ezmsg-sigproc 2.7.0__py3-none-any.whl → 2.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '2.7.0'
32
- __version_tuple__ = version_tuple = (2, 7, 0)
31
+ __version__ = version = '2.8.0'
32
+ __version_tuple__ = version_tuple = (2, 8, 0)
33
33
 
34
34
  __commit_id__ = commit_id = None
@@ -1,3 +1,13 @@
1
+ """Affine transformations via matrix multiplication: y = Ax or y = Ax + B.
2
+
3
+ For full matrix transformations where channels are mixed (off-diagonal weights),
4
+ use :obj:`AffineTransformTransformer` or the `AffineTransform` unit.
5
+
6
+ For simple per-channel scaling and offset (diagonal weights only), use
7
+ :obj:`LinearTransformTransformer` from :mod:`ezmsg.sigproc.linear` instead,
8
+ which is more efficient as it avoids matrix multiplication.
9
+ """
10
+
1
11
  import os
2
12
  from pathlib import Path
3
13
 
@@ -17,7 +27,6 @@ from ezmsg.util.messages.util import replace
17
27
  class AffineTransformSettings(ez.Settings):
18
28
  """
19
29
  Settings for :obj:`AffineTransform`.
20
- See :obj:`affine_transform` for argument details.
21
30
  """
22
31
 
23
32
  weights: np.ndarray | str | Path
@@ -39,6 +48,19 @@ class AffineTransformState:
39
48
  class AffineTransformTransformer(
40
49
  BaseStatefulTransformer[AffineTransformSettings, AxisArray, AxisArray, AffineTransformState]
41
50
  ):
51
+ """Apply affine transformation via matrix multiplication: y = Ax or y = Ax + B.
52
+
53
+ Use this transformer when you need full matrix transformations that mix
54
+ channels (off-diagonal weights), such as spatial filters or projections.
55
+
56
+ For simple per-channel scaling and offset where each output channel depends
57
+ only on its corresponding input channel (diagonal weight matrix), use
58
+ :obj:`LinearTransformTransformer` instead, which is more efficient.
59
+
60
+ The weights matrix can include an offset row (stacked as [A|B]) where the
61
+ input is automatically augmented with a column of ones to compute y = Ax + B.
62
+ """
63
+
42
64
  def __call__(self, message: AxisArray) -> AxisArray:
43
65
  # Override __call__ so we can shortcut if weights are None.
44
66
  if self.settings.weights is None or (
@@ -4,10 +4,10 @@ import typing
4
4
  import ezmsg.core as ez
5
5
  import numpy as np
6
6
  import scipy.signal
7
+ from ezmsg.baseproc import SettingsType
7
8
  from ezmsg.util.messages.axisarray import AxisArray
8
9
  from ezmsg.util.messages.util import replace
9
10
 
10
- from ezmsg.sigproc.base import SettingsType
11
11
  from ezmsg.sigproc.butterworthfilter import ButterworthFilterSettings, butter_design_fun
12
12
  from ezmsg.sigproc.filter import (
13
13
  BACoeffs,
@@ -1,14 +1,13 @@
1
1
  import ezmsg.core as ez
2
2
  import numpy as np
3
3
  import numpy.typing as npt
4
- from ezmsg.util.messages.axisarray import AxisArray
5
- from ezmsg.util.messages.util import replace
6
-
7
- from ezmsg.sigproc.base import (
4
+ from ezmsg.baseproc import (
8
5
  BaseStatefulTransformer,
9
6
  BaseTransformerUnit,
10
7
  processor_state,
11
8
  )
9
+ from ezmsg.util.messages.axisarray import AxisArray
10
+ from ezmsg.util.messages.util import replace
12
11
 
13
12
 
14
13
  class DenormalizeSettings(ez.Settings):
ezmsg/sigproc/detrend.py CHANGED
@@ -1,7 +1,7 @@
1
1
  import scipy.signal as sps
2
+ from ezmsg.baseproc import BaseTransformerUnit
2
3
  from ezmsg.util.messages.axisarray import AxisArray, replace
3
4
 
4
- from ezmsg.sigproc.base import BaseTransformerUnit
5
5
  from ezmsg.sigproc.ewma import EWMASettings, EWMATransformer
6
6
 
7
7
 
ezmsg/sigproc/diff.py CHANGED
@@ -1,14 +1,13 @@
1
1
  import ezmsg.core as ez
2
2
  import numpy as np
3
3
  import numpy.typing as npt
4
- from ezmsg.util.messages.axisarray import AxisArray, slice_along_axis
5
- from ezmsg.util.messages.util import replace
6
-
7
- from ezmsg.sigproc.base import (
4
+ from ezmsg.baseproc import (
8
5
  BaseStatefulTransformer,
9
6
  BaseTransformerUnit,
10
7
  processor_state,
11
8
  )
9
+ from ezmsg.util.messages.axisarray import AxisArray, slice_along_axis
10
+ from ezmsg.util.messages.util import replace
12
11
 
13
12
 
14
13
  class DiffSettings(ez.Settings):
ezmsg/sigproc/ewma.py CHANGED
@@ -139,8 +139,15 @@ class EWMA_Deprecated:
139
139
 
140
140
  class EWMASettings(ez.Settings):
141
141
  time_constant: float = 1.0
142
+ """The amount of time for the smoothed response of a unit step function to reach 1 - 1/e approx-eq 63.2%."""
143
+
142
144
  axis: str | None = None
143
145
 
146
+ accumulate: bool = True
147
+ """If True, update the EWMA state with each sample. If False, only apply
148
+ the current EWMA estimate without updating state (useful for inference
149
+ periods where you don't want to adapt statistics)."""
150
+
144
151
 
145
152
  @processor_state
146
153
  class EWMAState:
@@ -166,15 +173,45 @@ class EWMATransformer(BaseStatefulTransformer[EWMASettings, AxisArray, AxisArray
166
173
  return message
167
174
  axis = self.settings.axis or message.dims[0]
168
175
  axis_idx = message.get_axis_idx(axis)
169
- expected, self._state.zi = sps.lfilter(
170
- [self._state.alpha],
171
- [1.0, self._state.alpha - 1.0],
172
- message.data,
173
- axis=axis_idx,
174
- zi=self._state.zi,
175
- )
176
+ if self.settings.accumulate:
177
+ # Normal behavior: update state with new samples
178
+ expected, self._state.zi = sps.lfilter(
179
+ [self._state.alpha],
180
+ [1.0, self._state.alpha - 1.0],
181
+ message.data,
182
+ axis=axis_idx,
183
+ zi=self._state.zi,
184
+ )
185
+ else:
186
+ # Process-only: compute output without updating state
187
+ expected, _ = sps.lfilter(
188
+ [self._state.alpha],
189
+ [1.0, self._state.alpha - 1.0],
190
+ message.data,
191
+ axis=axis_idx,
192
+ zi=self._state.zi,
193
+ )
176
194
  return replace(message, data=expected)
177
195
 
178
196
 
179
197
  class EWMAUnit(BaseTransformerUnit[EWMASettings, AxisArray, AxisArray, EWMATransformer]):
180
198
  SETTINGS = EWMASettings
199
+
200
+ @ez.subscriber(BaseTransformerUnit.INPUT_SETTINGS)
201
+ async def on_settings(self, msg: EWMASettings) -> None:
202
+ """
203
+ Handle settings updates with smart reset behavior.
204
+
205
+ Only resets state if `axis` changes (structural change).
206
+ Changes to `time_constant` or `accumulate` are applied without
207
+ resetting accumulated state.
208
+ """
209
+ old_axis = self.SETTINGS.axis
210
+ self.apply_settings(msg)
211
+
212
+ if msg.axis != old_axis:
213
+ # Axis changed - need full reset
214
+ self.create_processor()
215
+ else:
216
+ # Only accumulate or time_constant changed - keep state
217
+ self.processor.settings = msg
@@ -1,9 +1,8 @@
1
1
  import ezmsg.core as ez
2
2
  import numpy as np
3
+ from ezmsg.baseproc import BaseTransformer, BaseTransformerUnit
3
4
  from ezmsg.util.messages.axisarray import AxisArray, replace
4
5
 
5
- from ezmsg.sigproc.base import BaseTransformer, BaseTransformerUnit
6
-
7
6
 
8
7
  class ExtractAxisSettings(ez.Settings):
9
8
  axis: str = "freq"
ezmsg/sigproc/filter.py CHANGED
@@ -6,10 +6,7 @@ import ezmsg.core as ez
6
6
  import numpy as np
7
7
  import numpy.typing as npt
8
8
  import scipy.signal
9
- from ezmsg.util.messages.axisarray import AxisArray
10
- from ezmsg.util.messages.util import replace
11
-
12
- from ezmsg.sigproc.base import (
9
+ from ezmsg.baseproc import (
13
10
  BaseConsumerUnit,
14
11
  BaseStatefulTransformer,
15
12
  BaseTransformerUnit,
@@ -17,6 +14,8 @@ from ezmsg.sigproc.base import (
17
14
  TransformerType,
18
15
  processor_state,
19
16
  )
17
+ from ezmsg.util.messages.axisarray import AxisArray
18
+ from ezmsg.util.messages.util import replace
20
19
 
21
20
 
22
21
  @dataclass
@@ -4,10 +4,10 @@ import typing
4
4
  import ezmsg.core as ez
5
5
  import numpy as np
6
6
  import scipy.signal as sps
7
+ from ezmsg.baseproc import BaseStatefulTransformer, processor_state
7
8
  from ezmsg.util.messages.axisarray import AxisArray
8
9
  from ezmsg.util.messages.util import replace
9
10
 
10
- from ezmsg.sigproc.base import BaseStatefulTransformer, processor_state
11
11
  from ezmsg.sigproc.filter import (
12
12
  BACoeffs,
13
13
  BaseFilterByDesignTransformerUnit,
@@ -0,0 +1,118 @@
1
+ """Apply a linear transformation: output = scale * input + offset.
2
+
3
+ Supports per-element scale and offset along a specified axis.
4
+ Uses Array API for compatibility with numpy, cupy, torch, etc.
5
+
6
+ For full matrix transformations, use :obj:`AffineTransformTransformer` instead.
7
+ """
8
+
9
+ import ezmsg.core as ez
10
+ import numpy as np
11
+ import numpy.typing as npt
12
+ from array_api_compat import get_namespace
13
+ from ezmsg.util.messages.axisarray import AxisArray
14
+ from ezmsg.util.messages.util import replace
15
+
16
+ from .base import BaseStatefulTransformer, BaseTransformerUnit, processor_state
17
+
18
+
19
+ class LinearTransformSettings(ez.Settings):
20
+ scale: float | list[float] | npt.ArrayLike = 1.0
21
+ """Scale factor(s). Can be a scalar (applied to all elements) or an array
22
+ matching the size of the specified axis for per-element scaling."""
23
+
24
+ offset: float | list[float] | npt.ArrayLike = 0.0
25
+ """Offset value(s). Can be a scalar (applied to all elements) or an array
26
+ matching the size of the specified axis for per-element offset."""
27
+
28
+ axis: str | None = None
29
+ """Axis along which to apply per-element scale/offset. If None, scalar
30
+ scale/offset are broadcast to all elements."""
31
+
32
+
33
+ @processor_state
34
+ class LinearTransformState:
35
+ scale: npt.NDArray = None
36
+ """Prepared scale array for broadcasting."""
37
+
38
+ offset: npt.NDArray = None
39
+ """Prepared offset array for broadcasting."""
40
+
41
+
42
+ class LinearTransformTransformer(
43
+ BaseStatefulTransformer[LinearTransformSettings, AxisArray, AxisArray, LinearTransformState]
44
+ ):
45
+ """Apply linear transformation: output = scale * input + offset.
46
+
47
+ This transformer is optimized for element-wise linear operations with
48
+ optional per-channel (or per-axis) coefficients. For full matrix
49
+ transformations, use :obj:`AffineTransformTransformer` instead.
50
+
51
+ Examples:
52
+ # Uniform scaling and offset
53
+ >>> transformer = LinearTransformTransformer(LinearTransformSettings(scale=2.0, offset=1.0))
54
+
55
+ # Per-channel scaling (e.g., for 3-channel data along "ch" axis)
56
+ >>> transformer = LinearTransformTransformer(LinearTransformSettings(
57
+ ... scale=[0.5, 1.0, 2.0],
58
+ ... offset=[0.0, 0.1, 0.2],
59
+ ... axis="ch"
60
+ ... ))
61
+ """
62
+
63
+ def _hash_message(self, message: AxisArray) -> int:
64
+ """Hash based on shape and axis to detect when broadcast shapes need recalculation."""
65
+ axis = self.settings.axis
66
+ if axis is not None:
67
+ axis_idx = message.get_axis_idx(axis)
68
+ return hash((message.data.ndim, axis_idx, message.data.shape[axis_idx]))
69
+ return hash(message.data.ndim)
70
+
71
+ def _reset_state(self, message: AxisArray) -> None:
72
+ """Prepare scale/offset arrays with proper broadcast shapes."""
73
+ xp = get_namespace(message.data)
74
+ ndim = message.data.ndim
75
+
76
+ scale = self.settings.scale
77
+ offset = self.settings.offset
78
+
79
+ # Convert settings to arrays
80
+ if isinstance(scale, (list, np.ndarray)):
81
+ scale = xp.asarray(scale, dtype=xp.float64)
82
+ else:
83
+ # Scalar: create a 0-d array
84
+ scale = xp.asarray(float(scale), dtype=xp.float64)
85
+
86
+ if isinstance(offset, (list, np.ndarray)):
87
+ offset = xp.asarray(offset, dtype=xp.float64)
88
+ else:
89
+ # Scalar: create a 0-d array
90
+ offset = xp.asarray(float(offset), dtype=xp.float64)
91
+
92
+ # If axis is specified and we have 1-d arrays, reshape for proper broadcasting
93
+ if self.settings.axis is not None and ndim > 0:
94
+ axis_idx = message.get_axis_idx(self.settings.axis)
95
+
96
+ if scale.ndim == 1:
97
+ # Create shape for broadcasting: all 1s except at axis_idx
98
+ broadcast_shape = [1] * ndim
99
+ broadcast_shape[axis_idx] = scale.shape[0]
100
+ scale = xp.reshape(scale, broadcast_shape)
101
+
102
+ if offset.ndim == 1:
103
+ broadcast_shape = [1] * ndim
104
+ broadcast_shape[axis_idx] = offset.shape[0]
105
+ offset = xp.reshape(offset, broadcast_shape)
106
+
107
+ self._state.scale = scale
108
+ self._state.offset = offset
109
+
110
+ def _process(self, message: AxisArray) -> AxisArray:
111
+ result = message.data * self._state.scale + self._state.offset
112
+ return replace(message, data=result)
113
+
114
+
115
+ class LinearTransform(BaseTransformerUnit[LinearTransformSettings, AxisArray, AxisArray, LinearTransformTransformer]):
116
+ """Unit wrapper for LinearTransformTransformer."""
117
+
118
+ SETTINGS = LinearTransformSettings
@@ -3,14 +3,14 @@ from collections import deque
3
3
  import ezmsg.core as ez
4
4
  import numpy as np
5
5
  import numpy.typing as npt
6
- from ezmsg.util.messages.axisarray import AxisArray
7
- from ezmsg.util.messages.util import replace
8
-
9
- from ezmsg.sigproc.base import (
6
+ from ezmsg.baseproc import (
10
7
  BaseAdaptiveTransformer,
11
8
  BaseAdaptiveTransformerUnit,
12
9
  processor_state,
13
10
  )
11
+ from ezmsg.util.messages.axisarray import AxisArray
12
+ from ezmsg.util.messages.util import replace
13
+
14
14
  from ezmsg.sigproc.sampler import SampleMessage
15
15
 
16
16
 
ezmsg/sigproc/scaler.py CHANGED
@@ -1,5 +1,6 @@
1
1
  import typing
2
2
 
3
+ import ezmsg.core as ez
3
4
  import numpy as np
4
5
  from ezmsg.baseproc import (
5
6
  BaseStatefulTransformer,
@@ -82,11 +83,38 @@ class AdaptiveStandardScalerTransformer(
82
83
  ]
83
84
  ):
84
85
  def _reset_state(self, message: AxisArray) -> None:
85
- self._state.samps_ewma = EWMATransformer(time_constant=self.settings.time_constant, axis=self.settings.axis)
86
- self._state.vars_sq_ewma = EWMATransformer(time_constant=self.settings.time_constant, axis=self.settings.axis)
86
+ self._state.samps_ewma = EWMATransformer(
87
+ time_constant=self.settings.time_constant,
88
+ axis=self.settings.axis,
89
+ accumulate=self.settings.accumulate,
90
+ )
91
+ self._state.vars_sq_ewma = EWMATransformer(
92
+ time_constant=self.settings.time_constant,
93
+ axis=self.settings.axis,
94
+ accumulate=self.settings.accumulate,
95
+ )
96
+
97
+ @property
98
+ def accumulate(self) -> bool:
99
+ """Whether to accumulate statistics from incoming samples."""
100
+ return self.settings.accumulate
101
+
102
+ @accumulate.setter
103
+ def accumulate(self, value: bool) -> None:
104
+ """
105
+ Set the accumulate mode and propagate to child EWMA transformers.
106
+
107
+ Args:
108
+ value: If True, update statistics with each sample.
109
+ If False, only apply current statistics without updating.
110
+ """
111
+ if self._state.samps_ewma is not None:
112
+ self._state.samps_ewma.settings = replace(self._state.samps_ewma.settings, accumulate=value)
113
+ if self._state.vars_sq_ewma is not None:
114
+ self._state.vars_sq_ewma.settings = replace(self._state.vars_sq_ewma.settings, accumulate=value)
87
115
 
88
116
  def _process(self, message: AxisArray) -> AxisArray:
89
- # Update step
117
+ # Update step (respects accumulate setting via child EWMAs)
90
118
  mean_message = self._state.samps_ewma(message)
91
119
  var_sq_message = self._state.vars_sq_ewma(replace(message, data=message.data**2))
92
120
 
@@ -108,6 +136,27 @@ class AdaptiveStandardScaler(
108
136
  ):
109
137
  SETTINGS = AdaptiveStandardScalerSettings
110
138
 
139
+ @ez.subscriber(BaseTransformerUnit.INPUT_SETTINGS)
140
+ async def on_settings(self, msg: AdaptiveStandardScalerSettings) -> None:
141
+ """
142
+ Handle settings updates with smart reset behavior.
143
+
144
+ Only resets state if `axis` changes (structural change).
145
+ Changes to `time_constant` or `accumulate` are applied without
146
+ resetting accumulated statistics.
147
+ """
148
+ old_axis = self.SETTINGS.axis
149
+ self.apply_settings(msg)
150
+
151
+ if msg.axis != old_axis:
152
+ # Axis changed - need full reset
153
+ self.create_processor()
154
+ else:
155
+ # Update accumulate on processor (propagates to child EWMAs)
156
+ self.processor.accumulate = msg.accumulate
157
+ # Also update own settings reference
158
+ self.processor.settings = msg
159
+
111
160
 
112
161
  # Backwards compatibility...
113
162
  def scaler_np(time_constant: float = 1.0, axis: str | None = None) -> AdaptiveStandardScalerTransformer:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ezmsg-sigproc
3
- Version: 2.7.0
3
+ Version: 2.8.0
4
4
  Summary: Timeseries signal processing implementations in ezmsg
5
5
  Author-email: Griffin Milsap <griffin.milsap@gmail.com>, Preston Peranich <pperanich@gmail.com>, Chadwick Boulay <chadwick.boulay@gmail.com>, Kyle McGraw <kmcgraw@blackrockneuro.com>
6
6
  License-Expression: MIT
@@ -1,39 +1,40 @@
1
1
  ezmsg/sigproc/__init__.py,sha256=8K4IcOA3-pfzadoM6s2Sfg5460KlJUocGgyTJTJl96U,52
2
- ezmsg/sigproc/__version__.py,sha256=egp6dAw7S80JrGAUNYGJNY3iqzeSzC4Vs5c3SnC3SIY,704
2
+ ezmsg/sigproc/__version__.py,sha256=9o_P9mg_lm8dZdRjWfkpikVSLuPB26JLjcQeqWLe_GI,704
3
3
  ezmsg/sigproc/activation.py,sha256=83vnTa3ZcC4Q3VSWcGfaqhCEqYRNySUOyVpMHZXfz-c,2755
4
4
  ezmsg/sigproc/adaptive_lattice_notch.py,sha256=ThUR48mbSHuThkimtD0j4IXNMrOVcpZgGhE7PCYfXhU,8818
5
- ezmsg/sigproc/affinetransform.py,sha256=umEsbEcuiCI02oljWueJnKaI0aJxJ0wqOjH5yXclEM0,8414
5
+ ezmsg/sigproc/affinetransform.py,sha256=jl7DiSa5Yb0qsmFJbfSiSeGmvK1SGoBgycFC5JU5DVY,9434
6
6
  ezmsg/sigproc/aggregate.py,sha256=yc3Hnak0yhucqlTCv9Isg6BKR24s6rMZqbZKpayyBgM,9048
7
7
  ezmsg/sigproc/bandpower.py,sha256=dAhH56sUrXNhcRFymTTwjdM_KcU5OxFzrR_sxIPAxyw,2264
8
8
  ezmsg/sigproc/base.py,sha256=SJvKEb8gw6mUMwlV5sH0iPG0bXrgS8tvkPwhI-j89MQ,3672
9
9
  ezmsg/sigproc/butterworthfilter.py,sha256=NKTGkgjvlmC1Dc9gD2Z6UBzUq12KicfnczrzM5ZTosk,5255
10
- ezmsg/sigproc/butterworthzerophase.py,sha256=QbJ_gGXrIfVOl_OybD07orO460owSMP5yTDMcGgASP0,4109
10
+ ezmsg/sigproc/butterworthzerophase.py,sha256=Df3F1QBBE39FBjNi67wvTsb1bSdTRTSTZXbZiKFlxC4,4105
11
11
  ezmsg/sigproc/cheby.py,sha256=B8pGt5_pOBpNZCmaibNl_NKkyuasd8ZEJXeTDCTaino,3711
12
12
  ezmsg/sigproc/combfilter.py,sha256=MSxr1I-jBePW_9AuCiv3RQ1HUNxIsNhLk0q1Iu8ikAw,4766
13
13
  ezmsg/sigproc/coordinatespaces.py,sha256=NWbQVvizmiU4F3AIwHHhiZ30Kg2IeSW0fRaa-yXkn-c,4610
14
14
  ezmsg/sigproc/decimate.py,sha256=DCX9p4ZrcGoQ9di-jmPKqiKERTkvTAtSqLg8chQLp84,2336
15
- ezmsg/sigproc/denormalize.py,sha256=CaH34QJ3OvsnhZT7bhCw2KVxVKvaU24ui6BS5-oe_x0,3040
16
- ezmsg/sigproc/detrend.py,sha256=TxqZ41AdjsH_yOTj8fBoKTnbKCbdyzVibpCHWkFARYU,898
17
- ezmsg/sigproc/diff.py,sha256=PC8KJAqaXMsdS_kPlDSEtXpcQ5rk92Ze_TeUjsVwbN0,2782
15
+ ezmsg/sigproc/denormalize.py,sha256=OACzoINCISNUmZcR2pqWfxi3p8uuBLCz1PMw4XNwOCs,3035
16
+ ezmsg/sigproc/detrend.py,sha256=2C-dhVy-ty4b22aE07kIF3VjqCoFitoZqyrX6hAjXYQ,894
17
+ ezmsg/sigproc/diff.py,sha256=m0g1KQXEooSM3V2oLx_MyYEZqdXm04jI9B4V-HjMUa4,2777
18
18
  ezmsg/sigproc/downsample.py,sha256=Jqxt1Va1FrQLH1wUQpP0U79iQARTTHEKklKHy7yGL2o,3679
19
- ezmsg/sigproc/ewma.py,sha256=I6WZkf6yf8jnpLdeEAWfAcpui5erVcVMZo6hTMMvDvg,6247
19
+ ezmsg/sigproc/ewma.py,sha256=ecLq1ZlON85NWdW_5cz9chWirxjf4y9zCPMOt3IqQuk,7723
20
20
  ezmsg/sigproc/ewmfilter.py,sha256=9AuvVn3TDdf5R4bVolYNM46AtDVHFJa8MLGltY6mYPE,4795
21
- ezmsg/sigproc/extract_axis.py,sha256=4beqJ0EyUkT9Pa1FdYa9IteHGaxkh87j5_rYiZlvIG4,1598
21
+ ezmsg/sigproc/extract_axis.py,sha256=T2e9zW8N0bwOj4_zlB3I0oT0iwaBijpzF6wrFsCfD24,1593
22
22
  ezmsg/sigproc/fbcca.py,sha256=JYFWsMDRJEWwUNujr4EsFL5t1ux-cnBGamNVrCRO_RA,12043
23
- ezmsg/sigproc/filter.py,sha256=rLmJCgPevoODTL3g_D6czwVvcCD4uK8hJJ0tKfTH5_w,11609
23
+ ezmsg/sigproc/filter.py,sha256=IWg3J5IGVdv7kfp4zaKRzfjEuRa5xNzcq6fHtq4tPCM,11604
24
24
  ezmsg/sigproc/filterbank.py,sha256=tD7fn4dZzEvsmp_sSn16VVJ4WcJ5sN5lsSuNTLDCQZ8,13056
25
25
  ezmsg/sigproc/filterbankdesign.py,sha256=vLXQVJwoFEK4V6umqzcr1PJKcwv6pGO29klSWQXk7y0,4712
26
- ezmsg/sigproc/fir_hilbert.py,sha256=aurBCcpvsG69qD6Du2aHMye4HCBXF4RXzACdSxIy_Z8,10859
26
+ ezmsg/sigproc/fir_hilbert.py,sha256=ByZDsDFjbJx-EgLZF85vZCPQbprQaiMEuG2dyvTPiDY,10855
27
27
  ezmsg/sigproc/fir_pmc.py,sha256=Ze2pd9K8XrdDhgJZG2E7x-5C2hfd6kIns4bYjTJsBvc,6997
28
28
  ezmsg/sigproc/firfilter.py,sha256=7r_I476nYuixJsuwc_hQ0Fbq8WB0gnYBZUKs3zultOQ,3790
29
29
  ezmsg/sigproc/gaussiansmoothing.py,sha256=BfXm9YQoOtieM4ABK2KRgxeQz055rd7mqtTVqmjT3Rk,2672
30
30
  ezmsg/sigproc/kaiser.py,sha256=dIwgHbLXUHPtdotsGNLE9VG_clhcMgvVnSoFkMVgF9M,3483
31
+ ezmsg/sigproc/linear.py,sha256=o5HNEQMx2e6FrFOJskJeKCJwZmSN1uO-1LgBxERzmEE,4535
31
32
  ezmsg/sigproc/messages.py,sha256=KQczHTeifn4BZycChN8ZcpfZoQW3lC_xuFmN72QT97s,925
32
33
  ezmsg/sigproc/quantize.py,sha256=uSM2z2xXwL0dgSltyzLEmlKjaJZ2meA3PDWX8_bM0Hs,2195
33
34
  ezmsg/sigproc/resample.py,sha256=3mm9pvxryNVhQuTCIMW3ToUkUfbVOCsIgvXUiurit1Y,11389
34
- ezmsg/sigproc/rollingscaler.py,sha256=j5hoWgJMbeDST7FXE6UBLSeR2hhfACIqQvFKr92ZTZA,8503
35
+ ezmsg/sigproc/rollingscaler.py,sha256=e-smSKDhmDD2nWIf6I77CtRxQp_7sHS268SGPi7aXp8,8499
35
36
  ezmsg/sigproc/sampler.py,sha256=iOk2YoUX22u9iTjFKimzP5V074RDBVcmswgfyxvZRZo,10761
36
- ezmsg/sigproc/scaler.py,sha256=n0aGo272vs_MnFRtT1b3vVCQOzY-UEAxnqZKlpIldX8,4041
37
+ ezmsg/sigproc/scaler.py,sha256=oBZa6uzyftChvk6aqBD5clil6pedx3IF-dptrb74EA0,5888
37
38
  ezmsg/sigproc/signalinjector.py,sha256=mB62H2b-ScgPtH1jajEpxgDHqdb-RKekQfgyNncsE8Y,2874
38
39
  ezmsg/sigproc/slicer.py,sha256=xLXxWf722V08ytVwvPimYjDKKj0pkC2HjdgCVaoaOvs,5195
39
40
  ezmsg/sigproc/spectral.py,sha256=wFzuihS7qJZMQcp0ds_qCG-zCbvh5DyhFRjn2wA9TWQ,322
@@ -58,7 +59,7 @@ ezmsg/sigproc/util/message.py,sha256=ppN3IYtIAwrxWG9JOvgWFn1wDdIumkEzYFfqpH9VQkY
58
59
  ezmsg/sigproc/util/profile.py,sha256=eVOo9pXgusrnH1yfRdd2RsM7Dbe2UpyC0LJ9MfGpB08,416
59
60
  ezmsg/sigproc/util/sparse.py,sha256=NjbJitCtO0B6CENTlyd9c-lHEJwoCan-T3DIgPyeShw,4834
60
61
  ezmsg/sigproc/util/typeresolution.py,sha256=fMFzLi63dqCIclGFLcMdM870OYxJnkeWw6aWKNMk718,362
61
- ezmsg_sigproc-2.7.0.dist-info/METADATA,sha256=QtI9FWw5pFVEqs1Ma6tooyGj73dZ6IOnM0QueJnzeSY,1908
62
- ezmsg_sigproc-2.7.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
63
- ezmsg_sigproc-2.7.0.dist-info/licenses/LICENSE,sha256=seu0tKhhAMPCUgc1XpXGGaCxY1YaYvFJwqFuQZAl2go,1100
64
- ezmsg_sigproc-2.7.0.dist-info/RECORD,,
62
+ ezmsg_sigproc-2.8.0.dist-info/METADATA,sha256=JZfuyxTvO6n3dIztHrFs531fF6agB_uKkPyXRMlW-EU,1908
63
+ ezmsg_sigproc-2.8.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
64
+ ezmsg_sigproc-2.8.0.dist-info/licenses/LICENSE,sha256=seu0tKhhAMPCUgc1XpXGGaCxY1YaYvFJwqFuQZAl2go,1100
65
+ ezmsg_sigproc-2.8.0.dist-info/RECORD,,