fabricatio 0.2.3.dev2__cp312-cp312-win_amd64.whl → 0.2.4.dev0__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fabricatio/__init__.py +10 -0
- fabricatio/_rust.cp312-win_amd64.pyd +0 -0
- fabricatio/actions/__init__.py +2 -2
- fabricatio/actions/article.py +127 -0
- fabricatio/capabilities/propose.py +55 -0
- fabricatio/capabilities/rag.py +181 -50
- fabricatio/capabilities/task.py +6 -23
- fabricatio/config.py +40 -2
- fabricatio/models/action.py +1 -0
- fabricatio/models/events.py +36 -0
- fabricatio/models/generic.py +158 -7
- fabricatio/models/kwargs_types.py +14 -0
- fabricatio/models/task.py +12 -30
- fabricatio/models/usages.py +103 -162
- fabricatio/models/utils.py +19 -0
- fabricatio/parser.py +34 -3
- fabricatio-0.2.4.dev0.data/scripts/tdown.exe +0 -0
- {fabricatio-0.2.3.dev2.dist-info → fabricatio-0.2.4.dev0.dist-info}/METADATA +40 -148
- fabricatio-0.2.4.dev0.dist-info/RECORD +37 -0
- fabricatio/actions/communication.py +0 -15
- fabricatio/actions/transmission.py +0 -23
- fabricatio-0.2.3.dev2.data/scripts/tdown.exe +0 -0
- fabricatio-0.2.3.dev2.dist-info/RECORD +0 -37
- {fabricatio-0.2.3.dev2.dist-info → fabricatio-0.2.4.dev0.dist-info}/WHEEL +0 -0
- {fabricatio-0.2.3.dev2.dist-info → fabricatio-0.2.4.dev0.dist-info}/licenses/LICENSE +0 -0
fabricatio/models/usages.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
"""This module contains classes that manage the usage of language models and tools in tasks."""
|
2
2
|
|
3
3
|
from asyncio import gather
|
4
|
-
from typing import Callable, Dict, Iterable, List, Optional, Self, Set, Union, Unpack, overload
|
4
|
+
from typing import Callable, Dict, Iterable, List, Optional, Self, Set, Type, Union, Unpack, overload
|
5
5
|
|
6
6
|
import asyncstdlib
|
7
7
|
import litellm
|
@@ -9,11 +9,11 @@ import orjson
|
|
9
9
|
from fabricatio._rust_instances import template_manager
|
10
10
|
from fabricatio.config import configs
|
11
11
|
from fabricatio.journal import logger
|
12
|
-
from fabricatio.models.generic import
|
12
|
+
from fabricatio.models.generic import ScopedConfig, WithBriefing
|
13
13
|
from fabricatio.models.kwargs_types import ChooseKwargs, EmbeddingKwargs, GenerateKwargs, LLMKwargs
|
14
14
|
from fabricatio.models.task import Task
|
15
15
|
from fabricatio.models.tool import Tool, ToolBox
|
16
|
-
from fabricatio.models.utils import Messages
|
16
|
+
from fabricatio.models.utils import Messages
|
17
17
|
from fabricatio.parser import JsonCapture
|
18
18
|
from litellm import stream_chunk_builder
|
19
19
|
from litellm.types.utils import (
|
@@ -23,135 +23,15 @@ from litellm.types.utils import (
|
|
23
23
|
StreamingChoices,
|
24
24
|
)
|
25
25
|
from litellm.utils import CustomStreamWrapper
|
26
|
-
from pydantic import Field,
|
26
|
+
from pydantic import Field, NonNegativeInt, PositiveInt
|
27
27
|
|
28
28
|
|
29
|
-
class LLMUsage(
|
29
|
+
class LLMUsage(ScopedConfig):
|
30
30
|
"""Class that manages LLM (Large Language Model) usage parameters and methods."""
|
31
31
|
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
llm_api_key: Optional[SecretStr] = None
|
36
|
-
"""The OpenAI API key."""
|
37
|
-
|
38
|
-
llm_timeout: Optional[PositiveInt] = None
|
39
|
-
"""The timeout of the LLM model."""
|
40
|
-
|
41
|
-
llm_max_retries: Optional[PositiveInt] = None
|
42
|
-
"""The maximum number of retries."""
|
43
|
-
|
44
|
-
llm_model: Optional[str] = None
|
45
|
-
"""The LLM model name."""
|
46
|
-
|
47
|
-
llm_temperature: Optional[NonNegativeFloat] = None
|
48
|
-
"""The temperature of the LLM model."""
|
49
|
-
|
50
|
-
llm_stop_sign: Optional[str | List[str]] = None
|
51
|
-
"""The stop sign of the LLM model."""
|
52
|
-
|
53
|
-
llm_top_p: Optional[NonNegativeFloat] = None
|
54
|
-
"""The top p of the LLM model."""
|
55
|
-
|
56
|
-
llm_generation_count: Optional[PositiveInt] = None
|
57
|
-
"""The number of generations to generate."""
|
58
|
-
|
59
|
-
llm_stream: Optional[bool] = None
|
60
|
-
"""Whether to stream the LLM model's response."""
|
61
|
-
|
62
|
-
llm_max_tokens: Optional[PositiveInt] = None
|
63
|
-
"""The maximum number of tokens to generate."""
|
64
|
-
|
65
|
-
async def aembedding(
|
66
|
-
self,
|
67
|
-
input_text: List[str],
|
68
|
-
model: Optional[str] = None,
|
69
|
-
dimensions: Optional[int] = None,
|
70
|
-
timeout: Optional[PositiveInt] = None,
|
71
|
-
caching: Optional[bool] = False,
|
72
|
-
) -> EmbeddingResponse:
|
73
|
-
"""Asynchronously generates embeddings for the given input text.
|
74
|
-
|
75
|
-
Args:
|
76
|
-
input_text (List[str]): A list of strings to generate embeddings for.
|
77
|
-
model (Optional[str]): The model to use for embedding. Defaults to the instance's `llm_model` or the global configuration.
|
78
|
-
dimensions (Optional[int]): The dimensions of the embedding. Defaults to None.
|
79
|
-
timeout (Optional[PositiveInt]): The timeout for the embedding request. Defaults to the instance's `llm_timeout` or the global configuration.
|
80
|
-
caching (Optional[bool]): Whether to cache the embedding result. Defaults to False.
|
81
|
-
|
82
|
-
|
83
|
-
Returns:
|
84
|
-
EmbeddingResponse: The response containing the embeddings.
|
85
|
-
"""
|
86
|
-
return await litellm.aembedding(
|
87
|
-
input=input_text,
|
88
|
-
caching=caching,
|
89
|
-
dimensions=dimensions,
|
90
|
-
model=model or self.llm_model or configs.llm.model,
|
91
|
-
timeout=timeout or self.llm_timeout or configs.llm.timeout,
|
92
|
-
api_key=self.llm_api_key.get_secret_value() if self.llm_api_key else configs.llm.api_key.get_secret_value(),
|
93
|
-
api_base=self.llm_api_endpoint.unicode_string().rstrip(
|
94
|
-
"/"
|
95
|
-
) # seems embedding function takes no base_url end with a slash
|
96
|
-
if self.llm_api_endpoint
|
97
|
-
else configs.llm.api_endpoint.unicode_string().rstrip("/"),
|
98
|
-
)
|
99
|
-
|
100
|
-
@overload
|
101
|
-
async def vectorize(self, input_text: List[str], **kwargs: Unpack[EmbeddingKwargs]) -> List[List[float]]: ...
|
102
|
-
@overload
|
103
|
-
async def vectorize(self, input_text: str, **kwargs: Unpack[EmbeddingKwargs]) -> List[float]: ...
|
104
|
-
|
105
|
-
async def vectorize(
|
106
|
-
self, input_text: List[str] | str, **kwargs: Unpack[EmbeddingKwargs]
|
107
|
-
) -> List[List[float]] | List[float]:
|
108
|
-
"""Asynchronously generates vector embeddings for the given input text.
|
109
|
-
|
110
|
-
Args:
|
111
|
-
input_text (List[str] | str): A string or list of strings to generate embeddings for.
|
112
|
-
**kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
|
113
|
-
|
114
|
-
Returns:
|
115
|
-
List[List[float]] | List[float]: The generated embeddings.
|
116
|
-
"""
|
117
|
-
if isinstance(input_text, str):
|
118
|
-
return (await self.aembedding([input_text], **kwargs)).data[0].get("embedding")
|
119
|
-
|
120
|
-
return [o.get("embedding") for o in (await self.aembedding(input_text, **kwargs)).data]
|
121
|
-
|
122
|
-
@overload
|
123
|
-
async def pack(
|
124
|
-
self, input_text: List[str], subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
|
125
|
-
) -> List[MilvusData]: ...
|
126
|
-
@overload
|
127
|
-
async def pack(
|
128
|
-
self, input_text: str, subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
|
129
|
-
) -> MilvusData: ...
|
130
|
-
|
131
|
-
async def pack(
|
132
|
-
self, input_text: List[str] | str, subject: Optional[str] = None, **kwargs: Unpack[EmbeddingKwargs]
|
133
|
-
) -> List[MilvusData] | MilvusData:
|
134
|
-
"""Asynchronously generates MilvusData objects for the given input text.
|
135
|
-
|
136
|
-
Args:
|
137
|
-
input_text (List[str] | str): A string or list of strings to generate embeddings for.
|
138
|
-
subject (Optional[str]): The subject of the input text. Defaults to None.
|
139
|
-
**kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
|
140
|
-
|
141
|
-
Returns:
|
142
|
-
List[MilvusData] | MilvusData: The generated MilvusData objects.
|
143
|
-
"""
|
144
|
-
if isinstance(input_text, str):
|
145
|
-
return MilvusData(vector=await self.vectorize(input_text, **kwargs), text=input_text, subject=subject)
|
146
|
-
vecs = await self.vectorize(input_text, **kwargs)
|
147
|
-
return [
|
148
|
-
MilvusData(
|
149
|
-
vector=vec,
|
150
|
-
text=text,
|
151
|
-
subject=subject,
|
152
|
-
)
|
153
|
-
for text, vec in zip(input_text, vecs, strict=True)
|
154
|
-
]
|
32
|
+
@classmethod
|
33
|
+
def _scoped_model(cls) -> Type["LLMUsage"]:
|
34
|
+
return LLMUsage
|
155
35
|
|
156
36
|
async def aquery(
|
157
37
|
self,
|
@@ -181,10 +61,8 @@ class LLMUsage(Base):
|
|
181
61
|
stream=kwargs.get("stream") or self.llm_stream or configs.llm.stream,
|
182
62
|
timeout=kwargs.get("timeout") or self.llm_timeout or configs.llm.timeout,
|
183
63
|
max_retries=kwargs.get("max_retries") or self.llm_max_retries or configs.llm.max_retries,
|
184
|
-
api_key=
|
185
|
-
base_url=self.llm_api_endpoint.unicode_string()
|
186
|
-
if self.llm_api_endpoint
|
187
|
-
else configs.llm.api_endpoint.unicode_string(),
|
64
|
+
api_key=(self.llm_api_key or configs.llm.api_key).get_secret_value(),
|
65
|
+
base_url=(self.llm_api_endpoint or configs.llm.api_endpoint).unicode_string(),
|
188
66
|
)
|
189
67
|
|
190
68
|
async def ainvoke(
|
@@ -213,13 +91,13 @@ class LLMUsage(Base):
|
|
213
91
|
if isinstance(resp, ModelResponse):
|
214
92
|
return resp.choices
|
215
93
|
if isinstance(resp, CustomStreamWrapper):
|
216
|
-
if configs.debug.streaming_visible:
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
return stream_chunk_builder(
|
94
|
+
if not configs.debug.streaming_visible:
|
95
|
+
return stream_chunk_builder(await asyncstdlib.list()).choices
|
96
|
+
chunks = []
|
97
|
+
async for chunk in resp:
|
98
|
+
chunks.append(chunk)
|
99
|
+
print(chunk.choices[0].delta.content or "", end="") # noqa: T201
|
100
|
+
return stream_chunk_builder(chunks).choices
|
223
101
|
logger.critical(err := f"Unexpected response type: {type(resp)}")
|
224
102
|
raise ValueError(err)
|
225
103
|
|
@@ -361,6 +239,26 @@ class LLMUsage(Base):
|
|
361
239
|
"""
|
362
240
|
return await gather(*[self.aask_validate(question, validator, **kwargs) for question in questions])
|
363
241
|
|
242
|
+
async def aliststr(self, requirement: str, k: NonNegativeInt = 0, **kwargs: Unpack[GenerateKwargs]) -> List[str]:
|
243
|
+
"""Asynchronously generates a list of strings based on a given requirement.
|
244
|
+
|
245
|
+
Args:
|
246
|
+
requirement (str): The requirement for the list of strings.
|
247
|
+
k (NonNegativeInt): The number of choices to select, 0 means infinite. Defaults to 0.
|
248
|
+
**kwargs (Unpack[GenerateKwargs]): Additional keyword arguments for the LLM usage.
|
249
|
+
|
250
|
+
Returns:
|
251
|
+
List[str]: The validated response as a list of strings.
|
252
|
+
"""
|
253
|
+
return await self.aask_validate(
|
254
|
+
template_manager.render_template(
|
255
|
+
configs.templates.liststr_template,
|
256
|
+
{"requirement": requirement, "k": k},
|
257
|
+
),
|
258
|
+
lambda resp: JsonCapture.validate_with(resp, orjson.loads, list, str, k),
|
259
|
+
**kwargs,
|
260
|
+
)
|
261
|
+
|
364
262
|
async def achoose[T: WithBriefing](
|
365
263
|
self,
|
366
264
|
instruction: str,
|
@@ -388,7 +286,7 @@ class LLMUsage(Base):
|
|
388
286
|
configs.templates.make_choice_template,
|
389
287
|
{
|
390
288
|
"instruction": instruction,
|
391
|
-
"options": [{"name"
|
289
|
+
"options": [m.model_dump(include={"name", "briefing"}) for m in choices],
|
392
290
|
"k": k,
|
393
291
|
},
|
394
292
|
)
|
@@ -475,39 +373,82 @@ class LLMUsage(Base):
|
|
475
373
|
**kwargs,
|
476
374
|
)
|
477
375
|
|
478
|
-
|
479
|
-
|
376
|
+
|
377
|
+
class EmbeddingUsage(LLMUsage):
|
378
|
+
"""A class representing the embedding model."""
|
379
|
+
|
380
|
+
async def aembedding(
|
381
|
+
self,
|
382
|
+
input_text: List[str],
|
383
|
+
model: Optional[str] = None,
|
384
|
+
dimensions: Optional[int] = None,
|
385
|
+
timeout: Optional[PositiveInt] = None,
|
386
|
+
caching: Optional[bool] = False,
|
387
|
+
) -> EmbeddingResponse:
|
388
|
+
"""Asynchronously generates embeddings for the given input text.
|
480
389
|
|
481
390
|
Args:
|
482
|
-
|
391
|
+
input_text (List[str]): A list of strings to generate embeddings for.
|
392
|
+
model (Optional[str]): The model to use for embedding. Defaults to the instance's `llm_model` or the global configuration.
|
393
|
+
dimensions (Optional[int]): The dimensions of the embedding output should have, which is used to validate the result. Defaults to None.
|
394
|
+
timeout (Optional[PositiveInt]): The timeout for the embedding request. Defaults to the instance's `llm_timeout` or the global configuration.
|
395
|
+
caching (Optional[bool]): Whether to cache the embedding result. Defaults to False.
|
396
|
+
|
483
397
|
|
484
398
|
Returns:
|
485
|
-
|
399
|
+
EmbeddingResponse: The response containing the embeddings.
|
486
400
|
"""
|
487
|
-
#
|
488
|
-
|
489
|
-
for
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
401
|
+
# check seq length
|
402
|
+
max_len = self.embedding_max_sequence_length or configs.embedding.max_sequence_length
|
403
|
+
if any(len(t) > max_len for t in input_text):
|
404
|
+
logger.error(err := f"Input text exceeds maximum sequence length {max_len}.")
|
405
|
+
raise ValueError(err)
|
406
|
+
|
407
|
+
return await litellm.aembedding(
|
408
|
+
input=input_text,
|
409
|
+
caching=caching or self.embedding_caching or configs.embedding.caching,
|
410
|
+
dimensions=dimensions or self.embedding_dimensions or configs.embedding.dimensions,
|
411
|
+
model=model or self.embedding_model or configs.embedding.model or self.llm_model or configs.llm.model,
|
412
|
+
timeout=timeout
|
413
|
+
or self.embedding_timeout
|
414
|
+
or configs.embedding.timeout
|
415
|
+
or self.llm_timeout
|
416
|
+
or configs.llm.timeout,
|
417
|
+
api_key=(
|
418
|
+
self.embedding_api_key or configs.embedding.api_key or self.llm_api_key or configs.llm.api_key
|
419
|
+
).get_secret_value(),
|
420
|
+
api_base=(
|
421
|
+
self.embedding_api_endpoint
|
422
|
+
or configs.embedding.api_endpoint
|
423
|
+
or self.llm_api_endpoint
|
424
|
+
or configs.llm.api_endpoint
|
425
|
+
)
|
426
|
+
.unicode_string()
|
427
|
+
.rstrip("/"),
|
428
|
+
# seems embedding function takes no base_url end with a slash
|
429
|
+
)
|
430
|
+
|
431
|
+
@overload
|
432
|
+
async def vectorize(self, input_text: List[str], **kwargs: Unpack[EmbeddingKwargs]) -> List[List[float]]: ...
|
433
|
+
@overload
|
434
|
+
async def vectorize(self, input_text: str, **kwargs: Unpack[EmbeddingKwargs]) -> List[float]: ...
|
496
435
|
|
497
|
-
def
|
498
|
-
|
436
|
+
async def vectorize(
|
437
|
+
self, input_text: List[str] | str, **kwargs: Unpack[EmbeddingKwargs]
|
438
|
+
) -> List[List[float]] | List[float]:
|
439
|
+
"""Asynchronously generates vector embeddings for the given input text.
|
499
440
|
|
500
441
|
Args:
|
501
|
-
|
442
|
+
input_text (List[str] | str): A string or list of strings to generate embeddings for.
|
443
|
+
**kwargs (Unpack[EmbeddingKwargs]): Additional keyword arguments for embedding.
|
502
444
|
|
503
445
|
Returns:
|
504
|
-
|
446
|
+
List[List[float]] | List[float]: The generated embeddings.
|
505
447
|
"""
|
506
|
-
|
507
|
-
|
508
|
-
|
509
|
-
|
510
|
-
setattr(other, attr_name, attr)
|
448
|
+
if isinstance(input_text, str):
|
449
|
+
return (await self.aembedding([input_text], **kwargs)).data[0].get("embedding")
|
450
|
+
|
451
|
+
return [o.get("embedding") for o in (await self.aembedding(input_text, **kwargs)).data]
|
511
452
|
|
512
453
|
|
513
454
|
class ToolBoxUsage(LLMUsage):
|
fabricatio/models/utils.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1
1
|
"""A module containing utility classes for the models."""
|
2
2
|
|
3
|
+
from enum import Enum
|
3
4
|
from typing import Any, Dict, List, Literal, Optional, Self
|
4
5
|
|
5
6
|
from pydantic import BaseModel, ConfigDict, Field
|
@@ -125,3 +126,21 @@ class MilvusData(BaseModel):
|
|
125
126
|
"""
|
126
127
|
self.id = new_id
|
127
128
|
return self
|
129
|
+
|
130
|
+
|
131
|
+
class TaskStatus(Enum):
|
132
|
+
"""An enumeration representing the status of a task.
|
133
|
+
|
134
|
+
Attributes:
|
135
|
+
Pending: The task is pending.
|
136
|
+
Running: The task is currently running.
|
137
|
+
Finished: The task has been successfully completed.
|
138
|
+
Failed: The task has failed.
|
139
|
+
Cancelled: The task has been cancelled.
|
140
|
+
"""
|
141
|
+
|
142
|
+
Pending = "pending"
|
143
|
+
Running = "running"
|
144
|
+
Finished = "finished"
|
145
|
+
Failed = "failed"
|
146
|
+
Cancelled = "cancelled"
|
fabricatio/parser.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1
1
|
"""A module to parse text using regular expressions."""
|
2
2
|
|
3
|
-
from typing import Any, Callable, Self, Tuple
|
3
|
+
from typing import Any, Callable, Optional, Self, Tuple, Type
|
4
4
|
|
5
5
|
import regex
|
6
|
-
from pydantic import BaseModel, ConfigDict, Field, PositiveInt, PrivateAttr
|
6
|
+
from pydantic import BaseModel, ConfigDict, Field, PositiveInt, PrivateAttr, ValidationError
|
7
7
|
from regex import Pattern, compile
|
8
8
|
|
9
9
|
from fabricatio.journal import logger
|
@@ -69,11 +69,42 @@ class Capture(BaseModel):
|
|
69
69
|
if (cap := self.capture(text)) is None:
|
70
70
|
return None
|
71
71
|
try:
|
72
|
+
logger.debug(f"Trying to convert: \n{cap}")
|
72
73
|
return convertor(cap)
|
73
|
-
except (ValueError, SyntaxError) as e:
|
74
|
+
except (ValueError, SyntaxError, ValidationError) as e:
|
74
75
|
logger.error(f"Failed to convert text using {convertor.__name__} to convert.\nerror: {e}\n {cap}")
|
75
76
|
return None
|
76
77
|
|
78
|
+
def validate_with[K, T, E](
|
79
|
+
self,
|
80
|
+
text: str,
|
81
|
+
deserializer: Callable[[Tuple[str, ...]], K] | Callable[[str], K],
|
82
|
+
target_type: Type[T],
|
83
|
+
elements_type: Optional[Type[E]] = None,
|
84
|
+
length: Optional[int] = None,
|
85
|
+
) -> T | None:
|
86
|
+
"""Validate the given text using the pattern.
|
87
|
+
|
88
|
+
Args:
|
89
|
+
text (str): The text to search the pattern in.
|
90
|
+
deserializer (Callable[[Tuple[str, ...]], K] | Callable[[str], K]): The function to deserialize the captured text.
|
91
|
+
target_type (Type[T]): The expected type of the output.
|
92
|
+
elements_type (Optional[Type[E]]): The expected type of the elements in the output.
|
93
|
+
length (Optional[int]): The expected length of the output, bool(length)==False means no length validation.
|
94
|
+
|
95
|
+
Returns:
|
96
|
+
T | None: The validated text if the pattern is found and the output is of the expected type, otherwise None.
|
97
|
+
"""
|
98
|
+
judges = [lambda output_obj: isinstance(output_obj, target_type)]
|
99
|
+
if elements_type:
|
100
|
+
judges.append(lambda output_obj: all(isinstance(e, elements_type) for e in output_obj))
|
101
|
+
if length:
|
102
|
+
judges.append(lambda output_obj: len(output_obj) == length)
|
103
|
+
|
104
|
+
if (out := self.convert_with(text, deserializer)) and all(j(out) for j in judges):
|
105
|
+
return out
|
106
|
+
return None
|
107
|
+
|
77
108
|
@classmethod
|
78
109
|
def capture_code_block(cls, language: str) -> Self:
|
79
110
|
"""Capture the first occurrence of a code block in the given text.
|
Binary file
|