ezmsg-sigproc 2.2.0__py3-none-any.whl → 2.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,136 @@
1
+ import typing
2
+
3
+ import ezmsg.core as ez
4
+ import numpy as np
5
+ import numpy.typing as npt
6
+
7
+ from ezmsg.util.messages.util import replace
8
+ from ezmsg.util.messages.axisarray import AxisArray
9
+
10
+ from .base import (
11
+ BaseStatefulTransformer,
12
+ processor_state,
13
+ )
14
+
15
+ from .filterbank import (
16
+ FilterbankTransformer,
17
+ FilterbankSettings,
18
+ FilterbankMode,
19
+ MinPhaseMode,
20
+ )
21
+
22
+ from .kaiser import KaiserFilterSettings, kaiser_design_fun
23
+
24
+
25
+ class FilterbankDesignSettings(ez.Settings):
26
+ filters: typing.Iterable[KaiserFilterSettings]
27
+
28
+ mode: FilterbankMode = FilterbankMode.CONV
29
+ """
30
+ "conv", "fft", or "auto". If "auto", the mode is determined by the size of the input data.
31
+ fft mode is more efficient for long kernels. However, fft mode uses non-overlapping windows and will
32
+ incur a delay equal to the window length, which is larger than the largest kernel.
33
+ conv mode is less efficient but will return data for every incoming chunk regardless of how small it is
34
+ and thus can provide shorter latency updates.
35
+ """
36
+
37
+ min_phase: MinPhaseMode = MinPhaseMode.NONE
38
+ """
39
+ If not None, convert the kernels to minimum-phase equivalents. Valid options are
40
+ 'hilbert', 'homomorphic', and 'homomorphic-full'. Complex filters not supported.
41
+ See `scipy.signal.minimum_phase` for details.
42
+ """
43
+
44
+ axis: str = "time"
45
+ """The name of the axis to operate on. This should usually be "time"."""
46
+
47
+ new_axis: str = "kernel"
48
+ """The name of the new axis corresponding to the kernel index."""
49
+
50
+
51
+ @processor_state
52
+ class FilterbankDesignState:
53
+ filterbank: FilterbankTransformer | None = None
54
+ needs_redesign: bool = False
55
+
56
+
57
+ class FilterbankDesignTransformer(
58
+ BaseStatefulTransformer[
59
+ FilterbankDesignSettings, AxisArray, AxisArray, FilterbankDesignState
60
+ ],
61
+ ):
62
+ """
63
+ Transformer that designs and applies a filterbank based on Kaiser windowed FIR filters.
64
+ """
65
+
66
+ @classmethod
67
+ def get_message_type(cls, dir: str) -> type[AxisArray]:
68
+ if dir in ("in", "out"):
69
+ return AxisArray
70
+ else:
71
+ raise ValueError(f"Invalid direction: {dir}. Must be 'in' or 'out'.")
72
+
73
+ def update_settings(
74
+ self, new_settings: typing.Optional[FilterbankDesignSettings] = None, **kwargs
75
+ ) -> None:
76
+ """
77
+ Update settings and mark that filter coefficients need to be recalculated.
78
+
79
+ Args:
80
+ new_settings: Complete new settings object to replace current settings
81
+ **kwargs: Individual settings to update
82
+ """
83
+ # Update settings
84
+ if new_settings is not None:
85
+ self.settings = new_settings
86
+ else:
87
+ self.settings = replace(self.settings, **kwargs)
88
+
89
+ # Set flag to trigger recalculation on next message
90
+ if self.state.filterbank is not None:
91
+ self.state.needs_redesign = True
92
+
93
+ def _calculate_kernels(self, fs: float) -> list[npt.NDArray]:
94
+ kernels = []
95
+ for filter in self.settings.filters:
96
+ output = kaiser_design_fun(
97
+ fs,
98
+ cutoff=filter.cutoff,
99
+ ripple=filter.ripple,
100
+ width=filter.width,
101
+ pass_zero=filter.pass_zero,
102
+ wn_hz=filter.wn_hz,
103
+ )
104
+
105
+ kernels.append(np.array([1.0]) if output is None else output[0])
106
+ return kernels
107
+
108
+ def __call__(self, message: AxisArray) -> AxisArray:
109
+ if self.state.filterbank is not None and self.state.needs_redesign:
110
+ self._reset_state(message)
111
+ self.state.needs_redesign = False
112
+ return super().__call__(message)
113
+
114
+ def _hash_message(self, message: AxisArray) -> int:
115
+ axis = message.dims[0] if self.settings.axis is None else self.settings.axis
116
+ gain = message.axes[axis].gain if hasattr(message.axes[axis], "gain") else 1
117
+ axis_idx = message.get_axis_idx(axis)
118
+ samp_shape = message.data.shape[:axis_idx] + message.data.shape[axis_idx + 1 :]
119
+ return hash((message.key, samp_shape, gain))
120
+
121
+ def _reset_state(self, message: AxisArray) -> None:
122
+ axis_obj = message.axes[self.settings.axis]
123
+ assert isinstance(axis_obj, AxisArray.LinearAxis)
124
+ fs = 1 / axis_obj.gain
125
+ kernels = self._calculate_kernels(fs)
126
+ new_settings = FilterbankSettings(
127
+ kernels=kernels,
128
+ mode=self.settings.mode,
129
+ min_phase=self.settings.min_phase,
130
+ axis=self.settings.axis,
131
+ new_axis=self.settings.new_axis,
132
+ )
133
+ self.state.filterbank = FilterbankTransformer(settings=new_settings)
134
+
135
+ def _process(self, message: AxisArray) -> AxisArray:
136
+ return self.state.filterbank(message)
@@ -0,0 +1,119 @@
1
+ import functools
2
+ import typing
3
+
4
+ import numpy as np
5
+ import numpy.typing as npt
6
+ import scipy.signal
7
+
8
+ from .filter import (
9
+ FilterBaseSettings,
10
+ FilterByDesignTransformer,
11
+ BACoeffs,
12
+ BaseFilterByDesignTransformerUnit,
13
+ )
14
+
15
+
16
+ class FIRFilterSettings(FilterBaseSettings):
17
+ """Settings for :obj:`FIRFilter`. See scipy.signal.firwin for more details"""
18
+
19
+ # axis and coef_type are inherited from FilterBaseSettings
20
+
21
+ order: int = 0
22
+ """
23
+ Filter order/number of taps
24
+ """
25
+
26
+ cutoff: float | npt.ArrayLike | None = None
27
+ """
28
+ Cutoff frequency of filter (expressed in the same units as fs) OR an array of cutoff frequencies
29
+ (that is, band edges). In the former case, as a float, the cutoff frequency should correspond with
30
+ the half-amplitude point, where the attenuation will be -6dB. In the latter case, the frequencies in
31
+ cutoff should be positive and monotonically increasing between 0 and fs/2. The values 0 and fs/2 must
32
+ not be included in cutoff.
33
+ """
34
+
35
+ width: float | None = None
36
+ """
37
+ If width is not None, then assume it is the approximate width of the transition region (expressed in
38
+ the same units as fs) for use in Kaiser FIR filter design. In this case, the window argument is ignored.
39
+ """
40
+
41
+ window: str | None = "hamming"
42
+ """
43
+ Desired window to use. See scipy.signal.get_window for a list of windows and required parameters.
44
+ """
45
+
46
+ pass_zero: bool | str = True
47
+ """
48
+ If True, the gain at the frequency 0 (i.e., the “DC gain”) is 1. If False, the DC gain is 0. Can also
49
+ be a string argument for the desired filter type (equivalent to btype in IIR design functions).
50
+ {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}
51
+ """
52
+
53
+ scale: bool = True
54
+ """
55
+ Set to True to scale the coefficients so that the frequency response is exactly unity at a certain
56
+ frequency. That frequency is either:
57
+ * 0 (DC) if the first passband starts at 0 (i.e. pass_zero is True)
58
+ * fs/2 (the Nyquist frequency) if the first passband ends at fs/2
59
+ (i.e the filter is a single band highpass filter);
60
+ center of first passband otherwise
61
+ """
62
+
63
+ wn_hz: bool = True
64
+ """
65
+ Set False if provided Wn are normalized from 0 to 1, where 1 is the Nyquist frequency
66
+ """
67
+
68
+
69
+ def firwin_design_fun(
70
+ fs: float,
71
+ order: int = 0,
72
+ cutoff: float | npt.ArrayLike | None = None,
73
+ width: float | None = None,
74
+ window: str | None = "hamming",
75
+ pass_zero: bool | str = True,
76
+ scale: bool = True,
77
+ wn_hz: bool = True,
78
+ ) -> BACoeffs | None:
79
+ """
80
+ Design an `order`th-order FIR filter and return the filter coefficients.
81
+ See :obj:`FIRFilterSettings` for argument description.
82
+
83
+ Returns:
84
+ The filter taps as designed by firwin
85
+ """
86
+ if order > 0:
87
+ taps = scipy.signal.firwin(
88
+ numtaps=order,
89
+ cutoff=cutoff,
90
+ width=width,
91
+ window=window,
92
+ pass_zero=pass_zero,
93
+ scale=scale,
94
+ fs=fs if wn_hz else None,
95
+ )
96
+ return (taps, np.array([1.0]))
97
+ return None
98
+
99
+
100
+ class FIRFilterTransformer(FilterByDesignTransformer[FIRFilterSettings, BACoeffs]):
101
+ def get_design_function(
102
+ self,
103
+ ) -> typing.Callable[[float], BACoeffs | None]:
104
+ return functools.partial(
105
+ firwin_design_fun,
106
+ order=self.settings.order,
107
+ cutoff=self.settings.cutoff,
108
+ width=self.settings.width,
109
+ window=self.settings.window,
110
+ pass_zero=self.settings.pass_zero,
111
+ scale=self.settings.scale,
112
+ wn_hz=self.settings.wn_hz,
113
+ )
114
+
115
+
116
+ class FIRFilter(
117
+ BaseFilterByDesignTransformerUnit[FIRFilterSettings, FIRFilterTransformer]
118
+ ):
119
+ SETTINGS = FIRFilterSettings
@@ -0,0 +1,110 @@
1
+ import functools
2
+ import typing
3
+
4
+ import numpy as np
5
+ import numpy.typing as npt
6
+ import scipy.signal
7
+
8
+ from .filter import (
9
+ FilterBaseSettings,
10
+ FilterByDesignTransformer,
11
+ BACoeffs,
12
+ BaseFilterByDesignTransformerUnit,
13
+ )
14
+
15
+
16
+ class KaiserFilterSettings(FilterBaseSettings):
17
+ """Settings for :obj:`KaiserFilter`"""
18
+
19
+ # axis and coef_type are inherited from FilterBaseSettings
20
+
21
+ cutoff: float | npt.ArrayLike | None = None
22
+ """
23
+ Cutoff frequency of filter (expressed in the same units as fs) OR an array of cutoff frequencies
24
+ (that is, band edges). In the former case, as a float, the cutoff frequency should correspond with
25
+ the half-amplitude point, where the attenuation will be -6dB. In the latter case, the frequencies in
26
+ cutoff should be positive and monotonically increasing between 0 and fs/2. The values 0 and fs/2 must
27
+ not be included in cutoff.
28
+ """
29
+
30
+ ripple: float | None = None
31
+ """
32
+ Upper bound for the deviation (in dB) of the magnitude of the filter's frequency response from that of
33
+ the desired filter (not including frequencies in any transition intervals).
34
+ See scipy.signal.kaiserord for more information.
35
+ """
36
+
37
+ width: float | None = None
38
+ """
39
+ If width is not None, then assume it is the approximate width of the transition region (expressed in
40
+ the same units as fs) for use in Kaiser FIR filter design.
41
+ See scipy.signal.kaiserord for more information.
42
+ """
43
+
44
+ pass_zero: bool | str = True
45
+ """
46
+ If True, the gain at the frequency 0 (i.e., the “DC gain”) is 1. If False, the DC gain is 0. Can also
47
+ be a string argument for the desired filter type (equivalent to btype in IIR design functions).
48
+ {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}
49
+ """
50
+
51
+ wn_hz: bool = True
52
+ """
53
+ Set False if cutoff and width are normalized from 0 to 1, where 1 is the Nyquist frequency
54
+ """
55
+
56
+
57
+ def kaiser_design_fun(
58
+ fs: float,
59
+ cutoff: float | npt.ArrayLike | None = None,
60
+ ripple: float | None = None,
61
+ width: float | None = None,
62
+ pass_zero: bool | str = True,
63
+ wn_hz: bool = True,
64
+ ) -> BACoeffs | None:
65
+ """
66
+ Design an `order`th-order FIR Kaiser filter and return the filter coefficients.
67
+ See :obj:`FIRFilterSettings` for argument description.
68
+
69
+ Returns:
70
+ The filter taps as designed by firwin
71
+ """
72
+ if ripple is None or width is None or cutoff is None:
73
+ return None
74
+
75
+ width = width / (0.5 * fs) if wn_hz else width
76
+ n_taps, beta = scipy.signal.kaiserord(ripple, width)
77
+ if n_taps % 2 == 0:
78
+ n_taps += 1
79
+ taps = scipy.signal.firwin(
80
+ numtaps=n_taps,
81
+ cutoff=cutoff,
82
+ window=("kaiser", beta), # type: ignore
83
+ pass_zero=pass_zero, # type: ignore
84
+ scale=False,
85
+ fs=fs if wn_hz else None,
86
+ )
87
+
88
+ return (taps, np.array([1.0]))
89
+
90
+
91
+ class KaiserFilterTransformer(
92
+ FilterByDesignTransformer[KaiserFilterSettings, BACoeffs]
93
+ ):
94
+ def get_design_function(
95
+ self,
96
+ ) -> typing.Callable[[float], BACoeffs | None]:
97
+ return functools.partial(
98
+ kaiser_design_fun,
99
+ cutoff=self.settings.cutoff,
100
+ ripple=self.settings.ripple,
101
+ width=self.settings.width,
102
+ pass_zero=self.settings.pass_zero,
103
+ wn_hz=self.settings.wn_hz,
104
+ )
105
+
106
+
107
+ class KaiserFilter(
108
+ BaseFilterByDesignTransformerUnit[KaiserFilterSettings, KaiserFilterTransformer]
109
+ ):
110
+ SETTINGS = KaiserFilterSettings