries used for document retrieval.
|
345
|
-
collection_name (Optional[str]): The name of the collection to retrieve documents from.
|
346
|
-
If not provided, the currently viewed collection is used.
|
347
|
-
extra_system_message (str): An additional system message to be included in the prompt.
|
348
|
-
result_per_query (int): The number of results to return per query. Default is 10.
|
349
|
-
final_limit (int): The maximum number of retrieved documents to consider. Default is 20.
|
350
|
-
similarity_threshold (float): The threshold for similarity, only results above this threshold will be returned.
|
351
|
-
**kwargs (Unpack[LLMKwargs]): Additional keyword arguments passed to the underlying `aask` method.
|
352
|
-
|
353
|
-
Returns:
|
354
|
-
str: A string response generated after asking with the context of retrieved documents.
|
355
|
-
"""
|
356
|
-
rendered = await self.aretrieve_compact(
|
357
|
-
query or question,
|
358
|
-
final_limit=final_limit,
|
359
|
-
collection_name=collection_name,
|
360
|
-
result_per_query=result_per_query,
|
361
|
-
similarity_threshold=similarity_threshold,
|
362
|
-
)
|
363
|
-
|
364
|
-
logger.debug(f"Retrieved Documents: \n{rendered}")
|
365
|
-
return await self.aask(
|
366
|
-
question,
|
367
|
-
f"{rendered}\n\n{extra_system_message}",
|
368
|
-
**kwargs,
|
369
|
-
)
|
370
|
-
|
371
216
|
async def arefined_query(self, question: List[str] | str, **kwargs: Unpack[ChooseKwargs]) -> Optional[List[str]]:
|
372
217
|
"""Refines the given question using a template.
|
373
218
|
|
@@ -385,38 +230,3 @@ class RAG(EmbeddingUsage):
|
|
385
230
|
),
|
386
231
|
**kwargs,
|
387
232
|
)
|
388
|
-
|
389
|
-
async def aask_refined(
|
390
|
-
self,
|
391
|
-
question: str,
|
392
|
-
collection_name: Optional[str] = None,
|
393
|
-
extra_system_message: str = "",
|
394
|
-
result_per_query: int = 10,
|
395
|
-
final_limit: int = 20,
|
396
|
-
similarity_threshold: float = 0.37,
|
397
|
-
**kwargs: Unpack[LLMKwargs],
|
398
|
-
) -> str:
|
399
|
-
"""Asks a question using a refined query based on the provided question.
|
400
|
-
|
401
|
-
Args:
|
402
|
-
question (str): The question to be asked.
|
403
|
-
collection_name (Optional[str]): The name of the collection to retrieve documents from.
|
404
|
-
extra_system_message (str): An additional system message to be included in the prompt.
|
405
|
-
result_per_query (int): The number of results to return per query. Default is 10.
|
406
|
-
final_limit (int): The maximum number of retrieved documents to consider. Default is 20.
|
407
|
-
similarity_threshold (float): The threshold for similarity, only results above this threshold will be returned.
|
408
|
-
**kwargs (Unpack[LLMKwargs]): Additional keyword arguments passed to the underlying `aask` method.
|
409
|
-
|
410
|
-
Returns:
|
411
|
-
str: A string response generated after asking with the refined question.
|
412
|
-
"""
|
413
|
-
return await self.aask_retrieved(
|
414
|
-
question,
|
415
|
-
await self.arefined_query(question, **kwargs),
|
416
|
-
collection_name=collection_name,
|
417
|
-
extra_system_message=extra_system_message,
|
418
|
-
result_per_query=result_per_query,
|
419
|
-
final_limit=final_limit,
|
420
|
-
similarity_threshold=similarity_threshold,
|
421
|
-
**kwargs,
|
422
|
-
)
|
fabricatio/constants.py
ADDED
@@ -0,0 +1,20 @@
|
|
1
|
+
"""A module containing constants used throughout the library."""
|
2
|
+
from enum import StrEnum
|
3
|
+
|
4
|
+
|
5
|
+
class TaskStatus(StrEnum):
|
6
|
+
"""An enumeration representing the status of a task.
|
7
|
+
|
8
|
+
Attributes:
|
9
|
+
Pending: The task is pending.
|
10
|
+
Running: The task is currently running.
|
11
|
+
Finished: The task has been successfully completed.
|
12
|
+
Failed: The task has failed.
|
13
|
+
Cancelled: The task has been cancelled.
|
14
|
+
"""
|
15
|
+
|
16
|
+
Pending = "pending"
|
17
|
+
Running = "running"
|
18
|
+
Finished = "finished"
|
19
|
+
Failed = "failed"
|
20
|
+
Cancelled = "cancelled"
|
fabricatio/decorators.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2
2
|
|
3
3
|
from asyncio import iscoroutinefunction
|
4
4
|
from functools import wraps
|
5
|
+
from importlib.util import find_spec
|
5
6
|
from inspect import signature
|
6
7
|
from shutil import which
|
7
8
|
from types import ModuleType
|
@@ -209,3 +210,25 @@ def logging_exec_time[**P, R](func: Callable[P, R]) -> Callable[P, R]:
|
|
209
210
|
return result
|
210
211
|
|
211
212
|
return _wrapper
|
213
|
+
|
214
|
+
|
215
|
+
def precheck_package[**P, R](package_name: str, msg: str) -> Callable[[Callable[P, R]], Callable[P, R]]:
|
216
|
+
"""Check if a package exists in the current environment.
|
217
|
+
|
218
|
+
Args:
|
219
|
+
package_name (str): The name of the package to check.
|
220
|
+
msg (str): The message to display if the package is not found.
|
221
|
+
|
222
|
+
Returns:
|
223
|
+
bool: True if the package exists, False otherwise.
|
224
|
+
"""
|
225
|
+
|
226
|
+
def _wrapper(func: Callable[P, R]) -> Callable[P, R]:
|
227
|
+
def _inner(*args: P.args, **kwargs: P.kwargs) -> R:
|
228
|
+
if find_spec(package_name):
|
229
|
+
return func(*args, **kwargs)
|
230
|
+
raise RuntimeError(msg)
|
231
|
+
|
232
|
+
return _inner
|
233
|
+
|
234
|
+
return _wrapper
|
@@ -1,4 +1,8 @@
|
|
1
1
|
"""A module containing kwargs types for content correction and checking operations."""
|
2
|
+
|
3
|
+
from importlib.util import find_spec
|
4
|
+
from typing import NotRequired, TypedDict
|
5
|
+
|
2
6
|
from fabricatio.models.extra.problem import Improvement
|
3
7
|
from fabricatio.models.extra.rule import RuleSet
|
4
8
|
from fabricatio.models.generic import SketchedAble
|
@@ -23,3 +27,34 @@ class CheckKwargs(ReferencedKwargs[Improvement], total=False):
|
|
23
27
|
"""
|
24
28
|
|
25
29
|
ruleset: RuleSet
|
30
|
+
|
31
|
+
|
32
|
+
if find_spec("pymilvus"):
|
33
|
+
from pymilvus import CollectionSchema
|
34
|
+
from pymilvus.milvus_client import IndexParams
|
35
|
+
|
36
|
+
class CollectionConfigKwargs(TypedDict, total=False):
|
37
|
+
"""Configuration parameters for a vector collection.
|
38
|
+
|
39
|
+
These arguments are typically used when configuring connections to vector databases.
|
40
|
+
"""
|
41
|
+
|
42
|
+
dimension: int | None
|
43
|
+
primary_field_name: str
|
44
|
+
id_type: str
|
45
|
+
vector_field_name: str
|
46
|
+
metric_type: str
|
47
|
+
timeout: float | None
|
48
|
+
schema: CollectionSchema | None
|
49
|
+
index_params: IndexParams | None
|
50
|
+
|
51
|
+
class FetchKwargs(TypedDict):
|
52
|
+
"""Arguments for fetching data from vector collections.
|
53
|
+
|
54
|
+
Controls how data is retrieved from vector databases, including filtering
|
55
|
+
and result limiting parameters.
|
56
|
+
"""
|
57
|
+
|
58
|
+
collection_name: NotRequired[str | None]
|
59
|
+
similarity_threshold: NotRequired[float]
|
60
|
+
result_per_query: NotRequired[int]
|
fabricatio/models/events.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3
3
|
from typing import List, Self, Union
|
4
4
|
|
5
5
|
from fabricatio.config import configs
|
6
|
-
from fabricatio.
|
6
|
+
from fabricatio.constants import TaskStatus
|
7
7
|
from pydantic import BaseModel, ConfigDict, Field
|
8
8
|
|
9
9
|
type EventLike = Union[str, List[str], "Event"]
|
@@ -77,23 +77,23 @@ class Event(BaseModel):
|
|
77
77
|
|
78
78
|
def push_pending(self) -> Self:
|
79
79
|
"""Push a pending segment to the event."""
|
80
|
-
return self.push(TaskStatus.Pending
|
80
|
+
return self.push(TaskStatus.Pending)
|
81
81
|
|
82
82
|
def push_running(self) -> Self:
|
83
83
|
"""Push a running segment to the event."""
|
84
|
-
return self.push(TaskStatus.Running
|
84
|
+
return self.push(TaskStatus.Running)
|
85
85
|
|
86
86
|
def push_finished(self) -> Self:
|
87
87
|
"""Push a finished segment to the event."""
|
88
|
-
return self.push(TaskStatus.Finished
|
88
|
+
return self.push(TaskStatus.Finished)
|
89
89
|
|
90
90
|
def push_failed(self) -> Self:
|
91
91
|
"""Push a failed segment to the event."""
|
92
|
-
return self.push(TaskStatus.Failed
|
92
|
+
return self.push(TaskStatus.Failed)
|
93
93
|
|
94
94
|
def push_cancelled(self) -> Self:
|
95
95
|
"""Push a cancelled segment to the event."""
|
96
|
-
return self.push(TaskStatus.Cancelled
|
96
|
+
return self.push(TaskStatus.Cancelled)
|
97
97
|
|
98
98
|
def pop(self) -> str:
|
99
99
|
"""Pop a segment from the event."""
|
@@ -12,7 +12,7 @@ class JudgeMent(SketchedAble):
|
|
12
12
|
"""
|
13
13
|
|
14
14
|
issue_to_judge: str
|
15
|
-
"""The issue to be judged,
|
15
|
+
"""The issue to be judged, including the original question and context"""
|
16
16
|
|
17
17
|
deny_evidence: List[str]
|
18
18
|
"""List of clues supporting the denial."""
|
@@ -21,7 +21,7 @@ class JudgeMent(SketchedAble):
|
|
21
21
|
"""List of clues supporting the affirmation."""
|
22
22
|
|
23
23
|
final_judgement: bool
|
24
|
-
"""The final judgment made according to all extracted clues."""
|
24
|
+
"""The final judgment made according to all extracted clues. true for the `issue_to_judge` is correct and false for incorrect."""
|
25
25
|
|
26
26
|
def __bool__(self) -> bool:
|
27
27
|
"""Return the final judgment value.
|
@@ -0,0 +1,120 @@
|
|
1
|
+
"""A Module containing the article rag models."""
|
2
|
+
|
3
|
+
from pathlib import Path
|
4
|
+
from typing import ClassVar, Dict, List, Self, Unpack
|
5
|
+
|
6
|
+
from fabricatio.fs import safe_text_read
|
7
|
+
from fabricatio.journal import logger
|
8
|
+
from fabricatio.models.extra.rag import MilvusDataBase
|
9
|
+
from fabricatio.models.generic import AsPrompt
|
10
|
+
from fabricatio.models.kwargs_types import ChunkKwargs
|
11
|
+
from fabricatio.rust import BibManager, split_into_chunks
|
12
|
+
from fabricatio.utils import ok, wrapp_in_block
|
13
|
+
from more_itertools.recipes import flatten
|
14
|
+
from pydantic import Field
|
15
|
+
|
16
|
+
|
17
|
+
class ArticleChunk(MilvusDataBase, AsPrompt):
|
18
|
+
"""The chunk of an article."""
|
19
|
+
|
20
|
+
head_split: ClassVar[List[str]] = [
|
21
|
+
"引 言",
|
22
|
+
"引言",
|
23
|
+
"绪 论",
|
24
|
+
"绪论",
|
25
|
+
"前言",
|
26
|
+
"INTRODUCTION",
|
27
|
+
"Introduction",
|
28
|
+
]
|
29
|
+
tail_split: ClassVar[List[str]] = [
|
30
|
+
"参 考 文 献",
|
31
|
+
"参 考 文 献",
|
32
|
+
"参考文献",
|
33
|
+
"REFERENCES",
|
34
|
+
"References",
|
35
|
+
"Bibliography",
|
36
|
+
"Reference",
|
37
|
+
]
|
38
|
+
chunk: str
|
39
|
+
"""The segment of the article"""
|
40
|
+
year: int
|
41
|
+
"""The year of the article"""
|
42
|
+
authors: List[str] = Field(default_factory=list)
|
43
|
+
"""The authors of the article"""
|
44
|
+
article_title: str
|
45
|
+
"""The title of the article"""
|
46
|
+
bibtex_cite_key: str
|
47
|
+
"""The bibtex cite key of the article"""
|
48
|
+
|
49
|
+
def _as_prompt_inner(self) -> Dict[str, str]:
|
50
|
+
return {
|
51
|
+
self.article_title: f"{wrapp_in_block(self.chunk, 'Referring Content')}\n"
|
52
|
+
f"Authors: {';'.join(self.authors)}\n"
|
53
|
+
f"Published Year: {self.year}\n"
|
54
|
+
f"Bibtex Key: {self.bibtex_cite_key}\n",
|
55
|
+
}
|
56
|
+
|
57
|
+
def _prepare_vectorization_inner(self) -> str:
|
58
|
+
return self.chunk
|
59
|
+
|
60
|
+
@classmethod
|
61
|
+
def from_file[P: str | Path](
|
62
|
+
cls, path: P | List[P], bib_mgr: BibManager, **kwargs: Unpack[ChunkKwargs]
|
63
|
+
) -> List[Self]:
|
64
|
+
"""Load the article chunks from the file."""
|
65
|
+
if isinstance(path, list):
|
66
|
+
result = list(flatten(cls._from_file_inner(p, bib_mgr, **kwargs) for p in path))
|
67
|
+
logger.debug(f"Number of chunks created from list of files: {len(result)}")
|
68
|
+
return result
|
69
|
+
|
70
|
+
return cls._from_file_inner(path, bib_mgr, **kwargs)
|
71
|
+
|
72
|
+
@classmethod
|
73
|
+
def _from_file_inner(cls, path: str | Path, bib_mgr: BibManager, **kwargs: Unpack[ChunkKwargs]) -> List[Self]:
|
74
|
+
path = Path(path)
|
75
|
+
|
76
|
+
title_seg = path.stem.split(" - ").pop()
|
77
|
+
|
78
|
+
key = (
|
79
|
+
bib_mgr.get_cite_key_by_title(title_seg)
|
80
|
+
or bib_mgr.get_cite_key_by_title_fuzzy(title_seg)
|
81
|
+
or bib_mgr.get_cite_key_fuzzy(path.stem)
|
82
|
+
)
|
83
|
+
if key is None:
|
84
|
+
logger.warning(f"no cite key found for {path.as_posix()}, skip.")
|
85
|
+
return []
|
86
|
+
authors = ok(bib_mgr.get_author_by_key(key), f"no author found for {key}")
|
87
|
+
year = ok(bib_mgr.get_year_by_key(key), f"no year found for {key}")
|
88
|
+
article_title = ok(bib_mgr.get_title_by_key(key), f"no title found for {key}")
|
89
|
+
|
90
|
+
result = [
|
91
|
+
cls(chunk=c, year=year, authors=authors, article_title=article_title, bibtex_cite_key=key)
|
92
|
+
for c in split_into_chunks(cls.strip(safe_text_read(path)), **kwargs)
|
93
|
+
]
|
94
|
+
logger.debug(f"Number of chunks created from file {path.as_posix()}: {len(result)}")
|
95
|
+
return result
|
96
|
+
|
97
|
+
@classmethod
|
98
|
+
def strip(cls, string: str) -> str:
|
99
|
+
"""Strip the head and tail of the string."""
|
100
|
+
logger.debug(f"String length before strip: {(original := len(string))}")
|
101
|
+
for split in (s for s in cls.head_split if s in string):
|
102
|
+
logger.debug(f"Strip head using {split}")
|
103
|
+
parts = string.split(split)
|
104
|
+
string = split.join(parts[1:]) if len(parts) > 1 else parts[0]
|
105
|
+
break
|
106
|
+
logger.debug(
|
107
|
+
f"String length after head strip: {(stripped_len := len(string))}, decreased by {(d := original - stripped_len)}"
|
108
|
+
)
|
109
|
+
if not d:
|
110
|
+
logger.warning("No decrease at head strip, which is might be abnormal.")
|
111
|
+
for split in (s for s in cls.tail_split if s in string):
|
112
|
+
logger.debug(f"Strip tail using {split}")
|
113
|
+
parts = string.split(split)
|
114
|
+
string = split.join(parts[:-1]) if len(parts) > 1 else parts[0]
|
115
|
+
break
|
116
|
+
logger.debug(f"String length after tail strip: {len(string)}, decreased by {(d := stripped_len - len(string))}")
|
117
|
+
if not d:
|
118
|
+
logger.warning("No decrease at tail strip, which is might be abnormal.")
|
119
|
+
|
120
|
+
return string
|