fabricatio 0.2.6.dev4__cp312-cp312-manylinux_2_34_x86_64.whl → 0.2.6.dev5__cp312-cp312-manylinux_2_34_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,160 @@
1
+ """Co-validation capability for LLMs."""
2
+
3
+ from asyncio import gather
4
+ from typing import Callable, List, Optional, Union, Unpack, overload
5
+
6
+ from fabricatio import TEMPLATE_MANAGER
7
+ from fabricatio.config import configs
8
+ from fabricatio.journal import logger
9
+ from fabricatio.models.kwargs_types import GenerateKwargs
10
+ from fabricatio.models.usages import LLMUsage
11
+
12
+
13
+ class CoValidate(LLMUsage):
14
+ """Class that represents a co-validation capability using multiple LLMs.
15
+
16
+ This class provides methods to validate responses by attempting multiple approaches:
17
+ 1. Using the primary LLM to generate a response
18
+ 2. Using a secondary (co-) model to refine responses that fail validation
19
+ 3. Trying multiple times if needed
20
+ """
21
+
22
+ @overload
23
+ async def aask_covalidate[T](
24
+ self,
25
+ question: str,
26
+ validator: Callable[[str], T | None],
27
+ co_model: Optional[str] = None,
28
+ co_temperature: Optional[float] = None,
29
+ co_top_p: Optional[float] = None,
30
+ co_max_tokens: Optional[int] = None,
31
+ max_validations: int = 2,
32
+ default: None = None,
33
+ **kwargs: Unpack[GenerateKwargs],
34
+ ) -> T | None: ...
35
+
36
+ @overload
37
+ async def aask_covalidate[T](
38
+ self,
39
+ question: str,
40
+ validator: Callable[[str], T | None],
41
+ co_model: Optional[str] = None,
42
+ co_temperature: Optional[float] = None,
43
+ co_top_p: Optional[float] = None,
44
+ co_max_tokens: Optional[int] = None,
45
+ max_validations: int = 2,
46
+ default: T = ...,
47
+ **kwargs: Unpack[GenerateKwargs],
48
+ ) -> T: ...
49
+
50
+ @overload
51
+ async def aask_covalidate[T](
52
+ self,
53
+ question: List[str],
54
+ validator: Callable[[str], T | None],
55
+ co_model: Optional[str] = None,
56
+ co_temperature: Optional[float] = None,
57
+ co_top_p: Optional[float] = None,
58
+ co_max_tokens: Optional[int] = None,
59
+ max_validations: int = 2,
60
+ default: None = None,
61
+ **kwargs: Unpack[GenerateKwargs],
62
+ ) -> List[T | None]: ...
63
+
64
+ @overload
65
+ async def aask_covalidate[T](
66
+ self,
67
+ question: List[str],
68
+ validator: Callable[[str], T | None],
69
+ co_model: Optional[str] = None,
70
+ co_temperature: Optional[float] = None,
71
+ co_top_p: Optional[float] = None,
72
+ co_max_tokens: Optional[int] = None,
73
+ max_validations: int = 2,
74
+ default: T = ...,
75
+ **kwargs: Unpack[GenerateKwargs],
76
+ ) -> List[T]: ...
77
+
78
+ async def aask_covalidate[T](
79
+ self,
80
+ question: Union[str, List[str]],
81
+ validator: Callable[[str], T | None],
82
+ co_model: Optional[str] = None,
83
+ co_temperature: Optional[float] = None,
84
+ co_top_p: Optional[float] = None,
85
+ co_max_tokens: Optional[int] = None,
86
+ max_validations: int = 2,
87
+ default: Optional[T] = None,
88
+ **kwargs: Unpack[GenerateKwargs],
89
+ ) -> Union[T | None, List[T | None]]:
90
+ """Ask the LLM with co-validation to obtain a validated response.
91
+
92
+ This method attempts to generate a response that passes validation using two approaches:
93
+ 1. First, it asks the primary LLM using the original question
94
+ 2. If validation fails, it uses a secondary (co-) model with a template to improve the response
95
+ 3. The process repeats up to max_validations times
96
+
97
+ Args:
98
+ question: String question or list of questions to ask
99
+ validator: Function that validates responses, returns result or None if invalid
100
+ co_model: Optional model name for the co-validator
101
+ co_temperature: Optional temperature setting for the co-validator
102
+ co_top_p: Optional top_p setting for the co-validator
103
+ co_max_tokens: Optional maximum tokens for the co-validator response
104
+ max_validations: Maximum number of validation attempts
105
+ default: Default value to return if validation fails
106
+ **kwargs: Additional keyword arguments passed to aask method
107
+
108
+ Returns:
109
+ The validated result (T) or default if validation fails.
110
+ If input is a list of questions, returns a list of results.
111
+ """
112
+
113
+ async def validate_single_question(q: str) -> Optional[T]:
114
+ """Process a single question with validation attempts."""
115
+ validation_kwargs = kwargs.copy()
116
+
117
+ for lap in range(max_validations):
118
+ try:
119
+ # First attempt: direct question to primary model
120
+ response = await self.aask(question=q, **validation_kwargs)
121
+ if response and (validated := validator(response)):
122
+ logger.debug(f"Successfully validated the primary response at {lap}th attempt.")
123
+ return validated
124
+
125
+ # Second attempt: use co-model with validation template
126
+ co_prompt = TEMPLATE_MANAGER.render_template(
127
+ configs.templates.co_validation_template,
128
+ {"original_q": q, "original_a": response},
129
+ )
130
+ co_response = await self.aask(
131
+ question=co_prompt,
132
+ model=co_model,
133
+ temperature=co_temperature,
134
+ top_p=co_top_p,
135
+ max_tokens=co_max_tokens,
136
+ )
137
+
138
+ if co_response and (validated := validator(co_response)):
139
+ logger.debug(f"Successfully validated the co-response at {lap}th attempt.")
140
+ return validated
141
+
142
+ except Exception as e: # noqa: BLE001
143
+ logger.error(f"Error during validation: \n{e}")
144
+ break
145
+
146
+ # Disable caching for subsequent attempts
147
+ if not validation_kwargs.get("no_cache"):
148
+ validation_kwargs["no_cache"] = True
149
+ logger.debug("Disabled cache for the next attempt")
150
+
151
+ if default is None:
152
+ logger.error(f"Failed to validate the response after {max_validations} attempts.")
153
+ return default
154
+
155
+ # Handle single question or list of questions
156
+ if isinstance(question, str):
157
+ return await validate_single_question(question)
158
+
159
+ # Process multiple questions in parallel
160
+ return await gather(*[validate_single_question(q) for q in question])
@@ -84,7 +84,7 @@ class HandleTask(WithBriefing, ToolBoxUsage):
84
84
  **self.prepend(cast(Dict[str, Any], kwargs)),
85
85
  )
86
86
 
87
- async def handle_fin_grind(
87
+ async def handle_fine_grind(
88
88
  self,
89
89
  task: Task,
90
90
  data: Dict[str, Any],
@@ -110,4 +110,4 @@ class HandleTask(WithBriefing, ToolBoxUsage):
110
110
 
111
111
  async def handle(self, task: Task, data: Dict[str, Any], **kwargs: Unpack[ValidateKwargs]) -> Optional[Tuple]:
112
112
  """Asynchronously handles a task based on a given task object and parameters."""
113
- return await self.handle_fin_grind(task, data, **kwargs)
113
+ return await self.handle_fine_grind(task, data, **kwargs)
fabricatio/config.py CHANGED
@@ -48,37 +48,37 @@ class LLMConfig(BaseModel):
48
48
  """
49
49
 
50
50
  model_config = ConfigDict(use_attribute_docstrings=True)
51
- api_endpoint: HttpUrl = Field(default=HttpUrl("https://api.openai.com"))
51
+ api_endpoint: Optional[HttpUrl] = Field(default=HttpUrl("https://api.openai.com"))
52
52
  """OpenAI API Endpoint."""
53
53
 
54
- api_key: SecretStr = Field(default=SecretStr(""))
54
+ api_key: Optional[SecretStr] = Field(default=SecretStr("sk-setyourkey"))
55
55
  """OpenAI API key. Empty by default for security reasons, should be set before use."""
56
56
 
57
- timeout: PositiveInt = Field(default=300)
57
+ timeout: Optional[PositiveInt] = Field(default=300)
58
58
  """The timeout of the LLM model in seconds. Default is 300 seconds as per request."""
59
59
 
60
- max_retries: PositiveInt = Field(default=3)
60
+ max_retries: Optional[PositiveInt] = Field(default=3)
61
61
  """The maximum number of retries. Default is 3 retries."""
62
62
 
63
- model: str = Field(default="gpt-3.5-turbo")
63
+ model: Optional[str] = Field(default="gpt-3.5-turbo")
64
64
  """The LLM model name. Set to 'gpt-3.5-turbo' as per request."""
65
65
 
66
- temperature: NonNegativeFloat = Field(default=1.0)
66
+ temperature: Optional[NonNegativeFloat] = Field(default=1.0)
67
67
  """The temperature of the LLM model. Controls randomness in generation. Set to 1.0 as per request."""
68
68
 
69
- stop_sign: str | List[str] = Field(default_factory=lambda: ["\n\n\n", "User:"])
69
+ stop_sign: Optional[str | List[str]] = Field(default="")
70
70
  """The stop sign of the LLM model. No default stop sign specified."""
71
71
 
72
- top_p: NonNegativeFloat = Field(default=0.35)
72
+ top_p: Optional[NonNegativeFloat] = Field(default=0.35)
73
73
  """The top p of the LLM model. Controls diversity via nucleus sampling. Set to 0.35 as per request."""
74
74
 
75
- generation_count: PositiveInt = Field(default=1)
75
+ generation_count: Optional[PositiveInt] = Field(default=1)
76
76
  """The number of generations to generate. Default is 1."""
77
77
 
78
- stream: bool = Field(default=False)
78
+ stream: Optional[bool] = Field(default=False)
79
79
  """Whether to stream the LLM model's response. Default is False."""
80
80
 
81
- max_tokens: PositiveInt = Field(default=8192)
81
+ max_tokens: Optional[PositiveInt] = Field(default=8192)
82
82
  """The maximum number of tokens to generate. Set to 8192 as per request."""
83
83
 
84
84
  rpm: Optional[PositiveInt] = Field(default=100)
@@ -93,7 +93,7 @@ class EmbeddingConfig(BaseModel):
93
93
 
94
94
  model_config = ConfigDict(use_attribute_docstrings=True)
95
95
 
96
- model: str = Field(default="text-embedding-ada-002")
96
+ model: Optional[str] = Field(default="text-embedding-ada-002")
97
97
  """The embedding model name. """
98
98
 
99
99
  dimensions: Optional[PositiveInt] = Field(default=None)
@@ -102,10 +102,10 @@ class EmbeddingConfig(BaseModel):
102
102
  timeout: Optional[PositiveInt] = Field(default=None)
103
103
  """The timeout of the embedding model in seconds."""
104
104
 
105
- max_sequence_length: PositiveInt = Field(default=8192)
105
+ max_sequence_length: Optional[PositiveInt] = Field(default=8192)
106
106
  """The maximum sequence length of the embedding model. Default is 8192 as per request."""
107
107
 
108
- caching: bool = Field(default=False)
108
+ caching: Optional[bool] = Field(default=False)
109
109
  """Whether to cache the embedding. Default is False."""
110
110
 
111
111
  api_endpoint: Optional[HttpUrl] = None
@@ -232,6 +232,9 @@ class TemplateConfig(BaseModel):
232
232
  correct_template: str = Field(default="correct")
233
233
  """The name of the correct template which will be used to correct a string."""
234
234
 
235
+ co_validation_template: str = Field(default="co_validation")
236
+ """The name of the co-validation template which will be used to co-validate a string."""
237
+
235
238
 
236
239
  class MagikaConfig(BaseModel):
237
240
  """Magika configuration class."""
@@ -272,7 +275,7 @@ class RagConfig(BaseModel):
272
275
 
273
276
  model_config = ConfigDict(use_attribute_docstrings=True)
274
277
 
275
- milvus_uri: HttpUrl = Field(default=HttpUrl("http://localhost:19530"))
278
+ milvus_uri: Optional[HttpUrl] = Field(default=HttpUrl("http://localhost:19530"))
276
279
  """The URI of the Milvus server."""
277
280
  milvus_timeout: Optional[PositiveFloat] = Field(default=None)
278
281
  """The timeout of the Milvus server."""
@@ -1,4 +1,8 @@
1
- """Module that contains the classes for actions and workflows."""
1
+ """Module that contains the classes for actions and workflows.
2
+
3
+ This module defines the Action and WorkFlow classes, which are used for
4
+ creating and executing sequences of actions in a task-based context.
5
+ """
2
6
 
3
7
  import traceback
4
8
  from abc import abstractmethod
@@ -6,6 +10,7 @@ from asyncio import Queue, create_task
6
10
  from typing import Any, Dict, Self, Tuple, Type, Union, final
7
11
 
8
12
  from fabricatio.capabilities.correct import Correct
13
+ from fabricatio.capabilities.covalidate import CoValidate
9
14
  from fabricatio.capabilities.task import HandleTask, ProposeTask
10
15
  from fabricatio.journal import logger
11
16
  from fabricatio.models.generic import WithBriefing
@@ -14,21 +19,28 @@ from fabricatio.models.usages import ToolBoxUsage
14
19
  from pydantic import Field, PrivateAttr
15
20
 
16
21
 
17
- class Action(HandleTask, ProposeTask, Correct):
18
- """Class that represents an action to be executed in a workflow."""
22
+ class Action(HandleTask, ProposeTask, Correct, CoValidate):
23
+ """Class that represents an action to be executed in a workflow.
24
+
25
+ Actions are the atomic units of work in a workflow. Each action performs
26
+ a specific operation and can modify the shared context data.
27
+ """
19
28
 
20
29
  name: str = Field(default="")
21
30
  """The name of the action."""
31
+
22
32
  description: str = Field(default="")
23
33
  """The description of the action."""
34
+
24
35
  personality: str = Field(default="")
25
- """The personality of whom the action belongs to."""
36
+ """The personality traits or context for the action executor."""
37
+
26
38
  output_key: str = Field(default="")
27
- """The key of the output data."""
39
+ """The key used to store this action's output in the context dictionary."""
28
40
 
29
41
  @final
30
42
  def model_post_init(self, __context: Any) -> None:
31
- """Initialize the action by setting the name if not provided.
43
+ """Initialize the action by setting default name and description if not provided.
32
44
 
33
45
  Args:
34
46
  __context: The context to be used for initialization.
@@ -38,121 +50,170 @@ class Action(HandleTask, ProposeTask, Correct):
38
50
 
39
51
  @abstractmethod
40
52
  async def _execute(self, **cxt) -> Any:
41
- """Execute the action with the provided arguments.
53
+ """Execute the action logic with the provided context arguments.
54
+
55
+ This method must be implemented by subclasses to define the actual behavior.
42
56
 
43
57
  Args:
44
58
  **cxt: The context dictionary containing input and output data.
45
59
 
46
60
  Returns:
47
- The result of the action execution.
61
+ Any: The result of the action execution.
48
62
  """
49
63
  pass
50
64
 
51
65
  @final
52
66
  async def act(self, cxt: Dict[str, Any]) -> Dict[str, Any]:
53
- """Perform the action by executing it and setting the output data.
67
+ """Perform the action and update the context with results.
54
68
 
55
69
  Args:
56
70
  cxt: The context dictionary containing input and output data.
71
+
72
+ Returns:
73
+ Dict[str, Any]: The updated context dictionary.
57
74
  """
58
75
  ret = await self._execute(**cxt)
76
+
59
77
  if self.output_key:
60
78
  logger.debug(f"Setting output: {self.output_key}")
61
79
  cxt[self.output_key] = ret
80
+
62
81
  return cxt
63
82
 
64
83
  @property
65
84
  def briefing(self) -> str:
66
- """Return a brief description of the action."""
85
+ """Return a formatted description of the action including personality context if available.
86
+
87
+ Returns:
88
+ str: Formatted briefing text with personality and action description.
89
+ """
67
90
  if self.personality:
68
91
  return f"## Your personality: \n{self.personality}\n# The action you are going to perform: \n{super().briefing}"
69
92
  return f"# The action you are going to perform: \n{super().briefing}"
70
93
 
71
94
 
72
95
  class WorkFlow(WithBriefing, ToolBoxUsage):
73
- """Class that represents a workflow to be executed in a task."""
96
+ """Class that represents a sequence of actions to be executed for a task.
97
+
98
+ A workflow manages the execution of multiple actions in sequence, passing
99
+ a shared context between them and handling task lifecycle events.
100
+ """
74
101
 
75
102
  _context: Queue[Dict[str, Any]] = PrivateAttr(default_factory=lambda: Queue(maxsize=1))
76
- """ The context dictionary to be used for workflow execution."""
103
+ """Queue for storing the workflow execution context."""
77
104
 
78
105
  _instances: Tuple[Action, ...] = PrivateAttr(default_factory=tuple)
79
- """ The instances of the workflow steps."""
106
+ """Instantiated action objects to be executed in this workflow."""
80
107
 
81
108
  steps: Tuple[Union[Type[Action], Action], ...] = Field(...)
82
- """ The steps to be executed in the workflow, actions or action classes."""
109
+ """The sequence of actions to be executed, can be action classes or instances."""
110
+
83
111
  task_input_key: str = Field(default="task_input")
84
- """ The key of the task input data."""
112
+ """Key used to store the input task in the context dictionary."""
113
+
85
114
  task_output_key: str = Field(default="task_output")
86
- """ The key of the task output data."""
115
+ """Key used to extract the final result from the context dictionary."""
116
+
87
117
  extra_init_context: Dict[str, Any] = Field(default_factory=dict, frozen=True)
88
- """ The extra context dictionary to be used for workflow initialization."""
118
+ """Additional initial context values to be included at workflow start."""
89
119
 
90
120
  def model_post_init(self, __context: Any) -> None:
91
- """Initialize the workflow by setting fallbacks for each step.
121
+ """Initialize the workflow by instantiating any action classes.
92
122
 
93
123
  Args:
94
124
  __context: The context to be used for initialization.
95
125
  """
96
- temp = []
97
- for step in self.steps:
98
- temp.append(step if isinstance(step, Action) else step())
99
- self._instances = tuple(temp)
126
+ # Convert any action classes to instances
127
+ self._instances = tuple(step if isinstance(step, Action) else step() for step in self.steps)
100
128
 
101
129
  def inject_personality(self, personality: str) -> Self:
102
- """Inject the personality of the workflow.
130
+ """Set the personality for all actions that don't have one defined.
103
131
 
104
132
  Args:
105
- personality: The personality to be injected.
133
+ personality: The personality text to inject.
106
134
 
107
135
  Returns:
108
- Self: The instance of the workflow with the injected personality.
136
+ Self: The workflow instance for method chaining.
109
137
  """
110
- for a in filter(lambda action: not action.personality, self._instances):
111
- a.personality = personality
138
+ for action in filter(lambda a: not a.personality, self._instances):
139
+ action.personality = personality
112
140
  return self
113
141
 
114
142
  async def serve(self, task: Task) -> None:
115
- """Serve the task by executing the workflow steps.
143
+ """Execute the workflow to fulfill the given task.
144
+
145
+ This method manages the complete lifecycle of processing a task through
146
+ the workflow's sequence of actions.
116
147
 
117
148
  Args:
118
- task: The task to be served.
149
+ task: The task to be processed.
119
150
  """
120
151
  await task.start()
121
152
  await self._init_context(task)
153
+
122
154
  current_action = None
123
155
  try:
156
+ # Process each action in sequence
124
157
  for step in self._instances:
125
- logger.debug(f"Executing step: {(current_action := step.name)}")
126
- act_task = create_task(step.act(await self._context.get()))
158
+ current_action = step.name
159
+ logger.debug(f"Executing step: {current_action}")
160
+
161
+ # Get current context and execute action
162
+ context = await self._context.get()
163
+ act_task = create_task(step.act(context))
164
+
165
+ # Handle task cancellation
127
166
  if task.is_cancelled():
128
167
  act_task.cancel(f"Cancelled by task: {task.name}")
129
168
  break
169
+
170
+ # Update context with modified values
130
171
  modified_ctx = await act_task
131
172
  await self._context.put(modified_ctx)
173
+
132
174
  logger.info(f"Finished executing workflow: {self.name}")
133
175
 
134
- if self.task_output_key not in (final_ctx := await self._context.get()):
176
+ # Get final context and extract result
177
+ final_ctx = await self._context.get()
178
+ result = final_ctx.get(self.task_output_key)
179
+
180
+ if self.task_output_key not in final_ctx:
135
181
  logger.warning(
136
- f"Task output key: {self.task_output_key} not found in the context, None will be returned. You can check if `Action.output_key` is set the same as `WorkFlow.task_output_key`."
182
+ f"Task output key: {self.task_output_key} not found in the context, None will be returned. "
183
+ f"You can check if `Action.output_key` is set the same as `WorkFlow.task_output_key`."
137
184
  )
138
185
 
139
- await task.finish(final_ctx.get(self.task_output_key, None))
186
+ await task.finish(result)
187
+
140
188
  except RuntimeError as e:
141
- logger.error(f"Error during task: {current_action} execution: {e}") # Log the exception
142
- logger.error(traceback.format_exc()) # Add this line to log the traceback
143
- await task.fail() # Mark the task as failed
189
+ logger.error(f"Error during task: {current_action} execution: {e}")
190
+ logger.error(traceback.format_exc())
191
+ await task.fail()
144
192
 
145
193
  async def _init_context[T](self, task: Task[T]) -> None:
146
- """Initialize the context dictionary for workflow execution."""
194
+ """Initialize the context dictionary for workflow execution.
195
+
196
+ Args:
197
+ task: The task being served by this workflow.
198
+ """
147
199
  logger.debug(f"Initializing context for workflow: {self.name}")
148
- await self._context.put({self.task_input_key: task, **dict(self.extra_init_context)})
200
+ initial_context = {self.task_input_key: task, **dict(self.extra_init_context)}
201
+ await self._context.put(initial_context)
149
202
 
150
203
  def steps_fallback_to_self(self) -> Self:
151
- """Set the fallback for each step to the workflow itself."""
204
+ """Configure all steps to use this workflow's configuration as fallback.
205
+
206
+ Returns:
207
+ Self: The workflow instance for method chaining.
208
+ """
152
209
  self.hold_to(self._instances)
153
210
  return self
154
211
 
155
212
  def steps_supply_tools_from_self(self) -> Self:
156
- """Supply the tools from the workflow to each step."""
213
+ """Provide this workflow's tools to all steps in the workflow.
214
+
215
+ Returns:
216
+ Self: The workflow instance for method chaining.
217
+ """
157
218
  self.provide_tools_to(self._instances)
158
219
  return self
@@ -26,7 +26,7 @@ class Figure(Base):
26
26
  """The caption accompanying the figure, summarizing its main points and academic value."""
27
27
 
28
28
  figure_path: str
29
- """The file path to the figure"""
29
+ """The exact path to the figure file, must exist in the file system, SHALL never be a PLACEHOLDER."""
30
30
 
31
31
 
32
32
  class Highlightings(Base):
fabricatio/models/role.py CHANGED
@@ -1,8 +1,9 @@
1
- """Module that contains the Role class."""
1
+ """Module that contains the Role class for managing workflows and their event registrations."""
2
2
 
3
3
  from typing import Any, Self, Set
4
4
 
5
5
  from fabricatio.capabilities.correct import Correct
6
+ from fabricatio.capabilities.covalidate import CoValidate
6
7
  from fabricatio.capabilities.task import HandleTask, ProposeTask
7
8
  from fabricatio.core import env
8
9
  from fabricatio.journal import logger
@@ -12,20 +13,37 @@ from fabricatio.models.tool import ToolBox
12
13
  from pydantic import Field
13
14
 
14
15
 
15
- class Role(ProposeTask, HandleTask, Correct):
16
- """Class that represents a role with a registry of events and workflows."""
16
+ class Role(ProposeTask, HandleTask, Correct, CoValidate):
17
+ """Class that represents a role with a registry of events and workflows.
18
+
19
+ A Role serves as a container for workflows, managing their registration to events
20
+ and providing them with shared configuration like tools and personality.
21
+
22
+ Attributes:
23
+ registry: Mapping of events to workflows that handle them
24
+ toolboxes: Set of toolboxes available to this role and its workflows
25
+ """
17
26
 
18
27
  registry: dict[Event | str, WorkFlow] = Field(default_factory=dict)
19
- """ The registry of events and workflows."""
28
+ """The registry of events and workflows."""
20
29
 
21
30
  toolboxes: Set[ToolBox] = Field(default_factory=set)
31
+ """Collection of tools available to this role."""
22
32
 
23
33
  def model_post_init(self, __context: Any) -> None:
24
- """Register the workflows in the role to the event bus."""
34
+ """Initialize the role by resolving configurations and registering workflows.
35
+
36
+ Args:
37
+ __context: The context used for initialization
38
+ """
25
39
  self.resolve_configuration().register_workflows()
26
40
 
27
41
  def register_workflows(self) -> Self:
28
- """Register the workflows in the role to the event bus."""
42
+ """Register each workflow in the registry to its corresponding event in the event bus.
43
+
44
+ Returns:
45
+ Self: The role instance for method chaining
46
+ """
29
47
  for event, workflow in self.registry.items():
30
48
  logger.debug(
31
49
  f"Registering workflow: `{workflow.name}` for event: `{Event.instantiate_from(event).collapse()}`"
@@ -34,7 +52,14 @@ class Role(ProposeTask, HandleTask, Correct):
34
52
  return self
35
53
 
36
54
  def resolve_configuration(self) -> Self:
37
- """Resolve the configuration of the role."""
55
+ """Apply role-level configuration to all workflows in the registry.
56
+
57
+ This includes setting up fallback configurations, injecting personality traits,
58
+ and providing tool access to workflows and their steps.
59
+
60
+ Returns:
61
+ Self: The role instance for method chaining
62
+ """
38
63
  for workflow in self.registry.values():
39
64
  logger.debug(f"Resolving config for workflow: `{workflow.name}`")
40
65
  (
@@ -213,7 +213,7 @@ class LLMUsage(ScopedConfig):
213
213
  self,
214
214
  question: str,
215
215
  validator: Callable[[str], T | None],
216
- default: T,
216
+ default: T = ...,
217
217
  max_validations: PositiveInt = 2,
218
218
  **kwargs: Unpack[GenerateKwargs],
219
219
  ) -> T: ...
@@ -222,7 +222,7 @@ class LLMUsage(ScopedConfig):
222
222
  self,
223
223
  question: List[str],
224
224
  validator: Callable[[str], T | None],
225
- default: T,
225
+ default: T = ...,
226
226
  max_validations: PositiveInt = 2,
227
227
  **kwargs: Unpack[GenerateKwargs],
228
228
  ) -> List[T]: ...
@@ -277,8 +277,9 @@ class LLMUsage(ScopedConfig):
277
277
  except Exception as e: # noqa: BLE001
278
278
  logger.error(f"Error during validation: \n{e}")
279
279
  break
280
- kwargs["no_cache"] = True
281
- logger.debug("Closed the cache for the next attempt")
280
+ if not kwargs.get("no_cache"):
281
+ kwargs["no_cache"] = True
282
+ logger.debug("Closed the cache for the next attempt")
282
283
  if default is None:
283
284
  logger.error(f"Failed to validate the response after {max_validations} attempts.")
284
285
  return default
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: fabricatio
3
- Version: 0.2.6.dev4
3
+ Version: 0.2.6.dev5
4
4
  Classifier: License :: OSI Approved :: MIT License
5
5
  Classifier: Programming Language :: Rust
6
6
  Classifier: Programming Language :: Python :: 3.12
@@ -1,18 +1,18 @@
1
- fabricatio-0.2.6.dev4.dist-info/METADATA,sha256=x15F4qzX0H3HfdNwW2hgbB5SVkkKWumhDAgpM1evTzE,13693
2
- fabricatio-0.2.6.dev4.dist-info/WHEEL,sha256=RIvmwLDYujv60MYBx2jxyP4vdn1DD7X0kBgz1TQvZuc,108
3
- fabricatio-0.2.6.dev4.dist-info/licenses/LICENSE,sha256=yDZaTLnOi03bi3Dk6f5IjhLUc5old2yOsihHWU0z-i0,1067
1
+ fabricatio-0.2.6.dev5.dist-info/METADATA,sha256=fDyrjLOMA7hb-NFEGY3jM5sMjkDDfHQ-PIYRHqjQvO0,13693
2
+ fabricatio-0.2.6.dev5.dist-info/WHEEL,sha256=RIvmwLDYujv60MYBx2jxyP4vdn1DD7X0kBgz1TQvZuc,108
3
+ fabricatio-0.2.6.dev5.dist-info/licenses/LICENSE,sha256=yDZaTLnOi03bi3Dk6f5IjhLUc5old2yOsihHWU0z-i0,1067
4
4
  fabricatio/decorators.py,sha256=cJHsxxbnMhc4SzPl4454CPLuDP3H0qbTrzV_U2rLPrs,6372
5
5
  fabricatio/core.py,sha256=MaEKZ6DDmbdScAY-7F1gwGA6fr7ADX6Mz5rNVi2msFA,6277
6
6
  fabricatio/models/generic.py,sha256=WxT4KBGGZTpqGPSPVwD5mkmhYBjxggZ7n-HKi-Hed4M,13619
7
7
  fabricatio/models/tool.py,sha256=ATwbOyvOTzrfAKcbOmCqdG3je4-T5jrM6FIw4cDPRDY,6863
8
- fabricatio/models/role.py,sha256=pQUHj5jx5OqbbDufhvoqqF72R0dJ6aIrREieASe96Ls,1794
9
- fabricatio/models/extra.py,sha256=wOEJueEwSCfcnCvgITnl0lM8IrWwmtxmksjtBcYueKk,7151
8
+ fabricatio/models/role.py,sha256=m-orT8xtiI9t0MvCzwVnfnPXPoocS2z6Twaim_nSmNE,2780
9
+ fabricatio/models/extra.py,sha256=2TyrlYOfTe-Z-9eZxV8K7lXQLHz3y5Ze97JYZnnqg9U,7219
10
10
  fabricatio/models/kwargs_types.py,sha256=7MjoTtGfSUx4jws_DlvK2ud7au6Y2z50Umr3PFtmSTc,4435
11
11
  fabricatio/models/utils.py,sha256=KmsTQcBCTYgnsZz7U1ECSfLRdswWPkKtGg8mBMaXrwA,4850
12
- fabricatio/models/usages.py,sha256=DiCiS1_YsHyB1-cQJdevyVxAn5_B9x0717mis8DNG9s,27952
12
+ fabricatio/models/usages.py,sha256=SvfASbO_nqbZ1fvn-dTMldjQetFcin3ADwVC8xmN-nQ,28019
13
13
  fabricatio/models/events.py,sha256=UvOc6V3vfjKuvh7irDezJ8EGpsNo5yzLdq4xQexVonw,4063
14
14
  fabricatio/models/task.py,sha256=-EnzpEyM6Z687gF1lPcmA2szEUw6dFpu3lOtseaz95o,10193
15
- fabricatio/models/action.py,sha256=S4PLBK5mmgdcJnWg12ZjWKc_8c8uuimxc9scyfSompQ,6290
15
+ fabricatio/models/action.py,sha256=C8zyrZbJdMmspJFFbsoXK1B5R0WCbY46G3CLAarxnWo,8062
16
16
  fabricatio/toolboxes/fs.py,sha256=OQMdeokYxSNVrCZJAweJ0cYiK4k2QuEiNdIbS5IHIV8,705
17
17
  fabricatio/toolboxes/__init__.py,sha256=dYm_Gd8XolSU_h4wnkA09dlaLDK146eeFz0CUgPZ8_c,380
18
18
  fabricatio/toolboxes/arithmetic.py,sha256=sSTPkKI6-mb278DwQKFO9jKyzc9kCx45xNH7V6bGBpE,1307
@@ -20,7 +20,7 @@ fabricatio/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
20
  fabricatio/fs/readers.py,sha256=5bLlpqcdhIwWfysh7gvfVv0PPPVAeDlTPGwNTio6j9M,1156
21
21
  fabricatio/fs/curd.py,sha256=FuG75qco4dX8vhIK27gKz9rKUXbWHOFg5yK3nGLB25s,4469
22
22
  fabricatio/fs/__init__.py,sha256=hTuYtzmvIGtbg7PTdoqLEQJ0E63hOzZltCIrLlDKaSE,559
23
- fabricatio/config.py,sha256=qoPSAlXfaKk3nGP3lQa6wy1YvnRSnNrmdJz6iOdFMCY,15902
23
+ fabricatio/config.py,sha256=vRCDnCyBgQoNCiwMEVdlD8_ij9Q7rykdpsod3XHtD-8,16191
24
24
  fabricatio/journal.py,sha256=Op0wC-JlZumnAc_aDmYM4ljnSNLoKEEMfcIRbCF69ow,455
25
25
  fabricatio/__init__.py,sha256=6EjK4SxbnvFxdO9ftkXD9rxSuoPEIITNzUkuMO9s3yU,1092
26
26
  fabricatio/actions/output.py,sha256=wNyLNxjqBlms0hyxap8XUPgN53izipJrCOtpX6aluFQ,626
@@ -32,11 +32,12 @@ fabricatio/workflows/rag.py,sha256=uOZXprD479fUhLA6sYvEM8RWcVcUZXXtP0xRbTMPdHE,5
32
32
  fabricatio/parser.py,sha256=Jr2ELtcmiRNAyz76TCWoJuUpG7zrJoRn3GfaX9vZSJM,6099
33
33
  fabricatio/capabilities/correct.py,sha256=BiLEAk6e1KbwUMhTexmDfgtlPUct_bG0igDK7CwHqao,5107
34
34
  fabricatio/capabilities/rag.py,sha256=ghctqjIf6KDe6PP8-SDzKN1zxh94rXk5Y5hHFtG_46Y,15404
35
+ fabricatio/capabilities/covalidate.py,sha256=uEpZNpzsQoIM5ZP4sntUhBveNhhqrAzQ6Q9-2WDlpPg,6461
35
36
  fabricatio/capabilities/rating.py,sha256=ZQrKKmmIgnN4zgNnG_GmWa5Nyxpk03JYW32RJ4R5vvQ,14067
36
37
  fabricatio/capabilities/review.py,sha256=TX7av4b2N7MRDHMowsIZfiujXRRNxjUMNHtCFVA1UTM,10824
37
38
  fabricatio/capabilities/propose.py,sha256=4QvONVVUp1rs34Te2Rjams6NioEt6FhEAxDWiveQnSg,1544
38
- fabricatio/capabilities/task.py,sha256=uAp4tC9cbq3Ux-VQHjYdEzKLE3Jr8vhB6HKLPbhozIo,4494
39
+ fabricatio/capabilities/task.py,sha256=llFFKh8MAaTjsp8DtAGD_UUONROfFNxorh6NLys973U,4496
39
40
  fabricatio/_rust.pyi,sha256=1TvnaXK_QKM8Et05LkZ_vOGR4WISVd9X8lU6OTwFFaU,3376
40
- fabricatio/_rust.cpython-312-x86_64-linux-gnu.so,sha256=3fbtHUY9vCdKAyhn-ZoTII7ddg-G33HXGTCD5BvrfF0,1910296
41
- fabricatio-0.2.6.dev4.data/scripts/tdown,sha256=xtxnxCR31GJEl1qF0Z1UDI43FK7kzGxzpRkMnVaZSP0,4575216
42
- fabricatio-0.2.6.dev4.dist-info/RECORD,,
41
+ fabricatio/_rust.cpython-312-x86_64-linux-gnu.so,sha256=Qv4F28dducNx2GS8L8TmMWuk3MgBivQbzH_UmC-1P2w,1911376
42
+ fabricatio-0.2.6.dev5.data/scripts/tdown,sha256=h7dazHQEgymw8fXo1ROyyUfwLMMw7l4JyMlt2xJyN-4,4576688
43
+ fabricatio-0.2.6.dev5.dist-info/RECORD,,