fabricatio 0.2.3.dev3__cp312-cp312-win_amd64.whl → 0.2.4.dev0__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,6 +3,7 @@
3
3
  from typing import List, Self, Union
4
4
 
5
5
  from fabricatio.config import configs
6
+ from fabricatio.models.utils import TaskStatus
6
7
  from pydantic import BaseModel, ConfigDict, Field
7
8
 
8
9
  type EventLike = Union[str, List[str], "Event"]
@@ -33,6 +34,21 @@ class Event(BaseModel):
33
34
 
34
35
  return cls(segments=event)
35
36
 
37
+ @classmethod
38
+ def quick_instantiate(cls, event: EventLike) -> Self:
39
+ """Create an Event instance from a string or list of strings or an Event instance and push a wildcard and pending segment.
40
+
41
+ Args:
42
+ event (EventLike): The event to instantiate from.
43
+
44
+ Returns:
45
+ Event: The Event instance.
46
+
47
+ Notes:
48
+ This method is used to create an Event instance from a string or list of strings or an Event instance and push a wildcard and pending segment.
49
+ """
50
+ return cls.instantiate_from(event).push_wildcard().push_pending()
51
+
36
52
  def derive(self, event: EventLike) -> Self:
37
53
  """Derive a new event from this event and another event or a string."""
38
54
  return self.clone().concat(event)
@@ -59,6 +75,26 @@ class Event(BaseModel):
59
75
  """Push a wildcard segment to the event."""
60
76
  return self.push("*")
61
77
 
78
+ def push_pending(self) -> Self:
79
+ """Push a pending segment to the event."""
80
+ return self.push(TaskStatus.Pending.value)
81
+
82
+ def push_running(self) -> Self:
83
+ """Push a running segment to the event."""
84
+ return self.push(TaskStatus.Running.value)
85
+
86
+ def push_finished(self) -> Self:
87
+ """Push a finished segment to the event."""
88
+ return self.push(TaskStatus.Finished.value)
89
+
90
+ def push_failed(self) -> Self:
91
+ """Push a failed segment to the event."""
92
+ return self.push(TaskStatus.Failed.value)
93
+
94
+ def push_cancelled(self) -> Self:
95
+ """Push a cancelled segment to the event."""
96
+ return self.push(TaskStatus.Cancelled.value)
97
+
62
98
  def pop(self) -> str:
63
99
  """Pop a segment from the event."""
64
100
  return self.segments.pop()
@@ -1,17 +1,23 @@
1
1
  """This module defines generic classes for models in the Fabricatio library."""
2
2
 
3
3
  from pathlib import Path
4
- from typing import Callable, List, Self
4
+ from typing import Callable, Iterable, List, Optional, Self, Union, final
5
5
 
6
6
  import orjson
7
7
  from fabricatio._rust import blake3_hash
8
8
  from fabricatio._rust_instances import template_manager
9
9
  from fabricatio.config import configs
10
10
  from fabricatio.fs.readers import magika, safe_text_read
11
+ from fabricatio.parser import JsonCapture
11
12
  from pydantic import (
12
13
  BaseModel,
13
14
  ConfigDict,
14
15
  Field,
16
+ HttpUrl,
17
+ NonNegativeFloat,
18
+ PositiveFloat,
19
+ PositiveInt,
20
+ SecretStr,
15
21
  )
16
22
 
17
23
 
@@ -48,22 +54,63 @@ class WithBriefing(Named, Described):
48
54
  return f"{self.name}: {self.description}" if self.description else self.name
49
55
 
50
56
 
51
- class WithJsonExample(Base):
52
- """Class that provides a JSON schema for the model."""
57
+ class WithFormatedJsonSchema(Base):
58
+ """Class that provides a formatted JSON schema of the model."""
53
59
 
54
60
  @classmethod
55
- def json_example(cls) -> str:
56
- """Return a JSON example for the model.
61
+ def formated_json_schema(cls) -> str:
62
+ """Get the JSON schema of the model in a formatted string.
57
63
 
58
64
  Returns:
59
- str: A JSON example for the model.
65
+ str: The JSON schema of the model in a formatted string.
60
66
  """
61
67
  return orjson.dumps(
62
- {field_name: field_info.description for field_name, field_info in cls.model_fields.items()},
68
+ cls.model_json_schema(),
63
69
  option=orjson.OPT_INDENT_2 | orjson.OPT_SORT_KEYS,
64
70
  ).decode()
65
71
 
66
72
 
73
+ class CreateJsonObjPrompt(WithFormatedJsonSchema):
74
+ """Class that provides a prompt for creating a JSON object."""
75
+
76
+ @classmethod
77
+ def create_json_prompt(cls, requirement: str) -> str:
78
+ """Create the prompt for creating a JSON object with given requirement.
79
+
80
+ Args:
81
+ requirement (str): The requirement for the JSON object.
82
+
83
+ Returns:
84
+ str: The prompt for creating a JSON object with given requirement.
85
+ """
86
+ return template_manager.render_template(
87
+ configs.templates.create_json_obj_template,
88
+ {"requirement": requirement, "json_schema": cls.formated_json_schema()},
89
+ )
90
+
91
+
92
+ class InstantiateFromString(Base):
93
+ """Class that provides a method to instantiate the class from a string."""
94
+
95
+ @classmethod
96
+ def instantiate_from_string(cls, string: str) -> Self | None:
97
+ """Instantiate the class from a string.
98
+
99
+ Args:
100
+ string (str): The string to instantiate the class from.
101
+
102
+ Returns:
103
+ Self | None: The instance of the class or None if the string is not valid.
104
+ """
105
+ return JsonCapture.convert_with(string, cls.model_validate_json)
106
+
107
+
108
+ class ProposedAble(CreateJsonObjPrompt, InstantiateFromString):
109
+ """Class that provides methods for proposing a task."""
110
+
111
+ pass
112
+
113
+
67
114
  class WithDependency(Base):
68
115
  """Class that manages file dependencies."""
69
116
 
@@ -150,3 +197,107 @@ class WithDependency(Base):
150
197
  for p in self.dependencies
151
198
  },
152
199
  )
200
+
201
+
202
+ class ScopedConfig(Base):
203
+ """Class that manages a scoped configuration."""
204
+
205
+ llm_api_endpoint: Optional[HttpUrl] = None
206
+ """The OpenAI API endpoint."""
207
+
208
+ llm_api_key: Optional[SecretStr] = None
209
+ """The OpenAI API key."""
210
+
211
+ llm_timeout: Optional[PositiveInt] = None
212
+ """The timeout of the LLM model."""
213
+
214
+ llm_max_retries: Optional[PositiveInt] = None
215
+ """The maximum number of retries."""
216
+
217
+ llm_model: Optional[str] = None
218
+ """The LLM model name."""
219
+
220
+ llm_temperature: Optional[NonNegativeFloat] = None
221
+ """The temperature of the LLM model."""
222
+
223
+ llm_stop_sign: Optional[str | List[str]] = None
224
+ """The stop sign of the LLM model."""
225
+
226
+ llm_top_p: Optional[NonNegativeFloat] = None
227
+ """The top p of the LLM model."""
228
+
229
+ llm_generation_count: Optional[PositiveInt] = None
230
+ """The number of generations to generate."""
231
+
232
+ llm_stream: Optional[bool] = None
233
+ """Whether to stream the LLM model's response."""
234
+
235
+ llm_max_tokens: Optional[PositiveInt] = None
236
+ """The maximum number of tokens to generate."""
237
+
238
+ embedding_api_endpoint: Optional[HttpUrl] = None
239
+ """The OpenAI API endpoint."""
240
+
241
+ embedding_api_key: Optional[SecretStr] = None
242
+ """The OpenAI API key."""
243
+
244
+ embedding_timeout: Optional[PositiveInt] = None
245
+ """The timeout of the LLM model."""
246
+
247
+ embedding_model: Optional[str] = None
248
+ """The LLM model name."""
249
+
250
+ embedding_max_sequence_length: Optional[PositiveInt] = None
251
+ """The maximum sequence length."""
252
+
253
+ embedding_dimensions: Optional[PositiveInt] = None
254
+ """The dimensions of the embedding."""
255
+ embedding_caching: Optional[bool] = False
256
+ """Whether to cache the embedding result."""
257
+
258
+ milvus_uri: Optional[HttpUrl] = Field(default=None)
259
+ """The URI of the Milvus server."""
260
+ milvus_token: Optional[SecretStr] = Field(default=None)
261
+ """The token for the Milvus server."""
262
+ milvus_timeout: Optional[PositiveFloat] = Field(default=None)
263
+ """The timeout for the Milvus server."""
264
+ milvus_dimensions: Optional[PositiveInt] = Field(default=None)
265
+ """The dimensions of the Milvus server."""
266
+
267
+ @final
268
+ def fallback_to(self, other: "ScopedConfig") -> Self:
269
+ """Fallback to another instance's attribute values if the current instance's attributes are None.
270
+
271
+ Args:
272
+ other (LLMUsage): Another instance from which to copy attribute values.
273
+
274
+ Returns:
275
+ Self: The current instance, allowing for method chaining.
276
+ """
277
+ # Iterate over the attribute names and copy values from 'other' to 'self' where applicable
278
+ # noinspection PydanticTypeChecker,PyTypeChecker
279
+ for attr_name in ScopedConfig.model_fields:
280
+ # Copy the attribute value from 'other' to 'self' only if 'self' has None and 'other' has a non-None value
281
+ if getattr(self, attr_name) is None and (attr := getattr(other, attr_name)) is not None:
282
+ setattr(self, attr_name, attr)
283
+
284
+ # Return the current instance to allow for method chaining
285
+ return self
286
+
287
+ @final
288
+ def hold_to(self, others: Union["ScopedConfig", Iterable["ScopedConfig"]]) -> Self:
289
+ """Hold to another instance's attribute values if the current instance's attributes are None.
290
+
291
+ Args:
292
+ others (LLMUsage | Iterable[LLMUsage]): Another instance or iterable of instances from which to copy attribute values.
293
+
294
+ Returns:
295
+ Self: The current instance, allowing for method chaining.
296
+ """
297
+ if not isinstance(others, Iterable):
298
+ others = [others]
299
+ for other in others:
300
+ # noinspection PyTypeChecker,PydanticTypeChecker
301
+ for attr_name in ScopedConfig.model_fields:
302
+ if (attr := getattr(self, attr_name)) is not None and getattr(other, attr_name) is None:
303
+ setattr(other, attr_name, attr)
@@ -5,6 +5,20 @@ from typing import List, NotRequired, TypedDict
5
5
  from pydantic import NonNegativeFloat, NonNegativeInt, PositiveInt
6
6
 
7
7
 
8
+ class CollectionSimpleConfigKwargs(TypedDict):
9
+ """A type representing the configuration for a collection."""
10
+
11
+ dimension: NotRequired[int]
12
+ timeout: NotRequired[float]
13
+
14
+
15
+ class FetchKwargs(TypedDict):
16
+ """A type representing the keyword arguments for the fetch method."""
17
+
18
+ similarity_threshold: NotRequired[float]
19
+ result_per_query: NotRequired[int]
20
+
21
+
8
22
  class EmbeddingKwargs(TypedDict):
9
23
  """A type representing the keyword arguments for the embedding method."""
10
24
 
fabricatio/models/task.py CHANGED
@@ -4,7 +4,6 @@ It includes methods to manage the task's lifecycle, such as starting, finishing,
4
4
  """
5
5
 
6
6
  from asyncio import Queue
7
- from enum import Enum
8
7
  from typing import Any, List, Optional, Self
9
8
 
10
9
  from fabricatio._rust_instances import template_manager
@@ -12,35 +11,18 @@ from fabricatio.config import configs
12
11
  from fabricatio.core import env
13
12
  from fabricatio.journal import logger
14
13
  from fabricatio.models.events import Event, EventLike
15
- from fabricatio.models.generic import WithBriefing, WithDependency, WithJsonExample
14
+ from fabricatio.models.generic import ProposedAble, WithBriefing, WithDependency
15
+ from fabricatio.models.utils import TaskStatus
16
16
  from pydantic import Field, PrivateAttr
17
17
 
18
18
 
19
- class TaskStatus(Enum):
20
- """An enumeration representing the status of a task.
21
-
22
- Attributes:
23
- Pending: The task is pending.
24
- Running: The task is currently running.
25
- Finished: The task has been successfully completed.
26
- Failed: The task has failed.
27
- Cancelled: The task has been cancelled.
28
- """
29
-
30
- Pending = "pending"
31
- Running = "running"
32
- Finished = "finished"
33
- Failed = "failed"
34
- Cancelled = "cancelled"
35
-
36
-
37
- class Task[T](WithBriefing, WithJsonExample, WithDependency):
19
+ class Task[T](WithBriefing, ProposedAble, WithDependency):
38
20
  """A class representing a task with a status and output.
39
21
 
40
22
  Attributes:
41
23
  name (str): The name of the task.
42
24
  description (str): The description of the task.
43
- goal (str): The goal of the task.
25
+ goals (str): The goal of the task.
44
26
  dependencies (List[str]): The file dependencies of the task, a list of file paths.
45
27
  namespace (List[str]): The namespace of the task, a list of namespace segment, as string.
46
28
  """
@@ -58,7 +40,7 @@ class Task[T](WithBriefing, WithJsonExample, WithDependency):
58
40
  """A list of string segments that identify the task's location in the system. If not specified, defaults to an empty list."""
59
41
 
60
42
  dependencies: List[str] = Field(default_factory=list)
61
- """A list of file paths that are needed (either reading or writing) to complete this task. If not specified, defaults to an empty list."""
43
+ """A list of file paths that are needed or mentioned in the task's description (either reading or writing) to complete this task. If not specified, defaults to an empty list."""
62
44
 
63
45
  _output: Queue[T | None] = PrivateAttr(default_factory=Queue)
64
46
  """The output queue of the task."""
@@ -1,7 +1,7 @@
1
1
  """This module contains classes that manage the usage of language models and tools in tasks."""
2
2
 
3
3
  from asyncio import gather
4
- from typing import Callable, Dict, Iterable, List, Optional, Self, Set, Union, Unpack, overload
4
+ from typing import Callable, Dict, Iterable, List, Optional, Self, Set, Type, Union, Unpack, overload
5
5
 
6
6
  import asyncstdlib
7
7
  import litellm
@@ -9,11 +9,11 @@ import orjson
9
9
  from fabricatio._rust_instances import template_manager
10
10
  from fabricatio.config import configs
11
11
  from fabricatio.journal import logger
12
- from fabricatio.models.generic import Base, WithBriefing
12
+ from fabricatio.models.generic import ScopedConfig, WithBriefing
13
13
  from fabricatio.models.kwargs_types import ChooseKwargs, EmbeddingKwargs, GenerateKwargs, LLMKwargs
14
14
  from fabricatio.models.task import Task
15
15
  from fabricatio.models.tool import Tool, ToolBox
16
- from fabricatio.models.utils import Messages, MilvusData
16
+ from fabricatio.models.utils import Messages
17
17
  from fabricatio.parser import JsonCapture
18
18
  from litellm import stream_chunk_builder
19
19
  from litellm.types.utils import (
@@ -23,135 +23,15 @@ from litellm.types.utils import (
23
23
  StreamingChoices,
24
24
  )
25
25
  from litellm.utils import CustomStreamWrapper
26
- from pydantic import Field, HttpUrl, NonNegativeFloat, NonNegativeInt, PositiveInt, SecretStr
26
+ from pydantic import Field, NonNegativeInt, PositiveInt
27
27
 
28
28
 
29
- class LLMUsage(Base):
29
+ class LLMUsage(ScopedConfig):
30
30
  """Class that manages LLM (Large Language Model) usage parameters and methods."""
31
31
 
32
- llm_api_endpoint: Optional[HttpUrl] = None
33
- """The OpenAI API endpoint."""
34
-
35
- llm_api_key: Optional[SecretStr] = None
36
- """The OpenAI API key."""
37
-
38
- llm_timeout: Optional[PositiveInt] = None
39
- """The timeout of the LLM model."""
40
-
41
- llm_max_retries: Optional[PositiveInt] = None
42
- """The maximum number of retries."""
43
-
44
- llm_model: Optional[str] = None
45
- """The LLM model name."""
46
-
47
- llm_temperature: Optional[NonNegativeFloat] = None
48
- """The temperature of the LLM model."""
49
-
50
- llm_stop_sign: Optional[str | List[str]] = None
51
- """The stop sign of the LLM model."""
52
-
53
- llm_top_p: Optional[NonNegativeFloat] = None
54
- """The top p of the LLM model."""
55
-
56
- llm_generation_count: Optional[PositiveInt] = None
57
- """The number of generations to generate."""
58
-
59
- llm_stream: Optional[bool] = None
60
- """Whether to stream the LLM model's response."""
61
-
62
- llm_max_tokens: Optional[PositiveInt] = None
63
- """The maximum number of tokens to generate."""
64
-
65
- async def aembedding(
66
- self,
67
- input_text: List[str],
68
- model: Optional[str] = None,
69
- dimensions: Optional[int] = None,
70
- timeout: Optional[PositiveInt] = None,
71
- caching: Optional[bool] = False,
72
- ) -> EmbeddingResponse:
73
- """Asynchronously generates embeddings for the given input text.
74
-
75
- Args:
76
- input_text (List[str]): A list of strings to generate embeddings for.
77
- model (Optional[str]): The model to use for embedding. Defaults to the instance's `llm_model` or the global configuration.
78
- dimensions (Optional[int]): The dimensions of the embedding. Defaults to None.
79
- timeout (Optional[PositiveInt]): The timeout for the embedding request. Defaults to the instance's `llm_timeout` or the global configuration.
80
- caching (Optional[bool]): Whether to cache the embedding result. Defaults to False.
81
-
82
-
83
- Returns:
84
- EmbeddingResponse: The response containing the embeddings.
85
- """
86
- return await litellm.aembedding(
87
- input=input_text,
88
- caching=caching,
89
- dimensions=dimensions,
90
- model=model or self.llm_model or configs.llm.model,
91
- timeout=timeout or self.llm_timeout or configs.llm.timeout,
92
- api_key=self.llm_api_key.get_secret_value() if self.llm_api_key else configs.llm.api_key.get_secret_value(),
93
- api_base=self.llm_api_endpoint.unicode_string().rstrip(
94
- "/"
95
- ) # seems embedding function takes no base_url end with a slash
96
- if self.llm_api_endpoint
97
- else configs.llm.api_endpoint.unicode_string().rstrip("/"),
98
- )
99
-
100
- @overload
101
- async def vectorize(self, input_text: List[str], **kwargs: Unpack[EmbeddingKwargs]) -> List[List[float]]: ...
102
- @overload
103
- async def vectorize(self, input_text: str, **kwargs: Unpack[EmbeddingKwargs]) -> List[float]: ...
104
-
105
- async def vectorize(
106
- self, input_text: List[str] | str, **kwargs: Unpack[EmbeddingKwargs]
107
- ) -> List[List[float]] | List[float]:
108
- """Asynchronously generates vector embeddings for the given input text.
109
-
110
- Args:
111
- input_text (List[str] | str): A string or list of strings to generate embeddings for.
112
- **kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
113
-
114
- Returns:
115
- List[List[float]] | List[float]: The generated embeddings.
116
- """
117
- if isinstance(input_text, str):
118
- return (await self.aembedding([input_text], **kwargs)).data[0].get("embedding")
119
-
120
- return [o.get("embedding") for o in (await self.aembedding(input_text, **kwargs)).data]
121
-
122
- @overload
123
- async def pack(
124
- self, input_text: List[str], subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
125
- ) -> List[MilvusData]: ...
126
- @overload
127
- async def pack(
128
- self, input_text: str, subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
129
- ) -> MilvusData: ...
130
-
131
- async def pack(
132
- self, input_text: List[str] | str, subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
133
- ) -> List[MilvusData] | MilvusData:
134
- """Asynchronously generates MilvusData objects for the given input text.
135
-
136
- Args:
137
- input_text (List[str] | str): A string or list of strings to generate embeddings for.
138
- subject (Optional[str]): The subject of the input text. Defaults to None.
139
- **kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
140
-
141
- Returns:
142
- List[MilvusData] | MilvusData: The generated MilvusData objects.
143
- """
144
- if isinstance(input_text, str):
145
- return MilvusData(vector=await self.vectorize(input_text, **kwargs), text=input_text, subject=subject)
146
- vecs = await self.vectorize(input_text, **kwargs)
147
- return [
148
- MilvusData(
149
- vector=vec,
150
- text=text,
151
- subject=subject,
152
- )
153
- for text, vec in zip(input_text, vecs, strict=True)
154
- ]
32
+ @classmethod
33
+ def _scoped_model(cls) -> Type["LLMUsage"]:
34
+ return LLMUsage
155
35
 
156
36
  async def aquery(
157
37
  self,
@@ -181,10 +61,8 @@ class LLMUsage(Base):
181
61
  stream=kwargs.get("stream") or self.llm_stream or configs.llm.stream,
182
62
  timeout=kwargs.get("timeout") or self.llm_timeout or configs.llm.timeout,
183
63
  max_retries=kwargs.get("max_retries") or self.llm_max_retries or configs.llm.max_retries,
184
- api_key=self.llm_api_key.get_secret_value() if self.llm_api_key else configs.llm.api_key.get_secret_value(),
185
- base_url=self.llm_api_endpoint.unicode_string()
186
- if self.llm_api_endpoint
187
- else configs.llm.api_endpoint.unicode_string(),
64
+ api_key=(self.llm_api_key or configs.llm.api_key).get_secret_value(),
65
+ base_url=(self.llm_api_endpoint or configs.llm.api_endpoint).unicode_string(),
188
66
  )
189
67
 
190
68
  async def ainvoke(
@@ -213,13 +91,13 @@ class LLMUsage(Base):
213
91
  if isinstance(resp, ModelResponse):
214
92
  return resp.choices
215
93
  if isinstance(resp, CustomStreamWrapper):
216
- if configs.debug.streaming_visible:
217
- chunks = []
218
- async for chunk in resp:
219
- chunks.append(chunk)
220
- print(chunk.choices[0].delta.content or "", end="") # noqa: T201
221
- return stream_chunk_builder(chunks).choices
222
- return stream_chunk_builder(await asyncstdlib.list()).choices
94
+ if not configs.debug.streaming_visible:
95
+ return stream_chunk_builder(await asyncstdlib.list()).choices
96
+ chunks = []
97
+ async for chunk in resp:
98
+ chunks.append(chunk)
99
+ print(chunk.choices[0].delta.content or "", end="") # noqa: T201
100
+ return stream_chunk_builder(chunks).choices
223
101
  logger.critical(err := f"Unexpected response type: {type(resp)}")
224
102
  raise ValueError(err)
225
103
 
@@ -361,6 +239,26 @@ class LLMUsage(Base):
361
239
  """
362
240
  return await gather(*[self.aask_validate(question, validator, **kwargs) for question in questions])
363
241
 
242
+ async def aliststr(self, requirement: str, k: NonNegativeInt = 0, **kwargs: Unpack[GenerateKwargs]) -> List[str]:
243
+ """Asynchronously generates a list of strings based on a given requirement.
244
+
245
+ Args:
246
+ requirement (str): The requirement for the list of strings.
247
+ k (NonNegativeInt): The number of choices to select, 0 means infinite. Defaults to 0.
248
+ **kwargs (Unpack[GenerateKwargs]): Additional keyword arguments for the LLM usage.
249
+
250
+ Returns:
251
+ List[str]: The validated response as a list of strings.
252
+ """
253
+ return await self.aask_validate(
254
+ template_manager.render_template(
255
+ configs.templates.liststr_template,
256
+ {"requirement": requirement, "k": k},
257
+ ),
258
+ lambda resp: JsonCapture.validate_with(resp, orjson.loads, list, str, k),
259
+ **kwargs,
260
+ )
261
+
364
262
  async def achoose[T: WithBriefing](
365
263
  self,
366
264
  instruction: str,
@@ -388,7 +286,7 @@ class LLMUsage(Base):
388
286
  configs.templates.make_choice_template,
389
287
  {
390
288
  "instruction": instruction,
391
- "options": [{"name": m.name, "briefing": m.briefing} for m in choices],
289
+ "options": [m.model_dump(include={"name", "briefing"}) for m in choices],
392
290
  "k": k,
393
291
  },
394
292
  )
@@ -475,39 +373,82 @@ class LLMUsage(Base):
475
373
  **kwargs,
476
374
  )
477
375
 
478
- def fallback_to(self, other: "LLMUsage") -> Self:
479
- """Fallback to another instance's attribute values if the current instance's attributes are None.
376
+
377
+ class EmbeddingUsage(LLMUsage):
378
+ """A class representing the embedding model."""
379
+
380
+ async def aembedding(
381
+ self,
382
+ input_text: List[str],
383
+ model: Optional[str] = None,
384
+ dimensions: Optional[int] = None,
385
+ timeout: Optional[PositiveInt] = None,
386
+ caching: Optional[bool] = False,
387
+ ) -> EmbeddingResponse:
388
+ """Asynchronously generates embeddings for the given input text.
480
389
 
481
390
  Args:
482
- other (LLMUsage): Another instance from which to copy attribute values.
391
+ input_text (List[str]): A list of strings to generate embeddings for.
392
+ model (Optional[str]): The model to use for embedding. Defaults to the instance's `llm_model` or the global configuration.
393
+ dimensions (Optional[int]): The dimensions of the embedding output should have, which is used to validate the result. Defaults to None.
394
+ timeout (Optional[PositiveInt]): The timeout for the embedding request. Defaults to the instance's `llm_timeout` or the global configuration.
395
+ caching (Optional[bool]): Whether to cache the embedding result. Defaults to False.
396
+
483
397
 
484
398
  Returns:
485
- Self: The current instance, allowing for method chaining.
399
+ EmbeddingResponse: The response containing the embeddings.
486
400
  """
487
- # Iterate over the attribute names and copy values from 'other' to 'self' where applicable
488
- # noinspection PydanticTypeChecker,PyTypeChecker
489
- for attr_name in LLMUsage.model_fields:
490
- # Copy the attribute value from 'other' to 'self' only if 'self' has None and 'other' has a non-None value
491
- if getattr(self, attr_name) is None and (attr := getattr(other, attr_name)) is not None:
492
- setattr(self, attr_name, attr)
493
-
494
- # Return the current instance to allow for method chaining
495
- return self
401
+ # check seq length
402
+ max_len = self.embedding_max_sequence_length or configs.embedding.max_sequence_length
403
+ if any(len(t) > max_len for t in input_text):
404
+ logger.error(err := f"Input text exceeds maximum sequence length {max_len}.")
405
+ raise ValueError(err)
406
+
407
+ return await litellm.aembedding(
408
+ input=input_text,
409
+ caching=caching or self.embedding_caching or configs.embedding.caching,
410
+ dimensions=dimensions or self.embedding_dimensions or configs.embedding.dimensions,
411
+ model=model or self.embedding_model or configs.embedding.model or self.llm_model or configs.llm.model,
412
+ timeout=timeout
413
+ or self.embedding_timeout
414
+ or configs.embedding.timeout
415
+ or self.llm_timeout
416
+ or configs.llm.timeout,
417
+ api_key=(
418
+ self.embedding_api_key or configs.embedding.api_key or self.llm_api_key or configs.llm.api_key
419
+ ).get_secret_value(),
420
+ api_base=(
421
+ self.embedding_api_endpoint
422
+ or configs.embedding.api_endpoint
423
+ or self.llm_api_endpoint
424
+ or configs.llm.api_endpoint
425
+ )
426
+ .unicode_string()
427
+ .rstrip("/"),
428
+ # seems embedding function takes no base_url end with a slash
429
+ )
430
+
431
+ @overload
432
+ async def vectorize(self, input_text: List[str], **kwargs: Unpack[EmbeddingKwargs]) -> List[List[float]]: ...
433
+ @overload
434
+ async def vectorize(self, input_text: str, **kwargs: Unpack[EmbeddingKwargs]) -> List[float]: ...
496
435
 
497
- def hold_to(self, others: Union["LLMUsage", Iterable["LLMUsage"]]) -> Self:
498
- """Hold to another instance's attribute values if the current instance's attributes are None.
436
+ async def vectorize(
437
+ self, input_text: List[str] | str, **kwargs: Unpack[EmbeddingKwargs]
438
+ ) -> List[List[float]] | List[float]:
439
+ """Asynchronously generates vector embeddings for the given input text.
499
440
 
500
441
  Args:
501
- others (LLMUsage | Iterable[LLMUsage]): Another instance or iterable of instances from which to copy attribute values.
442
+ input_text (List[str] | str): A string or list of strings to generate embeddings for.
443
+ **kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
502
444
 
503
445
  Returns:
504
- Self: The current instance, allowing for method chaining.
446
+ List[List[float]] | List[float]: The generated embeddings.
505
447
  """
506
- for other in others:
507
- # noinspection PyTypeChecker,PydanticTypeChecker
508
- for attr_name in LLMUsage.model_fields:
509
- if (attr := getattr(self, attr_name)) is not None and getattr(other, attr_name) is None:
510
- setattr(other, attr_name, attr)
448
+ if isinstance(input_text, str):
449
+ return (await self.aembedding([input_text], **kwargs)).data[0].get("embedding")
450
+
451
+ return [o.get("embedding") for o in (await self.aembedding(input_text, **kwargs)).data]
511
452
 
512
453
 
513
454
  class ToolBoxUsage(LLMUsage):