fabricatio 0.2.9.dev3__cp312-cp312-manylinux_2_34_x86_64.whl → 0.2.10.dev0__cp312-cp312-manylinux_2_34_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. fabricatio/actions/article.py +13 -113
  2. fabricatio/actions/article_rag.py +9 -2
  3. fabricatio/capabilities/check.py +15 -9
  4. fabricatio/capabilities/correct.py +5 -6
  5. fabricatio/capabilities/rag.py +39 -232
  6. fabricatio/capabilities/rating.py +46 -40
  7. fabricatio/config.py +2 -2
  8. fabricatio/constants.py +20 -0
  9. fabricatio/decorators.py +23 -0
  10. fabricatio/fs/readers.py +20 -1
  11. fabricatio/models/adv_kwargs_types.py +42 -0
  12. fabricatio/models/events.py +6 -6
  13. fabricatio/models/extra/advanced_judge.py +4 -4
  14. fabricatio/models/extra/article_base.py +25 -211
  15. fabricatio/models/extra/article_main.py +69 -95
  16. fabricatio/models/extra/article_proposal.py +15 -14
  17. fabricatio/models/extra/patches.py +6 -6
  18. fabricatio/models/extra/problem.py +12 -17
  19. fabricatio/models/extra/rag.py +72 -0
  20. fabricatio/models/extra/rule.py +1 -2
  21. fabricatio/models/generic.py +34 -10
  22. fabricatio/models/kwargs_types.py +1 -38
  23. fabricatio/models/task.py +3 -3
  24. fabricatio/models/usages.py +78 -8
  25. fabricatio/parser.py +5 -5
  26. fabricatio/rust.cpython-312-x86_64-linux-gnu.so +0 -0
  27. fabricatio/rust.pyi +27 -12
  28. fabricatio-0.2.10.dev0.data/scripts/tdown +0 -0
  29. {fabricatio-0.2.9.dev3.dist-info → fabricatio-0.2.10.dev0.dist-info}/METADATA +1 -1
  30. fabricatio-0.2.10.dev0.dist-info/RECORD +62 -0
  31. fabricatio/models/utils.py +0 -148
  32. fabricatio-0.2.9.dev3.data/scripts/tdown +0 -0
  33. fabricatio-0.2.9.dev3.dist-info/RECORD +0 -61
  34. {fabricatio-0.2.9.dev3.dist-info → fabricatio-0.2.10.dev0.dist-info}/WHEEL +0 -0
  35. {fabricatio-0.2.9.dev3.dist-info → fabricatio-0.2.10.dev0.dist-info}/licenses/LICENSE +0 -0
@@ -11,7 +11,6 @@ from fabricatio.capabilities.propose import Propose
11
11
  from fabricatio.fs import safe_text_read
12
12
  from fabricatio.journal import logger
13
13
  from fabricatio.models.action import Action
14
- from fabricatio.models.extra.article_base import SubSectionBase
15
14
  from fabricatio.models.extra.article_essence import ArticleEssence
16
15
  from fabricatio.models.extra.article_main import Article
17
16
  from fabricatio.models.extra.article_outline import ArticleOutline
@@ -105,7 +104,6 @@ class GenerateArticleProposal(Action, Propose):
105
104
  task_input: Optional[Task] = None,
106
105
  article_briefing: Optional[str] = None,
107
106
  article_briefing_path: Optional[str] = None,
108
- langauge: Optional[str] = None,
109
107
  **_,
110
108
  ) -> Optional[ArticleProposal]:
111
109
  if article_briefing is None and article_briefing_path is None and task_input is None:
@@ -122,17 +120,14 @@ class GenerateArticleProposal(Action, Propose):
122
120
  )
123
121
  )
124
122
 
125
- proposal = ok(
123
+ logger.info("Start generating the proposal.")
124
+ return ok(
126
125
  await self.propose(
127
126
  ArticleProposal,
128
- f"{briefing}\n\nWrite the value string using `{detect_language(briefing)}`",
127
+ f"{briefing}\n\nWrite the value string using `{detect_language(briefing)}` as written language.",
129
128
  ),
130
129
  "Could not generate the proposal.",
131
130
  ).update_ref(briefing)
132
- if langauge:
133
- proposal.language = langauge
134
-
135
- return proposal
136
131
 
137
132
 
138
133
  class GenerateInitialOutline(Action, Propose):
@@ -146,11 +141,17 @@ class GenerateInitialOutline(Action, Propose):
146
141
  article_proposal: ArticleProposal,
147
142
  **_,
148
143
  ) -> Optional[ArticleOutline]:
144
+ raw_outline = await self.aask(
145
+ f"{(article_proposal.as_prompt())}\n\nNote that you should use `{article_proposal.language}` to write the `ArticleOutline`\n"
146
+ f"Design each chapter of a proper and academic and ready for release manner.\n"
147
+ f"You Must make sure every chapter have sections, and every section have subsections.\n"
148
+ f"Make the chapter and sections and subsections bing divided into a specific enough article component.",
149
+ )
150
+
149
151
  return ok(
150
152
  await self.propose(
151
153
  ArticleOutline,
152
- f"{(p := article_proposal.as_prompt())}\n\nNote that you should use `{detect_language(p)}` to write the `ArticleOutline`\n"
153
- f"You Must make sure every chapter have sections, and every section have subsections.",
154
+ f"{raw_outline}\n\n\n\noutline provided above is the outline i need to extract to a JSON,",
154
155
  ),
155
156
  "Could not generate the initial outline.",
156
157
  ).update_ref(article_proposal)
@@ -182,7 +183,7 @@ class FixIntrospectedErrors(Action, Censor):
182
183
  await self.censor_obj(
183
184
  article_outline,
184
185
  ruleset=ok(intro_fix_ruleset or self.ruleset, "No ruleset provided"),
185
- reference=f"{article_outline.as_prompt()}\n # Fatal Error of the Original Article Outline\n{pack}",
186
+ reference=f"{article_outline.display()}\n # Fatal Error of the Original Article Outline\n{pack}",
186
187
  ),
187
188
  "Could not correct the component.",
188
189
  ).update_ref(origin)
@@ -195,107 +196,6 @@ class FixIntrospectedErrors(Action, Censor):
195
196
  return article_outline
196
197
 
197
198
 
198
- class FixIllegalReferences(Action, Censor):
199
- """Fix illegal references in the article outline."""
200
-
201
- output_key: str = "illegal_references_fixed_outline"
202
- """The key of the output data."""
203
-
204
- ruleset: Optional[RuleSet] = None
205
- """Ruleset to use to fix the illegal references."""
206
- max_error_count: Optional[int] = None
207
- """The maximum number of errors to fix."""
208
-
209
- async def _execute(
210
- self,
211
- article_outline: ArticleOutline,
212
- ref_fix_ruleset: Optional[RuleSet] = None,
213
- **_,
214
- ) -> Optional[ArticleOutline]:
215
- counter = 0
216
- while pack := article_outline.find_illegal_ref(gather_identical=True):
217
- logger.info(f"Found {counter}th illegal references")
218
- ref_seq, err = ok(pack)
219
- logger.warning(f"Found illegal referring error: {err}")
220
- new = ok(
221
- await self.censor_obj(
222
- ref_seq[0],
223
- ruleset=ok(ref_fix_ruleset or self.ruleset, "No ruleset provided"),
224
- reference=f"{article_outline.as_prompt()}\n# Some Basic errors found that need to be fixed\n{err}",
225
- ),
226
- "Could not correct the component",
227
- )
228
- for r in ref_seq:
229
- r.update_from(new)
230
- if self.max_error_count and counter > self.max_error_count:
231
- logger.warning("Max error count reached, stopping.")
232
- break
233
- counter += 1
234
-
235
- return article_outline
236
-
237
-
238
- class TweakOutlineForwardRef(Action, Censor):
239
- """Tweak the forward references in the article outline.
240
-
241
- Ensures that the conclusions of the current chapter effectively support the analysis of subsequent chapters.
242
- """
243
-
244
- output_key: str = "article_outline_fw_ref_checked"
245
- ruleset: Optional[RuleSet] = None
246
- """Ruleset to use to fix the illegal references."""
247
-
248
- async def _execute(
249
- self, article_outline: ArticleOutline, ref_twk_ruleset: Optional[RuleSet] = None, **cxt
250
- ) -> ArticleOutline:
251
- return await self._inner(
252
- article_outline,
253
- ruleset=ok(ref_twk_ruleset or self.ruleset, "No ruleset provided"),
254
- field_name="support_to",
255
- )
256
-
257
- async def _inner(self, article_outline: ArticleOutline, ruleset: RuleSet, field_name: str) -> ArticleOutline:
258
- await gather(
259
- *[self._loop(a[-1], article_outline, field_name, ruleset) for a in article_outline.iter_subsections()],
260
- )
261
-
262
- return article_outline
263
-
264
- async def _loop(
265
- self, a: SubSectionBase, article_outline: ArticleOutline, field_name: str, ruleset: RuleSet
266
- ) -> None:
267
- if judge := await self.evidently_judge(
268
- f"{article_outline.as_prompt()}\n\n{a.display()}\n"
269
- f"Does the `{a.__class__.__name__}`'s `{field_name}` field need to be extended or tweaked?"
270
- ):
271
- await self.censor_obj_inplace(
272
- a,
273
- ruleset=ruleset,
274
- reference=f"{article_outline.as_prompt()}\n"
275
- f"The Article component titled `{a.title}` whose `{field_name}` field needs to be extended or tweaked.\n"
276
- f"# Judgement\n{judge.display()}",
277
- )
278
-
279
-
280
- class TweakOutlineBackwardRef(TweakOutlineForwardRef):
281
- """Tweak the backward references in the article outline.
282
-
283
- Ensures that the prerequisites of the current chapter are correctly referenced in the `depend_on` field.
284
- """
285
-
286
- output_key: str = "article_outline_bw_ref_checked"
287
- ruleset: Optional[RuleSet] = None
288
-
289
- async def _execute(
290
- self, article_outline: ArticleOutline, ref_twk_ruleset: Optional[RuleSet] = None, **cxt
291
- ) -> ArticleOutline:
292
- return await self._inner(
293
- article_outline,
294
- ruleset=ok(ref_twk_ruleset or self.ruleset, "No ruleset provided"),
295
- field_name="depend_on",
296
- )
297
-
298
-
299
199
  class GenerateArticle(Action, Censor):
300
200
  """Generate the article based on the outline."""
301
201
 
@@ -318,7 +218,7 @@ class GenerateArticle(Action, Censor):
318
218
  self.censor_obj_inplace(
319
219
  subsec,
320
220
  ruleset=ok(article_gen_ruleset or self.ruleset, "No ruleset provided"),
321
- reference=f"{article_outline.as_prompt()}\n# Error Need to be fixed\n{err}",
221
+ reference=f"{article_outline.as_prompt()}\n# Error Need to be fixed\n{err}\nYou should use `{subsec.language}` to write the new `Subsection`.",
322
222
  )
323
223
  for _, _, subsec in article.iter_subsections()
324
224
  if (err := subsec.introspect()) and logger.warning(f"Found Introspection Error:\n{err}") is None
@@ -29,6 +29,9 @@ class TweakArticleRAG(Action, RAG, Censor):
29
29
  ruleset: Optional[RuleSet] = None
30
30
  """The ruleset to be used for censoring the article."""
31
31
 
32
+ ref_limit: int = 30
33
+ """The limit of references to be retrieved"""
34
+
32
35
  async def _execute(
33
36
  self,
34
37
  article: Article,
@@ -88,11 +91,15 @@ class TweakArticleRAG(Action, RAG, Censor):
88
91
  f"{subsec.display()}\n"
89
92
  f"# Requirement\n"
90
93
  f"Search related articles in the base to find reference candidates, "
91
- f"prioritizing both original article language and English usage, which can return multiple candidates.",
94
+ f"provide queries in both `English` and `{subsec.language}` can get more accurate results.",
92
95
  )
93
96
  )
94
97
  await self.censor_obj_inplace(
95
98
  subsec,
96
99
  ruleset=ruleset,
97
- reference=await self.aretrieve_compact(refind_q, final_limit=30),
100
+ reference=f"{await self.aretrieve_compact(refind_q, final_limit=self.ref_limit)}\n\n"
101
+ f"You can use Reference above to rewrite the `{subsec.__class__.__name__}`.\n"
102
+ f"You should Always use `{subsec.language}` as written language, "
103
+ f"which is the original language of the `{subsec.title}`. "
104
+ f"since rewrite a `{subsec.__class__.__name__}` in a different language is usually a bad choice",
98
105
  )
@@ -8,7 +8,7 @@ from fabricatio.capabilities.advanced_judge import AdvancedJudge
8
8
  from fabricatio.capabilities.propose import Propose
9
9
  from fabricatio.config import configs
10
10
  from fabricatio.journal import logger
11
- from fabricatio.models.extra.patches import RuleSetBriefingPatch
11
+ from fabricatio.models.extra.patches import RuleSetMetadata
12
12
  from fabricatio.models.extra.problem import Improvement
13
13
  from fabricatio.models.extra.rule import Rule, RuleSet
14
14
  from fabricatio.models.generic import Display, WithBriefing
@@ -42,12 +42,17 @@ class Check(AdvancedJudge, Propose):
42
42
  - Returns None if any step in rule generation fails
43
43
  - Uses `alist_str` for requirement breakdown and iterative rule proposal
44
44
  """
45
- rule_reqs = await self.alist_str(
46
- TEMPLATE_MANAGER.render_template(
47
- configs.templates.ruleset_requirement_breakdown_template, {"ruleset_requirement": ruleset_requirement}
48
- ),
49
- rule_count,
50
- **override_kwargs(kwargs, default=None),
45
+ rule_reqs = (
46
+ await self.alist_str(
47
+ TEMPLATE_MANAGER.render_template(
48
+ configs.templates.ruleset_requirement_breakdown_template,
49
+ {"ruleset_requirement": ruleset_requirement},
50
+ ),
51
+ rule_count,
52
+ **override_kwargs(kwargs, default=None),
53
+ )
54
+ if rule_count > 1
55
+ else [ruleset_requirement]
51
56
  )
52
57
 
53
58
  if rule_reqs is None:
@@ -65,7 +70,7 @@ class Check(AdvancedJudge, Propose):
65
70
  return None
66
71
 
67
72
  ruleset_patch = await self.propose(
68
- RuleSetBriefingPatch,
73
+ RuleSetMetadata,
69
74
  f"{ruleset_requirement}\n\nYou should use `{detect_language(ruleset_requirement)}`!",
70
75
  **override_kwargs(kwargs, default=None),
71
76
  )
@@ -99,7 +104,8 @@ class Check(AdvancedJudge, Propose):
99
104
  - Proposes Improvement only when violation is confirmed
100
105
  """
101
106
  if judge := await self.evidently_judge(
102
- f"# Content to exam\n{input_text}\n\n# Rule Must to follow\n{rule.display()}\nDoes `Content to exam` provided above violate the `Rule Must to follow` provided above?",
107
+ f"# Content to exam\n{input_text}\n\n# Rule Must to follow\n{rule.display()}\nDoes `Content to exam` provided above violate the `{rule.name}` provided above?"
108
+ f"should I take some measure to fix that violation? true for I do need, false for I don't need.",
103
109
  **override_kwargs(kwargs, default=None),
104
110
  ):
105
111
  logger.info(f"Rule `{rule.name}` violated: \n{judge.display()}")
@@ -57,7 +57,7 @@ class Correct(Rating, Propose):
57
57
  self.decide_solution(
58
58
  ps,
59
59
  **fallback_kwargs(
60
- kwargs, topic=f"which solution is better to deal this problem {ps.problem.compact()}\n\n"
60
+ kwargs, topic=f"which solution is better to deal this problem {ps.problem.description}\n\n"
61
61
  ),
62
62
  )
63
63
  for ps in improvement.problem_solutions
@@ -167,13 +167,12 @@ class Correct(Rating, Propose):
167
167
  logger.info(f"Improvement {improvement.focused_on} not decided, start deciding...")
168
168
  improvement = await self.decide_improvement(improvement, **override_kwargs(kwargs, default=None))
169
169
 
170
- for ps in improvement.problem_solutions:
171
- logger.info(f"Fixing troubling obj {obj.__class__.__name__} when deal with problem: {ps.problem.name}")
170
+ total = len(improvement.problem_solutions)
171
+ for idx, ps in enumerate(improvement.problem_solutions):
172
+ logger.info(f"[{idx + 1}/{total}] Fixing {obj.__class__.__name__} for problem `{ps.problem.name}`")
172
173
  fixed_obj = await self.fix_troubled_obj(obj, ps, reference, **kwargs)
173
174
  if fixed_obj is None:
174
- logger.error(
175
- f"Failed to fix troubling obj {obj.__class__.__name__} when deal with problem: {ps.problem.name}",
176
- )
175
+ logger.error(f"[{idx + 1}/{total}] Failed to fix problem `{ps.problem.name}`")
177
176
  return None
178
177
  obj = fixed_obj
179
178
  return obj
@@ -3,28 +3,22 @@
3
3
  try:
4
4
  from pymilvus import MilvusClient
5
5
  except ImportError as e:
6
- raise RuntimeError("pymilvus is not installed. Have you installed `fabricatio[rag]` instead of `fabricatio`?") from e
6
+ raise RuntimeError(
7
+ "pymilvus is not installed. Have you installed `fabricatio[rag]` instead of `fabricatio`?"
8
+ ) from e
7
9
  from functools import lru_cache
8
10
  from operator import itemgetter
9
- from os import PathLike
10
- from pathlib import Path
11
- from typing import Any, Callable, Dict, List, Optional, Self, Union, Unpack, cast, overload
11
+ from typing import List, Optional, Self, Type, Unpack
12
12
 
13
13
  from more_itertools.recipes import flatten, unique
14
14
  from pydantic import Field, PrivateAttr
15
15
 
16
16
  from fabricatio.config import configs
17
17
  from fabricatio.journal import logger
18
- from fabricatio.models.kwargs_types import (
19
- ChooseKwargs,
20
- CollectionConfigKwargs,
21
- EmbeddingKwargs,
22
- FetchKwargs,
23
- LLMKwargs,
24
- RetrievalKwargs,
25
- )
18
+ from fabricatio.models.adv_kwargs_types import CollectionConfigKwargs, FetchKwargs
19
+ from fabricatio.models.extra.rag import MilvusDataBase
20
+ from fabricatio.models.kwargs_types import ChooseKwargs
26
21
  from fabricatio.models.usages import EmbeddingUsage
27
- from fabricatio.models.utils import MilvusData
28
22
  from fabricatio.rust_instances import TEMPLATE_MANAGER
29
23
  from fabricatio.utils import ok
30
24
 
@@ -78,40 +72,6 @@ class RAG(EmbeddingUsage):
78
72
  raise RuntimeError("Client is not initialized. Have you called `self.init_client()`?")
79
73
  return self
80
74
 
81
- @overload
82
- async def pack(
83
- self, input_text: List[str], subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
84
- ) -> List[MilvusData]: ...
85
- @overload
86
- async def pack(
87
- self, input_text: str, subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
88
- ) -> MilvusData: ...
89
-
90
- async def pack(
91
- self, input_text: List[str] | str, subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
92
- ) -> List[MilvusData] | MilvusData:
93
- """Asynchronously generates MilvusData objects for the given input text.
94
-
95
- Args:
96
- input_text (List[str] | str): A string or list of strings to generate embeddings for.
97
- subject (Optional[str]): The subject of the input text. Defaults to None.
98
- **kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
99
-
100
- Returns:
101
- List[MilvusData] | MilvusData: The generated MilvusData objects.
102
- """
103
- if isinstance(input_text, str):
104
- return MilvusData(vector=await self.vectorize(input_text, **kwargs), text=input_text, subject=subject)
105
- vecs = await self.vectorize(input_text, **kwargs)
106
- return [
107
- MilvusData(
108
- vector=vec,
109
- text=text,
110
- subject=subject,
111
- )
112
- for text, vec in zip(input_text, vecs, strict=True)
113
- ]
114
-
115
75
  def view(
116
76
  self, collection_name: Optional[str], create: bool = False, **kwargs: Unpack[CollectionConfigKwargs]
117
77
  ) -> Self:
@@ -152,29 +112,27 @@ class RAG(EmbeddingUsage):
152
112
  Returns:
153
113
  str: The name of the collection being viewed.
154
114
  """
155
- if self.target_collection is None:
156
- raise RuntimeError("No collection is being viewed. Have you called `self.view()`?")
157
- return self.target_collection
115
+ return ok(self.target_collection, "No collection is being viewed. Have you called `self.view()`?")
158
116
 
159
- def add_document[D: Union[Dict[str, Any], MilvusData]](
160
- self, data: D | List[D], collection_name: Optional[str] = None, flush: bool = False
117
+ async def add_document[D: MilvusDataBase](
118
+ self, data: List[D] | D, collection_name: Optional[str] = None, flush: bool = False
161
119
  ) -> Self:
162
120
  """Adds a document to the specified collection.
163
121
 
164
122
  Args:
165
- data (Union[Dict[str, Any], MilvusData] | List[Union[Dict[str, Any], MilvusData]]): The data to be added to the collection.
123
+ data (Union[Dict[str, Any], MilvusDataBase] | List[Union[Dict[str, Any], MilvusDataBase]]): The data to be added to the collection.
166
124
  collection_name (Optional[str]): The name of the collection. If not provided, the currently viewed collection is used.
167
125
  flush (bool): Whether to flush the collection after insertion.
168
126
 
169
127
  Returns:
170
128
  Self: The current instance, allowing for method chaining.
171
129
  """
172
- if isinstance(data, MilvusData):
173
- prepared_data = data.prepare_insertion()
174
- elif isinstance(data, list):
175
- prepared_data = [d.prepare_insertion() if isinstance(d, MilvusData) else d for d in data]
176
- else:
177
- raise TypeError(f"Expected MilvusData or list of MilvusData, got {type(data)}")
130
+ if isinstance(data, MilvusDataBase):
131
+ data = [data]
132
+
133
+ data_vec = await self.vectorize([d.to_vectorize for d in data])
134
+ prepared_data = [d.prepare_insertion(vec) for d, vec in zip(data, data_vec, strict=True)]
135
+
178
136
  c_name = collection_name or self.safe_target_collection
179
137
  self.check_client().client.insert(c_name, prepared_data)
180
138
 
@@ -183,84 +141,33 @@ class RAG(EmbeddingUsage):
183
141
  self.client.flush(c_name)
184
142
  return self
185
143
 
186
- async def consume_file(
187
- self,
188
- source: List[PathLike] | PathLike,
189
- reader: Callable[[PathLike], str] = lambda path: Path(path).read_text(encoding="utf-8"),
190
- collection_name: Optional[str] = None,
191
- ) -> Self:
192
- """Consume a file and add its content to the collection.
193
-
194
- Args:
195
- source (PathLike): The path to the file to be consumed.
196
- reader (Callable[[PathLike], MilvusData]): The reader function to read the file.
197
- collection_name (Optional[str]): The name of the collection. If not provided, the currently viewed collection is used.
198
-
199
- Returns:
200
- Self: The current instance, allowing for method chaining.
201
- """
202
- if not isinstance(source, list):
203
- source = [source]
204
- return await self.consume_string([reader(s) for s in source], collection_name)
205
-
206
- async def consume_string(self, text: List[str] | str, collection_name: Optional[str] = None) -> Self:
207
- """Consume a string and add it to the collection.
208
-
209
- Args:
210
- text (List[str] | str): The text to be added to the collection.
211
- collection_name (Optional[str]): The name of the collection. If not provided, the currently viewed collection is used.
212
-
213
- Returns:
214
- Self: The current instance, allowing for method chaining.
215
- """
216
- self.add_document(await self.pack(text), collection_name or self.safe_target_collection, flush=True)
217
- return self
218
-
219
- @overload
220
- async def afetch_document[V: (int, str, float, bytes)](
144
+ async def afetch_document[D: MilvusDataBase](
221
145
  self,
222
146
  vecs: List[List[float]],
223
- desired_fields: List[str],
147
+ document_model: Type[D],
224
148
  collection_name: Optional[str] = None,
225
149
  similarity_threshold: float = 0.37,
226
150
  result_per_query: int = 10,
227
- ) -> List[Dict[str, V]]: ...
228
-
229
- @overload
230
- async def afetch_document[V: (int, str, float, bytes)](
231
- self,
232
- vecs: List[List[float]],
233
- desired_fields: str,
234
- collection_name: Optional[str] = None,
235
- similarity_threshold: float = 0.37,
236
- result_per_query: int = 10,
237
- ) -> List[V]: ...
238
- async def afetch_document[V: (int, str, float, bytes)](
239
- self,
240
- vecs: List[List[float]],
241
- desired_fields: List[str] | str,
242
- collection_name: Optional[str] = None,
243
- similarity_threshold: float = 0.37,
244
- result_per_query: int = 10,
245
- ) -> List[Dict[str, Any]] | List[V]:
246
- """Fetch data from the collection.
151
+ ) -> List[D]:
152
+ """Asynchronously fetches documents from a Milvus database based on input vectors.
247
153
 
248
154
  Args:
249
- vecs (List[List[float]]): The vectors to search for.
250
- desired_fields (List[str] | str): The fields to retrieve.
251
- collection_name (Optional[str]): The name of the collection. If not provided, the currently viewed collection is used.
252
- similarity_threshold (float): The threshold for similarity, only results above this threshold will be returned.
253
- result_per_query (int): The number of results to return per query.
155
+ vecs (List[List[float]]): A list of vectors to search for in the database.
156
+ document_model (Type[D]): The model class used to convert fetched data into document objects.
157
+ collection_name (Optional[str]): The name of the collection to search within.
158
+ If None, the currently viewed collection is used.
159
+ similarity_threshold (float): The similarity threshold for vector search. Defaults to 0.37.
160
+ result_per_query (int): The maximum number of results to return per query. Defaults to 10.
254
161
 
255
162
  Returns:
256
- List[Dict[str, Any]] | List[Any]: The retrieved data.
163
+ List[D]: A list of document objects created from the fetched data.
257
164
  """
258
165
  # Step 1: Search for vectors
259
166
  search_results = self.check_client().client.search(
260
167
  collection_name or self.safe_target_collection,
261
168
  vecs,
262
169
  search_params={"radius": similarity_threshold},
263
- output_fields=desired_fields if isinstance(desired_fields, list) else [desired_fields],
170
+ output_fields=list(document_model.model_fields),
264
171
  limit=result_per_query,
265
172
  )
266
173
 
@@ -270,20 +177,20 @@ class RAG(EmbeddingUsage):
270
177
  # Step 3: Sort by distance (descending)
271
178
  sorted_results = sorted(unique_results, key=itemgetter("distance"), reverse=True)
272
179
 
273
- logger.debug(f"Searched similarities: {[t['distance'] for t in sorted_results]}")
180
+ logger.debug(
181
+ f"Fetched {len(sorted_results)} document,searched similarities: {[t['distance'] for t in sorted_results]}"
182
+ )
274
183
  # Step 4: Extract the entities
275
184
  resp = [result["entity"] for result in sorted_results]
276
185
 
277
- if isinstance(desired_fields, list):
278
- return resp
279
- return [r.get(desired_fields) for r in resp] # extract the single field as list
186
+ return document_model.from_sequence(resp)
280
187
 
281
- async def aretrieve(
188
+ async def aretrieve[D: MilvusDataBase](
282
189
  self,
283
190
  query: List[str] | str,
284
191
  final_limit: int = 20,
285
- **kwargs: Unpack[FetchKwargs],
286
- ) -> List[str]:
192
+ **kwargs: Unpack[FetchKwargs[D]],
193
+ ) -> List[D]:
287
194
  """Retrieve data from the collection.
288
195
 
289
196
  Args:
@@ -292,82 +199,17 @@ class RAG(EmbeddingUsage):
292
199
  **kwargs (Unpack[FetchKwargs]): Additional keyword arguments for retrieval.
293
200
 
294
201
  Returns:
295
- List[str]: A list of strings containing the retrieved data.
202
+ List[D]: A list of document objects created from the retrieved data.
296
203
  """
297
204
  if isinstance(query, str):
298
205
  query = [query]
299
- return cast(
300
- "List[str]",
206
+ return (
301
207
  await self.afetch_document(
302
208
  vecs=(await self.vectorize(query)),
303
- desired_fields="text",
304
209
  **kwargs,
305
- ),
210
+ )
306
211
  )[:final_limit]
307
212
 
308
- async def aretrieve_compact(
309
- self,
310
- query: List[str] | str,
311
- **kwargs: Unpack[RetrievalKwargs],
312
- ) -> str:
313
- """Retrieve data from the collection and format it for display.
314
-
315
- Args:
316
- query (List[str] | str): The query to be used for retrieval.
317
- **kwargs (Unpack[RetrievalKwargs]): Additional keyword arguments for retrieval.
318
-
319
- Returns:
320
- str: A formatted string containing the retrieved data.
321
- """
322
- return TEMPLATE_MANAGER.render_template(
323
- configs.templates.retrieved_display_template, {"docs": (await self.aretrieve(query, **kwargs))}
324
- )
325
-
326
- async def aask_retrieved(
327
- self,
328
- question: str,
329
- query: Optional[List[str] | str] = None,
330
- collection_name: Optional[str] = None,
331
- extra_system_message: str = "",
332
- result_per_query: int = 10,
333
- final_limit: int = 20,
334
- similarity_threshold: float = 0.37,
335
- **kwargs: Unpack[LLMKwargs],
336
- ) -> str:
337
- """Asks a question by retrieving relevant documents based on the provided query.
338
-
339
- This method performs document retrieval using the given query, then asks the
340
- specified question using the retrieved documents as context.
341
-
342
- Args:
343
- question (str): The question to be asked.
344
- query (List[str] | str): The query or list of queries used for document retrieval.
345
- collection_name (Optional[str]): The name of the collection to retrieve documents from.
346
- If not provided, the currently viewed collection is used.
347
- extra_system_message (str): An additional system message to be included in the prompt.
348
- result_per_query (int): The number of results to return per query. Default is 10.
349
- final_limit (int): The maximum number of retrieved documents to consider. Default is 20.
350
- similarity_threshold (float): The threshold for similarity, only results above this threshold will be returned.
351
- **kwargs (Unpack[LLMKwargs]): Additional keyword arguments passed to the underlying `aask` method.
352
-
353
- Returns:
354
- str: A string response generated after asking with the context of retrieved documents.
355
- """
356
- rendered = await self.aretrieve_compact(
357
- query or question,
358
- final_limit=final_limit,
359
- collection_name=collection_name,
360
- result_per_query=result_per_query,
361
- similarity_threshold=similarity_threshold,
362
- )
363
-
364
- logger.debug(f"Retrieved Documents: \n{rendered}")
365
- return await self.aask(
366
- question,
367
- f"{rendered}\n\n{extra_system_message}",
368
- **kwargs,
369
- )
370
-
371
213
  async def arefined_query(self, question: List[str] | str, **kwargs: Unpack[ChooseKwargs]) -> Optional[List[str]]:
372
214
  """Refines the given question using a template.
373
215
 
@@ -385,38 +227,3 @@ class RAG(EmbeddingUsage):
385
227
  ),
386
228
  **kwargs,
387
229
  )
388
-
389
- async def aask_refined(
390
- self,
391
- question: str,
392
- collection_name: Optional[str] = None,
393
- extra_system_message: str = "",
394
- result_per_query: int = 10,
395
- final_limit: int = 20,
396
- similarity_threshold: float = 0.37,
397
- **kwargs: Unpack[LLMKwargs],
398
- ) -> str:
399
- """Asks a question using a refined query based on the provided question.
400
-
401
- Args:
402
- question (str): The question to be asked.
403
- collection_name (Optional[str]): The name of the collection to retrieve documents from.
404
- extra_system_message (str): An additional system message to be included in the prompt.
405
- result_per_query (int): The number of results to return per query. Default is 10.
406
- final_limit (int): The maximum number of retrieved documents to consider. Default is 20.
407
- similarity_threshold (float): The threshold for similarity, only results above this threshold will be returned.
408
- **kwargs (Unpack[LLMKwargs]): Additional keyword arguments passed to the underlying `aask` method.
409
-
410
- Returns:
411
- str: A string response generated after asking with the refined question.
412
- """
413
- return await self.aask_retrieved(
414
- question,
415
- await self.arefined_query(question, **kwargs),
416
- collection_name=collection_name,
417
- extra_system_message=extra_system_message,
418
- result_per_query=result_per_query,
419
- final_limit=final_limit,
420
- similarity_threshold=similarity_threshold,
421
- **kwargs,
422
- )