ezmsg-sigproc 2.1.0__py3-none-any.whl → 2.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ezmsg/sigproc/__version__.py +16 -3
- ezmsg/sigproc/denormalize.py +86 -0
- ezmsg/sigproc/fbcca.py +332 -0
- ezmsg/sigproc/filter.py +37 -20
- ezmsg/sigproc/filterbankdesign.py +136 -0
- ezmsg/sigproc/firfilter.py +119 -0
- ezmsg/sigproc/gaussiansmoothing.py +93 -0
- ezmsg/sigproc/kaiser.py +110 -0
- ezmsg/sigproc/resample.py +186 -185
- ezmsg/sigproc/sampler.py +71 -83
- ezmsg/sigproc/util/axisarray_buffer.py +379 -0
- ezmsg/sigproc/util/buffer.py +470 -0
- ezmsg/sigproc/util/sparse.py +96 -2
- ezmsg/sigproc/window.py +12 -10
- ezmsg_sigproc-2.3.0.dist-info/METADATA +72 -0
- {ezmsg_sigproc-2.1.0.dist-info → ezmsg_sigproc-2.3.0.dist-info}/RECORD +18 -10
- {ezmsg_sigproc-2.1.0.dist-info → ezmsg_sigproc-2.3.0.dist-info}/WHEEL +1 -1
- ezmsg_sigproc-2.1.0.dist-info/METADATA +0 -62
- {ezmsg_sigproc-2.1.0.dist-info → ezmsg_sigproc-2.3.0.dist-info}/licenses/LICENSE.txt +0 -0
|
@@ -0,0 +1,119 @@
|
|
|
1
|
+
import functools
|
|
2
|
+
import typing
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import numpy.typing as npt
|
|
6
|
+
import scipy.signal
|
|
7
|
+
|
|
8
|
+
from .filter import (
|
|
9
|
+
FilterBaseSettings,
|
|
10
|
+
FilterByDesignTransformer,
|
|
11
|
+
BACoeffs,
|
|
12
|
+
BaseFilterByDesignTransformerUnit,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class FIRFilterSettings(FilterBaseSettings):
|
|
17
|
+
"""Settings for :obj:`FIRFilter`. See scipy.signal.firwin for more details"""
|
|
18
|
+
|
|
19
|
+
# axis and coef_type are inherited from FilterBaseSettings
|
|
20
|
+
|
|
21
|
+
order: int = 0
|
|
22
|
+
"""
|
|
23
|
+
Filter order/number of taps
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
cutoff: float | npt.ArrayLike | None = None
|
|
27
|
+
"""
|
|
28
|
+
Cutoff frequency of filter (expressed in the same units as fs) OR an array of cutoff frequencies
|
|
29
|
+
(that is, band edges). In the former case, as a float, the cutoff frequency should correspond with
|
|
30
|
+
the half-amplitude point, where the attenuation will be -6dB. In the latter case, the frequencies in
|
|
31
|
+
cutoff should be positive and monotonically increasing between 0 and fs/2. The values 0 and fs/2 must
|
|
32
|
+
not be included in cutoff.
|
|
33
|
+
"""
|
|
34
|
+
|
|
35
|
+
width: float | None = None
|
|
36
|
+
"""
|
|
37
|
+
If width is not None, then assume it is the approximate width of the transition region (expressed in
|
|
38
|
+
the same units as fs) for use in Kaiser FIR filter design. In this case, the window argument is ignored.
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
window: str | None = "hamming"
|
|
42
|
+
"""
|
|
43
|
+
Desired window to use. See scipy.signal.get_window for a list of windows and required parameters.
|
|
44
|
+
"""
|
|
45
|
+
|
|
46
|
+
pass_zero: bool | str = True
|
|
47
|
+
"""
|
|
48
|
+
If True, the gain at the frequency 0 (i.e., the “DC gain”) is 1. If False, the DC gain is 0. Can also
|
|
49
|
+
be a string argument for the desired filter type (equivalent to btype in IIR design functions).
|
|
50
|
+
{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}
|
|
51
|
+
"""
|
|
52
|
+
|
|
53
|
+
scale: bool = True
|
|
54
|
+
"""
|
|
55
|
+
Set to True to scale the coefficients so that the frequency response is exactly unity at a certain
|
|
56
|
+
frequency. That frequency is either:
|
|
57
|
+
* 0 (DC) if the first passband starts at 0 (i.e. pass_zero is True)
|
|
58
|
+
* fs/2 (the Nyquist frequency) if the first passband ends at fs/2
|
|
59
|
+
(i.e the filter is a single band highpass filter);
|
|
60
|
+
center of first passband otherwise
|
|
61
|
+
"""
|
|
62
|
+
|
|
63
|
+
wn_hz: bool = True
|
|
64
|
+
"""
|
|
65
|
+
Set False if provided Wn are normalized from 0 to 1, where 1 is the Nyquist frequency
|
|
66
|
+
"""
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def firwin_design_fun(
|
|
70
|
+
fs: float,
|
|
71
|
+
order: int = 0,
|
|
72
|
+
cutoff: float | npt.ArrayLike | None = None,
|
|
73
|
+
width: float | None = None,
|
|
74
|
+
window: str | None = "hamming",
|
|
75
|
+
pass_zero: bool | str = True,
|
|
76
|
+
scale: bool = True,
|
|
77
|
+
wn_hz: bool = True,
|
|
78
|
+
) -> BACoeffs | None:
|
|
79
|
+
"""
|
|
80
|
+
Design an `order`th-order FIR filter and return the filter coefficients.
|
|
81
|
+
See :obj:`FIRFilterSettings` for argument description.
|
|
82
|
+
|
|
83
|
+
Returns:
|
|
84
|
+
The filter taps as designed by firwin
|
|
85
|
+
"""
|
|
86
|
+
if order > 0:
|
|
87
|
+
taps = scipy.signal.firwin(
|
|
88
|
+
numtaps=order,
|
|
89
|
+
cutoff=cutoff,
|
|
90
|
+
width=width,
|
|
91
|
+
window=window,
|
|
92
|
+
pass_zero=pass_zero,
|
|
93
|
+
scale=scale,
|
|
94
|
+
fs=fs if wn_hz else None,
|
|
95
|
+
)
|
|
96
|
+
return (taps, np.array([1.0]))
|
|
97
|
+
return None
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
class FIRFilterTransformer(FilterByDesignTransformer[FIRFilterSettings, BACoeffs]):
|
|
101
|
+
def get_design_function(
|
|
102
|
+
self,
|
|
103
|
+
) -> typing.Callable[[float], BACoeffs | None]:
|
|
104
|
+
return functools.partial(
|
|
105
|
+
firwin_design_fun,
|
|
106
|
+
order=self.settings.order,
|
|
107
|
+
cutoff=self.settings.cutoff,
|
|
108
|
+
width=self.settings.width,
|
|
109
|
+
window=self.settings.window,
|
|
110
|
+
pass_zero=self.settings.pass_zero,
|
|
111
|
+
scale=self.settings.scale,
|
|
112
|
+
wn_hz=self.settings.wn_hz,
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
class FIRFilter(
|
|
117
|
+
BaseFilterByDesignTransformerUnit[FIRFilterSettings, FIRFilterTransformer]
|
|
118
|
+
):
|
|
119
|
+
SETTINGS = FIRFilterSettings
|
|
@@ -0,0 +1,93 @@
|
|
|
1
|
+
from typing import Callable
|
|
2
|
+
import warnings
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
from .filter import (
|
|
7
|
+
FilterBaseSettings,
|
|
8
|
+
BACoeffs,
|
|
9
|
+
FilterByDesignTransformer,
|
|
10
|
+
BaseFilterByDesignTransformerUnit,
|
|
11
|
+
)
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class GaussianSmoothingSettings(FilterBaseSettings):
|
|
15
|
+
sigma: float | None = 1.0
|
|
16
|
+
"""
|
|
17
|
+
sigma : float
|
|
18
|
+
Standard deviation of the Gaussian kernel.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
width: int | None = 4
|
|
22
|
+
"""
|
|
23
|
+
width : int
|
|
24
|
+
Number of standard deviations covered by the kernel window if kernel_size is not provided.
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
kernel_size: int | None = None
|
|
28
|
+
"""
|
|
29
|
+
kernel_size : int | None
|
|
30
|
+
Length of the kernel in samples. If provided, overrides automatic calculation.
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def gaussian_smoothing_filter_design(
|
|
35
|
+
sigma: float = 1.0,
|
|
36
|
+
width: int = 4,
|
|
37
|
+
kernel_size: int | None = None,
|
|
38
|
+
) -> BACoeffs | None:
|
|
39
|
+
# Parameter checks
|
|
40
|
+
if sigma <= 0:
|
|
41
|
+
raise ValueError(f"sigma must be positive. Received: {sigma}")
|
|
42
|
+
|
|
43
|
+
if width <= 0:
|
|
44
|
+
raise ValueError(f"width must be positive. Received: {width}")
|
|
45
|
+
|
|
46
|
+
if kernel_size is not None:
|
|
47
|
+
if kernel_size < 1:
|
|
48
|
+
raise ValueError(f"kernel_size must be >= 1. Received: {kernel_size}")
|
|
49
|
+
else:
|
|
50
|
+
kernel_size = int(2 * width * sigma + 1)
|
|
51
|
+
|
|
52
|
+
# Warn if kernel_size is smaller than recommended but don't fail
|
|
53
|
+
expected_kernel_size = int(2 * width * sigma + 1)
|
|
54
|
+
if kernel_size < expected_kernel_size:
|
|
55
|
+
## TODO: Either add a warning or determine appropriate kernel size and raise an error
|
|
56
|
+
warnings.warn(
|
|
57
|
+
f"Provided kernel_size {kernel_size} is smaller than recommended "
|
|
58
|
+
f"size {expected_kernel_size} for sigma={sigma} and width={width}. "
|
|
59
|
+
"The kernel may be truncated."
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
from scipy.signal.windows import gaussian
|
|
63
|
+
|
|
64
|
+
b = gaussian(kernel_size, std=sigma)
|
|
65
|
+
b /= np.sum(b) # Ensure normalization
|
|
66
|
+
a = np.array([1.0])
|
|
67
|
+
|
|
68
|
+
return b, a
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
class GaussianSmoothingFilterTransformer(
|
|
72
|
+
FilterByDesignTransformer[GaussianSmoothingSettings, BACoeffs]
|
|
73
|
+
):
|
|
74
|
+
def get_design_function(
|
|
75
|
+
self,
|
|
76
|
+
) -> Callable[[float], BACoeffs]:
|
|
77
|
+
# Create a wrapper function that ignores fs parameter since gaussian smoothing doesn't need it
|
|
78
|
+
def design_wrapper(fs: float) -> BACoeffs:
|
|
79
|
+
return gaussian_smoothing_filter_design(
|
|
80
|
+
sigma=self.settings.sigma,
|
|
81
|
+
width=self.settings.width,
|
|
82
|
+
kernel_size=self.settings.kernel_size,
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
return design_wrapper
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
class GaussianSmoothingFilter(
|
|
89
|
+
BaseFilterByDesignTransformerUnit[
|
|
90
|
+
GaussianSmoothingSettings, GaussianSmoothingFilterTransformer
|
|
91
|
+
]
|
|
92
|
+
):
|
|
93
|
+
SETTINGS = GaussianSmoothingSettings
|
ezmsg/sigproc/kaiser.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
1
|
+
import functools
|
|
2
|
+
import typing
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import numpy.typing as npt
|
|
6
|
+
import scipy.signal
|
|
7
|
+
|
|
8
|
+
from .filter import (
|
|
9
|
+
FilterBaseSettings,
|
|
10
|
+
FilterByDesignTransformer,
|
|
11
|
+
BACoeffs,
|
|
12
|
+
BaseFilterByDesignTransformerUnit,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class KaiserFilterSettings(FilterBaseSettings):
|
|
17
|
+
"""Settings for :obj:`KaiserFilter`"""
|
|
18
|
+
|
|
19
|
+
# axis and coef_type are inherited from FilterBaseSettings
|
|
20
|
+
|
|
21
|
+
cutoff: float | npt.ArrayLike | None = None
|
|
22
|
+
"""
|
|
23
|
+
Cutoff frequency of filter (expressed in the same units as fs) OR an array of cutoff frequencies
|
|
24
|
+
(that is, band edges). In the former case, as a float, the cutoff frequency should correspond with
|
|
25
|
+
the half-amplitude point, where the attenuation will be -6dB. In the latter case, the frequencies in
|
|
26
|
+
cutoff should be positive and monotonically increasing between 0 and fs/2. The values 0 and fs/2 must
|
|
27
|
+
not be included in cutoff.
|
|
28
|
+
"""
|
|
29
|
+
|
|
30
|
+
ripple: float | None = None
|
|
31
|
+
"""
|
|
32
|
+
Upper bound for the deviation (in dB) of the magnitude of the filter's frequency response from that of
|
|
33
|
+
the desired filter (not including frequencies in any transition intervals).
|
|
34
|
+
See scipy.signal.kaiserord for more information.
|
|
35
|
+
"""
|
|
36
|
+
|
|
37
|
+
width: float | None = None
|
|
38
|
+
"""
|
|
39
|
+
If width is not None, then assume it is the approximate width of the transition region (expressed in
|
|
40
|
+
the same units as fs) for use in Kaiser FIR filter design.
|
|
41
|
+
See scipy.signal.kaiserord for more information.
|
|
42
|
+
"""
|
|
43
|
+
|
|
44
|
+
pass_zero: bool | str = True
|
|
45
|
+
"""
|
|
46
|
+
If True, the gain at the frequency 0 (i.e., the “DC gain”) is 1. If False, the DC gain is 0. Can also
|
|
47
|
+
be a string argument for the desired filter type (equivalent to btype in IIR design functions).
|
|
48
|
+
{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
wn_hz: bool = True
|
|
52
|
+
"""
|
|
53
|
+
Set False if cutoff and width are normalized from 0 to 1, where 1 is the Nyquist frequency
|
|
54
|
+
"""
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def kaiser_design_fun(
|
|
58
|
+
fs: float,
|
|
59
|
+
cutoff: float | npt.ArrayLike | None = None,
|
|
60
|
+
ripple: float | None = None,
|
|
61
|
+
width: float | None = None,
|
|
62
|
+
pass_zero: bool | str = True,
|
|
63
|
+
wn_hz: bool = True,
|
|
64
|
+
) -> BACoeffs | None:
|
|
65
|
+
"""
|
|
66
|
+
Design an `order`th-order FIR Kaiser filter and return the filter coefficients.
|
|
67
|
+
See :obj:`FIRFilterSettings` for argument description.
|
|
68
|
+
|
|
69
|
+
Returns:
|
|
70
|
+
The filter taps as designed by firwin
|
|
71
|
+
"""
|
|
72
|
+
if ripple is None or width is None or cutoff is None:
|
|
73
|
+
return None
|
|
74
|
+
|
|
75
|
+
width = width / (0.5 * fs) if wn_hz else width
|
|
76
|
+
n_taps, beta = scipy.signal.kaiserord(ripple, width)
|
|
77
|
+
if n_taps % 2 == 0:
|
|
78
|
+
n_taps += 1
|
|
79
|
+
taps = scipy.signal.firwin(
|
|
80
|
+
numtaps=n_taps,
|
|
81
|
+
cutoff=cutoff,
|
|
82
|
+
window=("kaiser", beta), # type: ignore
|
|
83
|
+
pass_zero=pass_zero, # type: ignore
|
|
84
|
+
scale=False,
|
|
85
|
+
fs=fs if wn_hz else None,
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
return (taps, np.array([1.0]))
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
class KaiserFilterTransformer(
|
|
92
|
+
FilterByDesignTransformer[KaiserFilterSettings, BACoeffs]
|
|
93
|
+
):
|
|
94
|
+
def get_design_function(
|
|
95
|
+
self,
|
|
96
|
+
) -> typing.Callable[[float], BACoeffs | None]:
|
|
97
|
+
return functools.partial(
|
|
98
|
+
kaiser_design_fun,
|
|
99
|
+
cutoff=self.settings.cutoff,
|
|
100
|
+
ripple=self.settings.ripple,
|
|
101
|
+
width=self.settings.width,
|
|
102
|
+
pass_zero=self.settings.pass_zero,
|
|
103
|
+
wn_hz=self.settings.wn_hz,
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class KaiserFilter(
|
|
108
|
+
BaseFilterByDesignTransformerUnit[KaiserFilterSettings, KaiserFilterTransformer]
|
|
109
|
+
):
|
|
110
|
+
SETTINGS = KaiserFilterSettings
|