ezyml 0.1__py3-none-any.whl → 1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ezyml might be problematic. Click here for more details.
- ezyml-1.dist-info/METADATA +165 -0
- ezyml-1.dist-info/RECORD +6 -0
- ezyml-0.1.dist-info/METADATA +0 -290
- ezyml-0.1.dist-info/RECORD +0 -6
- {ezyml-0.1.dist-info → ezyml-1.dist-info}/WHEEL +0 -0
- {ezyml-0.1.dist-info → ezyml-1.dist-info}/entry_points.txt +0 -0
- {ezyml-0.1.dist-info → ezyml-1.dist-info}/licenses/LICENSE +0 -0
- {ezyml-0.1.dist-info → ezyml-1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,165 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: ezyml
|
|
3
|
+
Version: 1
|
|
4
|
+
Summary: A lightweight tool to train, evaluate, and export ML models in one line.
|
|
5
|
+
Home-page: https://github.com/Rktim/ezyml
|
|
6
|
+
Author: Raktim Kalita
|
|
7
|
+
Author-email: raktimkalita.ai@gmail.com
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
12
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
13
|
+
Requires-Python: >=3.7
|
|
14
|
+
Description-Content-Type: text/markdown
|
|
15
|
+
License-File: LICENSE
|
|
16
|
+
Requires-Dist: scikit-learn
|
|
17
|
+
Requires-Dist: pandas
|
|
18
|
+
Requires-Dist: numpy
|
|
19
|
+
Requires-Dist: xgboost
|
|
20
|
+
Dynamic: author
|
|
21
|
+
Dynamic: author-email
|
|
22
|
+
Dynamic: classifier
|
|
23
|
+
Dynamic: description
|
|
24
|
+
Dynamic: description-content-type
|
|
25
|
+
Dynamic: home-page
|
|
26
|
+
Dynamic: license-file
|
|
27
|
+
Dynamic: requires-dist
|
|
28
|
+
Dynamic: requires-python
|
|
29
|
+
Dynamic: summary
|
|
30
|
+
|
|
31
|
+
<div align="center">
|
|
32
|
+
|
|
33
|
+
# 📦 ezyml 🚀
|
|
34
|
+
|
|
35
|
+
From raw data to a trained model — in just one line of code.
|
|
36
|
+
|
|
37
|
+
<a href="https://pypi.org/project/ezyml/">
|
|
38
|
+
<img alt="PyPI" src="https://img.shields.io/pypi/v/ezyml?color=blue&label=PyPI&logo=pypi">
|
|
39
|
+
</a>
|
|
40
|
+
<a href="https://github.com/Rktim/ezyml/blob/main/LICENSE">
|
|
41
|
+
<img alt="License" src="https://img.shields.io/github/license/Rktim/ezyml?color=blue">
|
|
42
|
+
</a>
|
|
43
|
+
<img alt="Python Versions" src="https://img.shields.io/pypi/pyversions/ezyml?logo=python&logoColor=white">
|
|
44
|
+
|
|
45
|
+
</div>
|
|
46
|
+
|
|
47
|
+
---
|
|
48
|
+
|
|
49
|
+
## 🌟 Why ezyml?
|
|
50
|
+
|
|
51
|
+
**ezyml** is a lightweight, high-level Python library and CLI tool that automates the most tedious parts of your ML pipeline — so you can focus on what matters. Whether you're building a classifier, a regressor, or just exploring data, ezyml does the heavy lifting.
|
|
52
|
+
|
|
53
|
+
### ✅ Key Features
|
|
54
|
+
|
|
55
|
+
* 🪄 **Auto-Pilot Mode** – Detects task type (classification, regression, etc.) automatically.
|
|
56
|
+
* 🧹 **Smart Preprocessing** – Handles missing values, encodes categories, and scales features out of the box.
|
|
57
|
+
* 🧰 **20+ Models** – Pre-integrated models from `scikit-learn` and `xgboost`.
|
|
58
|
+
* 💾 **One-Line Export** – Save your model as `.pkl` and performance report as `.json`.
|
|
59
|
+
* 📉 **Dimensionality Reduction** – Easily visualize data using PCA or t-SNE.
|
|
60
|
+
* 🧪 **Dual Interface** – Use as a Python package *or* from the command line.
|
|
61
|
+
|
|
62
|
+
---
|
|
63
|
+
|
|
64
|
+
## 📦 Installation
|
|
65
|
+
|
|
66
|
+
Install via pip:
|
|
67
|
+
|
|
68
|
+
```bash
|
|
69
|
+
pip install ezyml
|
|
70
|
+
```
|
|
71
|
+
|
|
72
|
+
---
|
|
73
|
+
|
|
74
|
+
## 🚀 CLI Quickstart
|
|
75
|
+
|
|
76
|
+
### 🧠 Train a Classifier
|
|
77
|
+
|
|
78
|
+
```bash
|
|
79
|
+
ezyml train \
|
|
80
|
+
--data titanic.csv \
|
|
81
|
+
--target Survived \
|
|
82
|
+
--model extra_trees \
|
|
83
|
+
--output titanic_model.pkl
|
|
84
|
+
```
|
|
85
|
+
|
|
86
|
+
### 📈 Train a Regressor
|
|
87
|
+
|
|
88
|
+
```bash
|
|
89
|
+
ezyml train \
|
|
90
|
+
--data housing.csv \
|
|
91
|
+
--target price \
|
|
92
|
+
--model ridge \
|
|
93
|
+
--output house_price_model.pkl
|
|
94
|
+
```
|
|
95
|
+
|
|
96
|
+
### 📉 Run PCA
|
|
97
|
+
|
|
98
|
+
```bash
|
|
99
|
+
ezyml reduce \
|
|
100
|
+
--data features.csv \
|
|
101
|
+
--model pca \
|
|
102
|
+
--components 2 \
|
|
103
|
+
--output pca_data.csv
|
|
104
|
+
```
|
|
105
|
+
|
|
106
|
+
---
|
|
107
|
+
|
|
108
|
+
## 🧪 Python API Example
|
|
109
|
+
|
|
110
|
+
### ▶️ Classification
|
|
111
|
+
|
|
112
|
+
```python
|
|
113
|
+
from ezyml import EZTrainer
|
|
114
|
+
|
|
115
|
+
# 1. Initialize
|
|
116
|
+
trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
|
|
117
|
+
|
|
118
|
+
# 2. Train
|
|
119
|
+
trainer.train()
|
|
120
|
+
|
|
121
|
+
# 3. Save Results
|
|
122
|
+
trainer.save_model('heart_model.pkl')
|
|
123
|
+
trainer.save_report('heart_report.json')
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
### 🔍 Dimensionality Reduction (PCA)
|
|
127
|
+
|
|
128
|
+
```python
|
|
129
|
+
from ezyml import EZTrainer
|
|
130
|
+
|
|
131
|
+
pca_trainer = EZTrainer(
|
|
132
|
+
data='high_dim.csv',
|
|
133
|
+
model='pca',
|
|
134
|
+
task='dim_reduction',
|
|
135
|
+
n_components=2
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
pca_trainer.train()
|
|
139
|
+
pca_trainer.save_transformed('pca_output.csv')
|
|
140
|
+
```
|
|
141
|
+
|
|
142
|
+
---
|
|
143
|
+
|
|
144
|
+
## 🧰 Supported Models
|
|
145
|
+
|
|
146
|
+
| Task | Models |
|
|
147
|
+
| ---------------------------- | ------------------------------------------------------------------------------------------------------------------ |
|
|
148
|
+
| **Classification** | `logistic_regression`, `random_forest`, `xgboost`, `svm`, `naive_bayes`, `gradient_boosting`, `extra_trees`, `knn` |
|
|
149
|
+
| **Regression** | `linear_regression`, `ridge`, `lasso`, `elasticnet`, `random_forest`, `xgboost`, `svr`, `gradient_boosting` |
|
|
150
|
+
| **Clustering** | `kmeans`, `dbscan`, `agglo` (Agglomerative Clustering) |
|
|
151
|
+
| **Dimensionality Reduction** | `pca`, `tsne` |
|
|
152
|
+
|
|
153
|
+
---
|
|
154
|
+
|
|
155
|
+
## 📜 License
|
|
156
|
+
|
|
157
|
+
MIT License – [View License](https://github.com/Rktim/ezyml/blob/main/LICENSE)
|
|
158
|
+
|
|
159
|
+
---
|
|
160
|
+
|
|
161
|
+
## 👨💻 Author
|
|
162
|
+
|
|
163
|
+
Built with ❤️ by [Raktim Kalita](https://github.com/Rktim)
|
|
164
|
+
|
|
165
|
+
---
|
ezyml-1.dist-info/RECORD
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
1
|
+
ezyml-1.dist-info/licenses/LICENSE,sha256=nXS6lwSVEKkIzE9fsp6XQrJ0SYuSFDYZDIn514aGMEk,1089
|
|
2
|
+
ezyml-1.dist-info/METADATA,sha256=AiG8RBhCvuTXgnW6R5v9JIzXc-Hdc4QOLNIFbwX9nMM,4562
|
|
3
|
+
ezyml-1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
4
|
+
ezyml-1.dist-info/entry_points.txt,sha256=qI_TMOukrveQBmMa7qvRtmiz196jmbuxVISYfs8-pzg,41
|
|
5
|
+
ezyml-1.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
6
|
+
ezyml-1.dist-info/RECORD,,
|
ezyml-0.1.dist-info/METADATA
DELETED
|
@@ -1,290 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: ezyml
|
|
3
|
-
Version: 0.1
|
|
4
|
-
Summary: A lightweight tool to train, evaluate, and export ML models in one line.
|
|
5
|
-
Home-page: https://github.com/Rktim/ezyml
|
|
6
|
-
Author: Raktim Kalita
|
|
7
|
-
Author-email: raktimkalita.ai@gmail.com
|
|
8
|
-
Classifier: Programming Language :: Python :: 3
|
|
9
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
-
Classifier: Operating System :: OS Independent
|
|
11
|
-
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
12
|
-
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
13
|
-
Requires-Python: >=3.7
|
|
14
|
-
Description-Content-Type: text/markdown
|
|
15
|
-
License-File: LICENSE
|
|
16
|
-
Requires-Dist: scikit-learn
|
|
17
|
-
Requires-Dist: pandas
|
|
18
|
-
Requires-Dist: numpy
|
|
19
|
-
Requires-Dist: xgboost
|
|
20
|
-
Dynamic: author
|
|
21
|
-
Dynamic: author-email
|
|
22
|
-
Dynamic: classifier
|
|
23
|
-
Dynamic: description
|
|
24
|
-
Dynamic: description-content-type
|
|
25
|
-
Dynamic: home-page
|
|
26
|
-
Dynamic: license-file
|
|
27
|
-
Dynamic: requires-dist
|
|
28
|
-
Dynamic: requires-python
|
|
29
|
-
Dynamic: summary
|
|
30
|
-
|
|
31
|
-
📦 ezyml — Train and Export ML Models in 1 Line
|
|
32
|
-
ezyml is a lightweight Python and CLI tool to train, evaluate, and export ML models for classification, regression, clustering, and dimensionality reduction — all in a single command or function call.
|
|
33
|
-
|
|
34
|
-
🌟 Features
|
|
35
|
-
✅ Auto-detects task (classification / regression / clustering / PCA)
|
|
36
|
-
✅ Trains supported models with proper preprocessing
|
|
37
|
-
✅ Saves .pkl model and .json metrics
|
|
38
|
-
✅ Works as both a Python API and CLI tool
|
|
39
|
-
✅ Built-in support for 20+ ML models
|
|
40
|
-
✅ Optional dimensionality reduction with PCA/t-SNE
|
|
41
|
-
✅ Exportable model + report with 1 line
|
|
42
|
-
|
|
43
|
-
📦 Installation
|
|
44
|
-
pip install ezyml
|
|
45
|
-
|
|
46
|
-
💻 CLI Usage
|
|
47
|
-
🧠 Train a Classification Model
|
|
48
|
-
ezyml train
|
|
49
|
-
|
|
50
|
-
--data data.csv
|
|
51
|
-
|
|
52
|
-
--target label
|
|
53
|
-
|
|
54
|
-
--model xgboost
|
|
55
|
-
|
|
56
|
-
--output model.pkl
|
|
57
|
-
|
|
58
|
-
--report report.json
|
|
59
|
-
|
|
60
|
-
📈 Train a Regression Model
|
|
61
|
-
ezyml train --data house.csv --target price --model lasso --output house_model.pkl
|
|
62
|
-
|
|
63
|
-
🔍 Clustering
|
|
64
|
-
ezyml train --data user_vectors.csv --model dbscan --task clustering
|
|
65
|
-
|
|
66
|
-
📉 Dimensionality Reduction (PCA)
|
|
67
|
-
ezyml reduce --data image_data.csv --model pca --components 2 --output pca_result.csv
|
|
68
|
-
|
|
69
|
-
🧪 Python API Usage
|
|
70
|
-
from ezyml import EZTrainer
|
|
71
|
-
|
|
72
|
-
Classification example
|
|
73
|
-
trainer = EZTrainer(data='heart.csv', target='label', model='naive_bayes')
|
|
74
|
-
trainer.train()
|
|
75
|
-
trainer.save_model('heart_model.pkl')
|
|
76
|
-
trainer.save_report('heart_report.json')
|
|
77
|
-
|
|
78
|
-
PCA example
|
|
79
|
-
trainer = EZTrainer(data='high_dim.csv', model='pca', task='dim_reduction', n_components=2)
|
|
80
|
-
trainer.train()
|
|
81
|
-
trainer.save_transformed('pca_output.csv')
|
|
82
|
-
|
|
83
|
-
🧰 Supported Tasks and Models
|
|
84
|
-
🧠 Classification Models
|
|
85
|
-
Model Name
|
|
86
|
-
|
|
87
|
-
Code ID
|
|
88
|
-
|
|
89
|
-
Logistic Regression
|
|
90
|
-
|
|
91
|
-
logistic_regression
|
|
92
|
-
|
|
93
|
-
Random Forest
|
|
94
|
-
|
|
95
|
-
random_forest
|
|
96
|
-
|
|
97
|
-
XGBoost Classifier
|
|
98
|
-
|
|
99
|
-
xgboost
|
|
100
|
-
|
|
101
|
-
SVM (Linear)
|
|
102
|
-
|
|
103
|
-
svm
|
|
104
|
-
|
|
105
|
-
Naive Bayes
|
|
106
|
-
|
|
107
|
-
naive_bayes
|
|
108
|
-
|
|
109
|
-
Gradient Boosting
|
|
110
|
-
|
|
111
|
-
gradient_boosting
|
|
112
|
-
|
|
113
|
-
Extra Trees
|
|
114
|
-
|
|
115
|
-
extra_trees
|
|
116
|
-
|
|
117
|
-
K-Nearest Neighbors
|
|
118
|
-
|
|
119
|
-
knn
|
|
120
|
-
|
|
121
|
-
📈 Regression Models
|
|
122
|
-
Model Name
|
|
123
|
-
|
|
124
|
-
Code ID
|
|
125
|
-
|
|
126
|
-
Linear Regression
|
|
127
|
-
|
|
128
|
-
linear_regression
|
|
129
|
-
|
|
130
|
-
Ridge Regression
|
|
131
|
-
|
|
132
|
-
ridge
|
|
133
|
-
|
|
134
|
-
Lasso Regression
|
|
135
|
-
|
|
136
|
-
lasso
|
|
137
|
-
|
|
138
|
-
ElasticNet
|
|
139
|
-
|
|
140
|
-
elasticnet
|
|
141
|
-
|
|
142
|
-
Random Forest Regr.
|
|
143
|
-
|
|
144
|
-
random_forest
|
|
145
|
-
|
|
146
|
-
XGBoost Regr.
|
|
147
|
-
|
|
148
|
-
xgboost
|
|
149
|
-
|
|
150
|
-
SVR
|
|
151
|
-
|
|
152
|
-
svr
|
|
153
|
-
|
|
154
|
-
Gradient Boosting
|
|
155
|
-
|
|
156
|
-
gradient_boosting
|
|
157
|
-
|
|
158
|
-
🔍 Clustering Models
|
|
159
|
-
Model Name
|
|
160
|
-
|
|
161
|
-
Code ID
|
|
162
|
-
|
|
163
|
-
KMeans
|
|
164
|
-
|
|
165
|
-
kmeans
|
|
166
|
-
|
|
167
|
-
DBSCAN
|
|
168
|
-
|
|
169
|
-
dbscan
|
|
170
|
-
|
|
171
|
-
Agglomerative Clustering
|
|
172
|
-
|
|
173
|
-
agglo
|
|
174
|
-
|
|
175
|
-
📉 Dimensionality Reduction
|
|
176
|
-
Method
|
|
177
|
-
|
|
178
|
-
Code ID
|
|
179
|
-
|
|
180
|
-
PCA
|
|
181
|
-
|
|
182
|
-
pca
|
|
183
|
-
|
|
184
|
-
t-SNE
|
|
185
|
-
|
|
186
|
-
tsne
|
|
187
|
-
|
|
188
|
-
📊 Metrics
|
|
189
|
-
Task
|
|
190
|
-
|
|
191
|
-
Metrics
|
|
192
|
-
|
|
193
|
-
Classification
|
|
194
|
-
|
|
195
|
-
Accuracy, F1, ROC AUC, Confusion Matrix
|
|
196
|
-
|
|
197
|
-
Regression
|
|
198
|
-
|
|
199
|
-
MAE, MSE, RMSE, R²
|
|
200
|
-
|
|
201
|
-
Clustering
|
|
202
|
-
|
|
203
|
-
Silhouette Score, n_clusters
|
|
204
|
-
|
|
205
|
-
PCA/t-SNE
|
|
206
|
-
|
|
207
|
-
None (returns transformed data)
|
|
208
|
-
|
|
209
|
-
🧠 API Reference: EZTrainer
|
|
210
|
-
EZTrainer(
|
|
211
|
-
data: str | pd.DataFrame,
|
|
212
|
-
target: str | None = None,
|
|
213
|
-
model: str = "random_forest",
|
|
214
|
-
task: str = "auto", # or: classification, regression, clustering, dim_reduction
|
|
215
|
-
test_size: float = 0.2,
|
|
216
|
-
scale: bool = True,
|
|
217
|
-
n_components: int = None, # For PCA or t-SNE
|
|
218
|
-
)
|
|
219
|
-
|
|
220
|
-
Methods
|
|
221
|
-
Method
|
|
222
|
-
|
|
223
|
-
Description
|
|
224
|
-
|
|
225
|
-
.train()
|
|
226
|
-
|
|
227
|
-
Trains the selected model
|
|
228
|
-
|
|
229
|
-
.save_model(path)
|
|
230
|
-
|
|
231
|
-
Saves the model to .pkl
|
|
232
|
-
|
|
233
|
-
.save_report(path)
|
|
234
|
-
|
|
235
|
-
Saves metrics/report as .json
|
|
236
|
-
|
|
237
|
-
.save_transformed(path)
|
|
238
|
-
|
|
239
|
-
Saves transformed data for PCA/t-SNE
|
|
240
|
-
|
|
241
|
-
.predict(X)
|
|
242
|
-
|
|
243
|
-
Returns predictions
|
|
244
|
-
|
|
245
|
-
🧰 CLI Reference
|
|
246
|
-
|
|
247
|
-
General training
|
|
248
|
-
ezyml train
|
|
249
|
-
|
|
250
|
-
--data FILE.csv
|
|
251
|
-
|
|
252
|
-
--target TARGET
|
|
253
|
-
|
|
254
|
-
--model MODEL_NAME
|
|
255
|
-
|
|
256
|
-
--output model.pkl
|
|
257
|
-
|
|
258
|
-
--report metrics.json
|
|
259
|
-
|
|
260
|
-
--task classification|regression|clustering
|
|
261
|
-
|
|
262
|
-
Dimensionality Reduction
|
|
263
|
-
ezyml reduce --data FILE.csv --model pca --components 2 --output reduced.csv
|
|
264
|
-
|
|
265
|
-
🧪 Examples
|
|
266
|
-
Classify Titanic Dataset with Extra Trees:
|
|
267
|
-
|
|
268
|
-
ezyml train --data titanic.csv --target Survived --model extra_trees --output model.pkl
|
|
269
|
-
|
|
270
|
-
Regress Housing Prices using Ridge:
|
|
271
|
-
|
|
272
|
-
ezyml train --data housing.csv --target price --model ridge --output model.pkl
|
|
273
|
-
|
|
274
|
-
Cluster Data:
|
|
275
|
-
|
|
276
|
-
ezyml train --data vectors.csv --model kmeans --task clustering
|
|
277
|
-
|
|
278
|
-
PCA:
|
|
279
|
-
|
|
280
|
-
ezyml reduce --data features.csv --model pca --components 2 --output pca_data.csv
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
📜 License
|
|
285
|
-
MIT License
|
|
286
|
-
|
|
287
|
-
👨💻 Author
|
|
288
|
-
Raktim Kalita
|
|
289
|
-
Machine Learning Engineer, Automator of Ideas 💡
|
|
290
|
-
GitHub: @raktimkalita
|
ezyml-0.1.dist-info/RECORD
DELETED
|
@@ -1,6 +0,0 @@
|
|
|
1
|
-
ezyml-0.1.dist-info/licenses/LICENSE,sha256=nXS6lwSVEKkIzE9fsp6XQrJ0SYuSFDYZDIn514aGMEk,1089
|
|
2
|
-
ezyml-0.1.dist-info/METADATA,sha256=rx6YuDGXZpwNoGQNxhqc3evjW0vigZ376bExLWZBxbQ,4850
|
|
3
|
-
ezyml-0.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
4
|
-
ezyml-0.1.dist-info/entry_points.txt,sha256=qI_TMOukrveQBmMa7qvRtmiz196jmbuxVISYfs8-pzg,41
|
|
5
|
-
ezyml-0.1.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
6
|
-
ezyml-0.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|