fabricatio 0.2.3.dev2__cp312-cp312-win_amd64.whl → 0.2.4.dev0__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,7 +1,7 @@
1
1
  """This module contains classes that manage the usage of language models and tools in tasks."""
2
2
 
3
3
  from asyncio import gather
4
- from typing import Callable, Dict, Iterable, List, Optional, Self, Set, Union, Unpack, overload
4
+ from typing import Callable, Dict, Iterable, List, Optional, Self, Set, Type, Union, Unpack, overload
5
5
 
6
6
  import asyncstdlib
7
7
  import litellm
@@ -9,11 +9,11 @@ import orjson
9
9
  from fabricatio._rust_instances import template_manager
10
10
  from fabricatio.config import configs
11
11
  from fabricatio.journal import logger
12
- from fabricatio.models.generic import Base, WithBriefing
12
+ from fabricatio.models.generic import ScopedConfig, WithBriefing
13
13
  from fabricatio.models.kwargs_types import ChooseKwargs, EmbeddingKwargs, GenerateKwargs, LLMKwargs
14
14
  from fabricatio.models.task import Task
15
15
  from fabricatio.models.tool import Tool, ToolBox
16
- from fabricatio.models.utils import Messages, MilvusData
16
+ from fabricatio.models.utils import Messages
17
17
  from fabricatio.parser import JsonCapture
18
18
  from litellm import stream_chunk_builder
19
19
  from litellm.types.utils import (
@@ -23,135 +23,15 @@ from litellm.types.utils import (
23
23
  StreamingChoices,
24
24
  )
25
25
  from litellm.utils import CustomStreamWrapper
26
- from pydantic import Field, HttpUrl, NonNegativeFloat, NonNegativeInt, PositiveInt, SecretStr
26
+ from pydantic import Field, NonNegativeInt, PositiveInt
27
27
 
28
28
 
29
- class LLMUsage(Base):
29
+ class LLMUsage(ScopedConfig):
30
30
  """Class that manages LLM (Large Language Model) usage parameters and methods."""
31
31
 
32
- llm_api_endpoint: Optional[HttpUrl] = None
33
- """The OpenAI API endpoint."""
34
-
35
- llm_api_key: Optional[SecretStr] = None
36
- """The OpenAI API key."""
37
-
38
- llm_timeout: Optional[PositiveInt] = None
39
- """The timeout of the LLM model."""
40
-
41
- llm_max_retries: Optional[PositiveInt] = None
42
- """The maximum number of retries."""
43
-
44
- llm_model: Optional[str] = None
45
- """The LLM model name."""
46
-
47
- llm_temperature: Optional[NonNegativeFloat] = None
48
- """The temperature of the LLM model."""
49
-
50
- llm_stop_sign: Optional[str | List[str]] = None
51
- """The stop sign of the LLM model."""
52
-
53
- llm_top_p: Optional[NonNegativeFloat] = None
54
- """The top p of the LLM model."""
55
-
56
- llm_generation_count: Optional[PositiveInt] = None
57
- """The number of generations to generate."""
58
-
59
- llm_stream: Optional[bool] = None
60
- """Whether to stream the LLM model's response."""
61
-
62
- llm_max_tokens: Optional[PositiveInt] = None
63
- """The maximum number of tokens to generate."""
64
-
65
- async def aembedding(
66
- self,
67
- input_text: List[str],
68
- model: Optional[str] = None,
69
- dimensions: Optional[int] = None,
70
- timeout: Optional[PositiveInt] = None,
71
- caching: Optional[bool] = False,
72
- ) -> EmbeddingResponse:
73
- """Asynchronously generates embeddings for the given input text.
74
-
75
- Args:
76
- input_text (List[str]): A list of strings to generate embeddings for.
77
- model (Optional[str]): The model to use for embedding. Defaults to the instance's `llm_model` or the global configuration.
78
- dimensions (Optional[int]): The dimensions of the embedding. Defaults to None.
79
- timeout (Optional[PositiveInt]): The timeout for the embedding request. Defaults to the instance's `llm_timeout` or the global configuration.
80
- caching (Optional[bool]): Whether to cache the embedding result. Defaults to False.
81
-
82
-
83
- Returns:
84
- EmbeddingResponse: The response containing the embeddings.
85
- """
86
- return await litellm.aembedding(
87
- input=input_text,
88
- caching=caching,
89
- dimensions=dimensions,
90
- model=model or self.llm_model or configs.llm.model,
91
- timeout=timeout or self.llm_timeout or configs.llm.timeout,
92
- api_key=self.llm_api_key.get_secret_value() if self.llm_api_key else configs.llm.api_key.get_secret_value(),
93
- api_base=self.llm_api_endpoint.unicode_string().rstrip(
94
- "/"
95
- ) # seems embedding function takes no base_url end with a slash
96
- if self.llm_api_endpoint
97
- else configs.llm.api_endpoint.unicode_string().rstrip("/"),
98
- )
99
-
100
- @overload
101
- async def vectorize(self, input_text: List[str], **kwargs: Unpack[EmbeddingKwargs]) -> List[List[float]]: ...
102
- @overload
103
- async def vectorize(self, input_text: str, **kwargs: Unpack[EmbeddingKwargs]) -> List[float]: ...
104
-
105
- async def vectorize(
106
- self, input_text: List[str] | str, **kwargs: Unpack[EmbeddingKwargs]
107
- ) -> List[List[float]] | List[float]:
108
- """Asynchronously generates vector embeddings for the given input text.
109
-
110
- Args:
111
- input_text (List[str] | str): A string or list of strings to generate embeddings for.
112
- **kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
113
-
114
- Returns:
115
- List[List[float]] | List[float]: The generated embeddings.
116
- """
117
- if isinstance(input_text, str):
118
- return (await self.aembedding([input_text], **kwargs)).data[0].get("embedding")
119
-
120
- return [o.get("embedding") for o in (await self.aembedding(input_text, **kwargs)).data]
121
-
122
- @overload
123
- async def pack(
124
- self, input_text: List[str], subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
125
- ) -> List[MilvusData]: ...
126
- @overload
127
- async def pack(
128
- self, input_text: str, subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
129
- ) -> MilvusData: ...
130
-
131
- async def pack(
132
- self, input_text: List[str] | str, subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
133
- ) -> List[MilvusData] | MilvusData:
134
- """Asynchronously generates MilvusData objects for the given input text.
135
-
136
- Args:
137
- input_text (List[str] | str): A string or list of strings to generate embeddings for.
138
- subject (Optional[str]): The subject of the input text. Defaults to None.
139
- **kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
140
-
141
- Returns:
142
- List[MilvusData] | MilvusData: The generated MilvusData objects.
143
- """
144
- if isinstance(input_text, str):
145
- return MilvusData(vector=await self.vectorize(input_text, **kwargs), text=input_text, subject=subject)
146
- vecs = await self.vectorize(input_text, **kwargs)
147
- return [
148
- MilvusData(
149
- vector=vec,
150
- text=text,
151
- subject=subject,
152
- )
153
- for text, vec in zip(input_text, vecs, strict=True)
154
- ]
32
+ @classmethod
33
+ def _scoped_model(cls) -> Type["LLMUsage"]:
34
+ return LLMUsage
155
35
 
156
36
  async def aquery(
157
37
  self,
@@ -181,10 +61,8 @@ class LLMUsage(Base):
181
61
  stream=kwargs.get("stream") or self.llm_stream or configs.llm.stream,
182
62
  timeout=kwargs.get("timeout") or self.llm_timeout or configs.llm.timeout,
183
63
  max_retries=kwargs.get("max_retries") or self.llm_max_retries or configs.llm.max_retries,
184
- api_key=self.llm_api_key.get_secret_value() if self.llm_api_key else configs.llm.api_key.get_secret_value(),
185
- base_url=self.llm_api_endpoint.unicode_string()
186
- if self.llm_api_endpoint
187
- else configs.llm.api_endpoint.unicode_string(),
64
+ api_key=(self.llm_api_key or configs.llm.api_key).get_secret_value(),
65
+ base_url=(self.llm_api_endpoint or configs.llm.api_endpoint).unicode_string(),
188
66
  )
189
67
 
190
68
  async def ainvoke(
@@ -213,13 +91,13 @@ class LLMUsage(Base):
213
91
  if isinstance(resp, ModelResponse):
214
92
  return resp.choices
215
93
  if isinstance(resp, CustomStreamWrapper):
216
- if configs.debug.streaming_visible:
217
- chunks = []
218
- async for chunk in resp:
219
- chunks.append(chunk)
220
- print(chunk.choices[0].delta.content or "", end="") # noqa: T201
221
- return stream_chunk_builder(chunks).choices
222
- return stream_chunk_builder(await asyncstdlib.list()).choices
94
+ if not configs.debug.streaming_visible:
95
+ return stream_chunk_builder(await asyncstdlib.list()).choices
96
+ chunks = []
97
+ async for chunk in resp:
98
+ chunks.append(chunk)
99
+ print(chunk.choices[0].delta.content or "", end="") # noqa: T201
100
+ return stream_chunk_builder(chunks).choices
223
101
  logger.critical(err := f"Unexpected response type: {type(resp)}")
224
102
  raise ValueError(err)
225
103
 
@@ -361,6 +239,26 @@ class LLMUsage(Base):
361
239
  """
362
240
  return await gather(*[self.aask_validate(question, validator, **kwargs) for question in questions])
363
241
 
242
+ async def aliststr(self, requirement: str, k: NonNegativeInt = 0, **kwargs: Unpack[GenerateKwargs]) -> List[str]:
243
+ """Asynchronously generates a list of strings based on a given requirement.
244
+
245
+ Args:
246
+ requirement (str): The requirement for the list of strings.
247
+ k (NonNegativeInt): The number of choices to select, 0 means infinite. Defaults to 0.
248
+ **kwargs (Unpack[GenerateKwargs]): Additional keyword arguments for the LLM usage.
249
+
250
+ Returns:
251
+ List[str]: The validated response as a list of strings.
252
+ """
253
+ return await self.aask_validate(
254
+ template_manager.render_template(
255
+ configs.templates.liststr_template,
256
+ {"requirement": requirement, "k": k},
257
+ ),
258
+ lambda resp: JsonCapture.validate_with(resp, orjson.loads, list, str, k),
259
+ **kwargs,
260
+ )
261
+
364
262
  async def achoose[T: WithBriefing](
365
263
  self,
366
264
  instruction: str,
@@ -388,7 +286,7 @@ class LLMUsage(Base):
388
286
  configs.templates.make_choice_template,
389
287
  {
390
288
  "instruction": instruction,
391
- "options": [{"name": m.name, "briefing": m.briefing} for m in choices],
289
+ "options": [m.model_dump(include={"name", "briefing"}) for m in choices],
392
290
  "k": k,
393
291
  },
394
292
  )
@@ -475,39 +373,82 @@ class LLMUsage(Base):
475
373
  **kwargs,
476
374
  )
477
375
 
478
- def fallback_to(self, other: "LLMUsage") -> Self:
479
- """Fallback to another instance's attribute values if the current instance's attributes are None.
376
+
377
+ class EmbeddingUsage(LLMUsage):
378
+ """A class representing the embedding model."""
379
+
380
+ async def aembedding(
381
+ self,
382
+ input_text: List[str],
383
+ model: Optional[str] = None,
384
+ dimensions: Optional[int] = None,
385
+ timeout: Optional[PositiveInt] = None,
386
+ caching: Optional[bool] = False,
387
+ ) -> EmbeddingResponse:
388
+ """Asynchronously generates embeddings for the given input text.
480
389
 
481
390
  Args:
482
- other (LLMUsage): Another instance from which to copy attribute values.
391
+ input_text (List[str]): A list of strings to generate embeddings for.
392
+ model (Optional[str]): The model to use for embedding. Defaults to the instance's `llm_model` or the global configuration.
393
+ dimensions (Optional[int]): The dimensions of the embedding output should have, which is used to validate the result. Defaults to None.
394
+ timeout (Optional[PositiveInt]): The timeout for the embedding request. Defaults to the instance's `llm_timeout` or the global configuration.
395
+ caching (Optional[bool]): Whether to cache the embedding result. Defaults to False.
396
+
483
397
 
484
398
  Returns:
485
- Self: The current instance, allowing for method chaining.
399
+ EmbeddingResponse: The response containing the embeddings.
486
400
  """
487
- # Iterate over the attribute names and copy values from 'other' to 'self' where applicable
488
- # noinspection PydanticTypeChecker,PyTypeChecker
489
- for attr_name in LLMUsage.model_fields:
490
- # Copy the attribute value from 'other' to 'self' only if 'self' has None and 'other' has a non-None value
491
- if getattr(self, attr_name) is None and (attr := getattr(other, attr_name)) is not None:
492
- setattr(self, attr_name, attr)
493
-
494
- # Return the current instance to allow for method chaining
495
- return self
401
+ # check seq length
402
+ max_len = self.embedding_max_sequence_length or configs.embedding.max_sequence_length
403
+ if any(len(t) > max_len for t in input_text):
404
+ logger.error(err := f"Input text exceeds maximum sequence length {max_len}.")
405
+ raise ValueError(err)
406
+
407
+ return await litellm.aembedding(
408
+ input=input_text,
409
+ caching=caching or self.embedding_caching or configs.embedding.caching,
410
+ dimensions=dimensions or self.embedding_dimensions or configs.embedding.dimensions,
411
+ model=model or self.embedding_model or configs.embedding.model or self.llm_model or configs.llm.model,
412
+ timeout=timeout
413
+ or self.embedding_timeout
414
+ or configs.embedding.timeout
415
+ or self.llm_timeout
416
+ or configs.llm.timeout,
417
+ api_key=(
418
+ self.embedding_api_key or configs.embedding.api_key or self.llm_api_key or configs.llm.api_key
419
+ ).get_secret_value(),
420
+ api_base=(
421
+ self.embedding_api_endpoint
422
+ or configs.embedding.api_endpoint
423
+ or self.llm_api_endpoint
424
+ or configs.llm.api_endpoint
425
+ )
426
+ .unicode_string()
427
+ .rstrip("/"),
428
+ # seems embedding function takes no base_url end with a slash
429
+ )
430
+
431
+ @overload
432
+ async def vectorize(self, input_text: List[str], **kwargs: Unpack[EmbeddingKwargs]) -> List[List[float]]: ...
433
+ @overload
434
+ async def vectorize(self, input_text: str, **kwargs: Unpack[EmbeddingKwargs]) -> List[float]: ...
496
435
 
497
- def hold_to(self, others: Union["LLMUsage", Iterable["LLMUsage"]]) -> Self:
498
- """Hold to another instance's attribute values if the current instance's attributes are None.
436
+ async def vectorize(
437
+ self, input_text: List[str] | str, **kwargs: Unpack[EmbeddingKwargs]
438
+ ) -> List[List[float]] | List[float]:
439
+ """Asynchronously generates vector embeddings for the given input text.
499
440
 
500
441
  Args:
501
- others (LLMUsage | Iterable[LLMUsage]): Another instance or iterable of instances from which to copy attribute values.
442
+ input_text (List[str] | str): A string or list of strings to generate embeddings for.
443
+ **kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
502
444
 
503
445
  Returns:
504
- Self: The current instance, allowing for method chaining.
446
+ List[List[float]] | List[float]: The generated embeddings.
505
447
  """
506
- for other in others:
507
- # noinspection PyTypeChecker,PydanticTypeChecker
508
- for attr_name in LLMUsage.model_fields:
509
- if (attr := getattr(self, attr_name)) is not None and getattr(other, attr_name) is None:
510
- setattr(other, attr_name, attr)
448
+ if isinstance(input_text, str):
449
+ return (await self.aembedding([input_text], **kwargs)).data[0].get("embedding")
450
+
451
+ return [o.get("embedding") for o in (await self.aembedding(input_text, **kwargs)).data]
511
452
 
512
453
 
513
454
  class ToolBoxUsage(LLMUsage):
@@ -1,5 +1,6 @@
1
1
  """A module containing utility classes for the models."""
2
2
 
3
+ from enum import Enum
3
4
  from typing import Any, Dict, List, Literal, Optional, Self
4
5
 
5
6
  from pydantic import BaseModel, ConfigDict, Field
@@ -125,3 +126,21 @@ class MilvusData(BaseModel):
125
126
  """
126
127
  self.id = new_id
127
128
  return self
129
+
130
+
131
+ class TaskStatus(Enum):
132
+ """An enumeration representing the status of a task.
133
+
134
+ Attributes:
135
+ Pending: The task is pending.
136
+ Running: The task is currently running.
137
+ Finished: The task has been successfully completed.
138
+ Failed: The task has failed.
139
+ Cancelled: The task has been cancelled.
140
+ """
141
+
142
+ Pending = "pending"
143
+ Running = "running"
144
+ Finished = "finished"
145
+ Failed = "failed"
146
+ Cancelled = "cancelled"
fabricatio/parser.py CHANGED
@@ -1,9 +1,9 @@
1
1
  """A module to parse text using regular expressions."""
2
2
 
3
- from typing import Any, Callable, Self, Tuple
3
+ from typing import Any, Callable, Optional, Self, Tuple, Type
4
4
 
5
5
  import regex
6
- from pydantic import BaseModel, ConfigDict, Field, PositiveInt, PrivateAttr
6
+ from pydantic import BaseModel, ConfigDict, Field, PositiveInt, PrivateAttr, ValidationError
7
7
  from regex import Pattern, compile
8
8
 
9
9
  from fabricatio.journal import logger
@@ -69,11 +69,42 @@ class Capture(BaseModel):
69
69
  if (cap := self.capture(text)) is None:
70
70
  return None
71
71
  try:
72
+ logger.debug(f"Trying to convert: \n{cap}")
72
73
  return convertor(cap)
73
- except (ValueError, SyntaxError) as e:
74
+ except (ValueError, SyntaxError, ValidationError) as e:
74
75
  logger.error(f"Failed to convert text using {convertor.__name__} to convert.\nerror: {e}\n {cap}")
75
76
  return None
76
77
 
78
+ def validate_with[K, T, E](
79
+ self,
80
+ text: str,
81
+ deserializer: Callable[[Tuple[str, ...]], K] | Callable[[str], K],
82
+ target_type: Type[T],
83
+ elements_type: Optional[Type[E]] = None,
84
+ length: Optional[int] = None,
85
+ ) -> T | None:
86
+ """Validate the given text using the pattern.
87
+
88
+ Args:
89
+ text (str): The text to search the pattern in.
90
+ deserializer (Callable[[Tuple[str, ...]], K] | Callable[[str], K]): The function to deserialize the captured text.
91
+ target_type (Type[T]): The expected type of the output.
92
+ elements_type (Optional[Type[E]]): The expected type of the elements in the output.
93
+ length (Optional[int]): The expected length of the output, bool(length)==False means no length validation.
94
+
95
+ Returns:
96
+ T | None: The validated text if the pattern is found and the output is of the expected type, otherwise None.
97
+ """
98
+ judges = [lambda output_obj: isinstance(output_obj, target_type)]
99
+ if elements_type:
100
+ judges.append(lambda output_obj: all(isinstance(e, elements_type) for e in output_obj))
101
+ if length:
102
+ judges.append(lambda output_obj: len(output_obj) == length)
103
+
104
+ if (out := self.convert_with(text, deserializer)) and all(j(out) for j in judges):
105
+ return out
106
+ return None
107
+
77
108
  @classmethod
78
109
  def capture_code_block(cls, language: str) -> Self:
79
110
  """Capture the first occurrence of a code block in the given text.