ezmsg-sigproc 1.8.1__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. ezmsg/sigproc/__version__.py +2 -2
  2. ezmsg/sigproc/activation.py +36 -39
  3. ezmsg/sigproc/adaptive_lattice_notch.py +231 -0
  4. ezmsg/sigproc/affinetransform.py +169 -163
  5. ezmsg/sigproc/aggregate.py +119 -104
  6. ezmsg/sigproc/bandpower.py +58 -52
  7. ezmsg/sigproc/base.py +1242 -0
  8. ezmsg/sigproc/butterworthfilter.py +37 -33
  9. ezmsg/sigproc/cheby.py +29 -17
  10. ezmsg/sigproc/combfilter.py +163 -0
  11. ezmsg/sigproc/decimate.py +19 -10
  12. ezmsg/sigproc/detrend.py +29 -0
  13. ezmsg/sigproc/diff.py +81 -0
  14. ezmsg/sigproc/downsample.py +78 -78
  15. ezmsg/sigproc/ewma.py +197 -0
  16. ezmsg/sigproc/extract_axis.py +41 -0
  17. ezmsg/sigproc/filter.py +257 -141
  18. ezmsg/sigproc/filterbank.py +247 -199
  19. ezmsg/sigproc/math/abs.py +17 -22
  20. ezmsg/sigproc/math/clip.py +24 -24
  21. ezmsg/sigproc/math/difference.py +34 -30
  22. ezmsg/sigproc/math/invert.py +13 -25
  23. ezmsg/sigproc/math/log.py +28 -33
  24. ezmsg/sigproc/math/scale.py +18 -26
  25. ezmsg/sigproc/quantize.py +71 -0
  26. ezmsg/sigproc/resample.py +298 -0
  27. ezmsg/sigproc/sampler.py +241 -259
  28. ezmsg/sigproc/scaler.py +55 -218
  29. ezmsg/sigproc/signalinjector.py +52 -43
  30. ezmsg/sigproc/slicer.py +81 -89
  31. ezmsg/sigproc/spectrogram.py +77 -75
  32. ezmsg/sigproc/spectrum.py +203 -168
  33. ezmsg/sigproc/synth.py +546 -393
  34. ezmsg/sigproc/transpose.py +131 -0
  35. ezmsg/sigproc/util/asio.py +156 -0
  36. ezmsg/sigproc/util/message.py +31 -0
  37. ezmsg/sigproc/util/profile.py +55 -12
  38. ezmsg/sigproc/util/typeresolution.py +83 -0
  39. ezmsg/sigproc/wavelets.py +154 -153
  40. ezmsg/sigproc/window.py +269 -211
  41. {ezmsg_sigproc-1.8.1.dist-info → ezmsg_sigproc-2.0.0.dist-info}/METADATA +2 -1
  42. ezmsg_sigproc-2.0.0.dist-info/RECORD +51 -0
  43. ezmsg_sigproc-1.8.1.dist-info/RECORD +0 -39
  44. {ezmsg_sigproc-1.8.1.dist-info → ezmsg_sigproc-2.0.0.dist-info}/WHEEL +0 -0
  45. {ezmsg_sigproc-1.8.1.dist-info → ezmsg_sigproc-2.0.0.dist-info}/licenses/LICENSE.txt +0 -0
@@ -1,95 +1,97 @@
1
- import typing
2
-
1
+ from typing import Generator
3
2
  import ezmsg.core as ez
4
3
  from ezmsg.util.messages.axisarray import AxisArray
5
- from ezmsg.util.generator import consumer, compose
6
4
  from ezmsg.util.messages.modify import modify_axis
7
5
 
8
- from .window import windowing, Anchor
9
- from .spectrum import spectrum, WindowFunction, SpectralTransform, SpectralOutput
10
- from .base import GenAxisArray
11
-
12
-
13
- @consumer
14
- def spectrogram(
15
- window_dur: float | None = None,
16
- window_shift: float | None = None,
17
- window_anchor: str | Anchor = Anchor.BEGINNING,
18
- window: WindowFunction = WindowFunction.HANNING,
19
- transform: SpectralTransform = SpectralTransform.REL_DB,
20
- output: SpectralOutput = SpectralOutput.POSITIVE,
21
- ) -> typing.Generator[AxisArray | None, AxisArray, None]:
22
- """
23
- Calculate a spectrogram on streaming data.
24
-
25
- Chains :obj:`ezmsg.sigproc.window.windowing` to apply a moving window on the data,
26
- :obj:`ezmsg.sigproc.spectrum.spectrum` to calculate spectra for each window,
27
- and finally :obj:`ezmsg.util.messages.modify.modify_axis` to convert the win axis back to time axis.
28
-
29
- Args:
30
- window_dur: See :obj:`ezmsg.sigproc.window.windowing`
31
- window_shift: See :obj:`ezmsg.sigproc.window.windowing`
32
- window_anchor: See :obj:`ezmsg.sigproc.window.windowing`
33
- window: See :obj:`ezmsg.sigproc.spectrum.spectrum`
34
- transform: See :obj:`ezmsg.sigproc.spectrum.spectrum`
35
- output: See :obj:`ezmsg.sigproc.spectrum.spectrum`
36
-
37
- Returns:
38
- A primed generator object that expects an :obj:`AxisArray` via `.send(axis_array)`
39
- with continuous data in its .data payload, and yields an :obj:`AxisArray` of time-frequency power values.
40
- """
41
-
42
- pipeline = compose(
43
- windowing(
44
- axis="time",
45
- newaxis="win",
46
- window_dur=window_dur,
47
- window_shift=window_shift,
48
- zero_pad_until="shift" if window_shift is not None else "input",
49
- anchor=window_anchor,
50
- ),
51
- spectrum(axis="time", window=window, transform=transform, output=output),
52
- modify_axis(name_map={"win": "time"}),
53
- )
54
-
55
- # State variables
56
- msg_out: AxisArray | None = None
57
-
58
- while True:
59
- msg_in: AxisArray = yield msg_out
60
- msg_out = pipeline(msg_in)
6
+ from .window import Anchor, WindowTransformer
7
+ from .spectrum import (
8
+ WindowFunction,
9
+ SpectralTransform,
10
+ SpectralOutput,
11
+ SpectrumTransformer,
12
+ )
13
+ from .base import (
14
+ CompositeProcessor,
15
+ BaseStatefulProcessor,
16
+ BaseTransformerUnit,
17
+ )
61
18
 
62
19
 
63
20
  class SpectrogramSettings(ez.Settings):
64
21
  """
65
- Settings for :obj:`Spectrogram`.
66
- See :obj:`spectrogram` for a description of the parameters.
22
+ Settings for :obj:`SpectrogramTransformer`.
67
23
  """
68
24
 
69
- window_dur: float | None = None # window duration in seconds
25
+ window_dur: float | None = None
26
+ """window duration in seconds."""
27
+
70
28
  window_shift: float | None = None
71
29
  """"window step in seconds. If None, window_shift == window_dur"""
30
+
72
31
  window_anchor: str | Anchor = Anchor.BEGINNING
32
+ """See :obj"`WindowTransformer`"""
73
33
 
74
- # See SpectrumSettings for details of following settings:
75
34
  window: WindowFunction = WindowFunction.HAMMING
76
- transform: SpectralTransform = SpectralTransform.REL_DB
77
- output: SpectralOutput = SpectralOutput.POSITIVE
78
-
35
+ """The :obj:`WindowFunction` to apply to the data slice prior to calculating the spectrum."""
79
36
 
80
- class Spectrogram(GenAxisArray):
81
- """
82
- Unit for :obj:`spectrogram`.
83
- """
37
+ transform: SpectralTransform = SpectralTransform.REL_DB
38
+ """The :obj:`SpectralTransform` to apply to the spectral magnitude."""
84
39
 
40
+ output: SpectralOutput = SpectralOutput.POSITIVE
41
+ """The :obj:`SpectralOutput` format."""
42
+
43
+
44
+ class SpectrogramTransformer(
45
+ CompositeProcessor[SpectrogramSettings, AxisArray, AxisArray]
46
+ ):
47
+ @staticmethod
48
+ def _initialize_processors(
49
+ settings: SpectrogramSettings,
50
+ ) -> dict[str, BaseStatefulProcessor | Generator[AxisArray, AxisArray, None]]:
51
+ return {
52
+ "windowing": WindowTransformer(
53
+ axis="time",
54
+ newaxis="win",
55
+ window_dur=settings.window_dur,
56
+ window_shift=settings.window_shift,
57
+ zero_pad_until="shift"
58
+ if settings.window_shift is not None
59
+ else "input",
60
+ anchor=settings.window_anchor,
61
+ ),
62
+ "spectrum": SpectrumTransformer(
63
+ axis="time",
64
+ window=settings.window,
65
+ transform=settings.transform,
66
+ output=settings.output,
67
+ ),
68
+ "modify_axis": modify_axis(name_map={"win": "time"}),
69
+ }
70
+
71
+
72
+ class Spectrogram(
73
+ BaseTransformerUnit[
74
+ SpectrogramSettings, AxisArray, AxisArray, SpectrogramTransformer
75
+ ]
76
+ ):
85
77
  SETTINGS = SpectrogramSettings
86
78
 
87
- def construct_generator(self):
88
- self.STATE.gen = spectrogram(
89
- window_dur=self.SETTINGS.window_dur,
90
- window_shift=self.SETTINGS.window_shift,
91
- window_anchor=self.SETTINGS.window_anchor,
92
- window=self.SETTINGS.window,
93
- transform=self.SETTINGS.transform,
94
- output=self.SETTINGS.output,
79
+
80
+ def spectrogram(
81
+ window_dur: float | None = None,
82
+ window_shift: float | None = None,
83
+ window_anchor: str | Anchor = Anchor.BEGINNING,
84
+ window: WindowFunction = WindowFunction.HAMMING,
85
+ transform: SpectralTransform = SpectralTransform.REL_DB,
86
+ output: SpectralOutput = SpectralOutput.POSITIVE,
87
+ ) -> SpectrogramTransformer:
88
+ return SpectrogramTransformer(
89
+ SpectrogramSettings(
90
+ window_dur=window_dur,
91
+ window_shift=window_shift,
92
+ window_anchor=window_anchor,
93
+ window=window,
94
+ transform=transform,
95
+ output=output,
95
96
  )
97
+ )
ezmsg/sigproc/spectrum.py CHANGED
@@ -3,15 +3,19 @@ from functools import partial
3
3
  import typing
4
4
 
5
5
  import numpy as np
6
+ import numpy.typing as npt
6
7
  import ezmsg.core as ez
7
8
  from ezmsg.util.messages.axisarray import (
8
9
  AxisArray,
9
10
  slice_along_axis,
10
11
  replace,
11
12
  )
12
- from ezmsg.util.generator import consumer
13
13
 
14
- from .base import GenAxisArray
14
+ from .base import (
15
+ BaseStatefulTransformer,
16
+ BaseTransformerUnit,
17
+ processor_state,
18
+ )
15
19
 
16
20
 
17
21
  class OptionsEnum(enum.Enum):
@@ -66,198 +70,229 @@ class SpectralOutput(OptionsEnum):
66
70
  NEGATIVE = "Negative Frequencies"
67
71
 
68
72
 
69
- @consumer
70
- def spectrum(
71
- axis: str | None = None,
72
- out_axis: str | None = "freq",
73
- window: WindowFunction = WindowFunction.HANNING,
74
- transform: SpectralTransform = SpectralTransform.REL_DB,
75
- output: SpectralOutput = SpectralOutput.POSITIVE,
76
- norm: str | None = "forward",
77
- do_fftshift: bool = True,
78
- nfft: int | None = None,
79
- ) -> typing.Generator[AxisArray, AxisArray, None]:
73
+ class SpectrumSettings(ez.Settings):
74
+ """
75
+ Settings for :obj:`Spectrum.
76
+ See :obj:`spectrum` for a description of the parameters.
77
+ """
78
+
79
+ axis: str | None = None
80
+ """
81
+ The name of the axis on which to calculate the spectrum.
82
+ Note: The axis must have an .axes entry of type LinearAxis, not CoordinateAxis.
80
83
  """
81
- Calculate a spectrum on a data slice.
82
84
 
83
- Args:
84
- axis: The name of the axis on which to calculate the spectrum.
85
- Note: The axis must have an .axes entry of type LinearAxis, not CoordinateAxis.
86
- out_axis: The name of the new axis. Defaults to "freq".
87
- window: The :obj:`WindowFunction` to apply to the data slice prior to calculating the spectrum.
88
- transform: The :obj:`SpectralTransform` to apply to the spectral magnitude.
89
- output: The :obj:`SpectralOutput` format.
90
- norm: Normalization mode. Default "forward" is best used when the inverse transform is not needed,
91
- for example when the goal is to get spectral power. Use "backward" (equivalent to None) to not
92
- scale the spectrum which is useful when the spectra will be manipulated and possibly inverse-transformed.
93
- See numpy.fft.fft for details.
94
- do_fftshift: Whether to apply fftshift to the output. Default is True. This value is ignored unless
95
- output is SpectralOutput.FULL.
96
- nfft: The number of points to use for the FFT. If None, the length of the input data is used.
85
+ # n: int | None = None # n parameter for fft
97
86
 
98
- Returns:
99
- A primed generator object that expects an :obj:`AxisArray` via `.send(axis_array)` containing continuous data
100
- and yields an :obj:`AxisArray` with data of spectral magnitudes or powers.
87
+ out_axis: str | None = "freq"
88
+ """The name of the new axis. Defaults to "freq". If none; don't change dim name"""
89
+
90
+ window: WindowFunction = WindowFunction.HAMMING
91
+ """The :obj:`WindowFunction` to apply to the data slice prior to calculating the spectrum."""
92
+
93
+ transform: SpectralTransform = SpectralTransform.REL_DB
94
+ """The :obj:`SpectralTransform` to apply to the spectral magnitude."""
95
+
96
+ output: SpectralOutput = SpectralOutput.POSITIVE
97
+ """The :obj:`SpectralOutput` format."""
98
+
99
+ norm: str | None = "forward"
100
+ """
101
+ Normalization mode. Default "forward" is best used when the inverse transform is not needed,
102
+ for example when the goal is to get spectral power. Use "backward" (equivalent to None) to not
103
+ scale the spectrum which is useful when the spectra will be manipulated and possibly inverse-transformed.
104
+ See numpy.fft.fft for details.
105
+ """
106
+
107
+ do_fftshift: bool = True
101
108
  """
102
- msg_out = AxisArray(np.array([]), dims=[""])
109
+ Whether to apply fftshift to the output. Default is True.
110
+ This value is ignored unless output is SpectralOutput.FULL.
111
+ """
112
+
113
+ nfft: int | None = None
114
+ """
115
+ The number of points to use for the FFT. If None, the length of the input data is used.
116
+ """
117
+
103
118
 
104
- # State variables
105
- apply_window = window != WindowFunction.NONE
106
- do_fftshift &= output == SpectralOutput.FULL
107
- f_sl = slice(None)
119
+ @processor_state
120
+ class SpectrumState:
121
+ f_sl: slice | None = None
122
+ # I would prefer `slice(None)` as f_sl default but this fails because it is mutable.
108
123
  freq_axis: AxisArray.LinearAxis | None = None
109
124
  fftfun: typing.Callable | None = None
110
125
  f_transform: typing.Callable | None = None
111
126
  new_dims: list[str] | None = None
127
+ window: npt.NDArray | None = None
128
+
129
+
130
+ class SpectrumTransformer(
131
+ BaseStatefulTransformer[SpectrumSettings, AxisArray, AxisArray, SpectrumState]
132
+ ):
133
+ def _hash_message(self, message: AxisArray) -> int:
134
+ axis = self.settings.axis or message.dims[0]
135
+ ax_idx = message.get_axis_idx(axis)
136
+ ax_info = message.axes[axis]
137
+ targ_len = message.data.shape[ax_idx]
138
+ return hash(
139
+ (targ_len, message.data.ndim, message.data.dtype.kind, ax_idx, ax_info.gain)
140
+ )
112
141
 
113
- # Reset if input changes substantially
114
- check_input = {
115
- "n_time": None, # Need to recalc windows
116
- "ndim": None, # Input ndim changed: Need to recalc windows
117
- "kind": None, # Input dtype changed: Need to re-init fft funcs
118
- "ax_idx": None, # Axis index changed: Need to re-init fft funcs
119
- "gain": None, # Gain changed: Need to re-calc freqs
120
- # "key": None # There's no temporal continuity; we can ignore key changes
121
- }
122
-
123
- while True:
124
- msg_in: AxisArray = yield msg_out
125
-
126
- # Get signal properties
127
- axis = axis or msg_in.dims[0]
128
- ax_idx = msg_in.get_axis_idx(axis)
129
- ax_info = msg_in.axes[axis]
130
- targ_len = msg_in.data.shape[ax_idx]
131
-
132
- # Check signal properties for change
133
- b_reset = targ_len != check_input["n_time"]
134
- b_reset = b_reset or msg_in.data.ndim != check_input["ndim"]
135
- b_reset = b_reset or msg_in.data.dtype.kind != check_input["kind"]
136
- b_reset = b_reset or ax_idx != check_input["ax_idx"]
137
- b_reset = b_reset or ax_info.gain != check_input["gain"]
138
- if b_reset:
139
- check_input["n_time"] = targ_len
140
- check_input["ndim"] = msg_in.data.ndim
141
- check_input["kind"] = msg_in.data.dtype.kind
142
- check_input["ax_idx"] = ax_idx
143
- check_input["gain"] = ax_info.gain
144
-
145
- nfft = nfft or targ_len
146
-
147
- # Pre-calculate windowing
148
- window = WINDOWS[window](targ_len)
149
- window = window.reshape(
150
- [1] * ax_idx
151
- + [
152
- len(window),
153
- ]
154
- + [1] * (msg_in.data.ndim - 1 - ax_idx)
155
- )
156
- if transform != SpectralTransform.RAW_COMPLEX and not (
157
- transform == SpectralTransform.REAL
158
- or transform == SpectralTransform.IMAG
159
- ):
160
- scale = np.sum(window**2.0) * ax_info.gain
161
-
162
- # Pre-calculate frequencies and select our fft function.
163
- b_complex = msg_in.data.dtype.kind == "c"
164
- if (not b_complex) and output == SpectralOutput.POSITIVE:
165
- # If input is not complex and desired output is SpectralOutput.POSITIVE, we can save some computation
166
- # by using rfft and rfftfreq.
167
- fftfun = partial(np.fft.rfft, n=nfft, axis=ax_idx, norm=norm)
168
- freqs = np.fft.rfftfreq(nfft, d=ax_info.gain * targ_len / nfft)
169
- else:
170
- fftfun = partial(np.fft.fft, n=nfft, axis=ax_idx, norm=norm)
171
- freqs = np.fft.fftfreq(nfft, d=ax_info.gain * targ_len / nfft)
172
- if output == SpectralOutput.POSITIVE:
173
- f_sl = slice(None, nfft // 2 + 1 - (nfft % 2))
174
- elif output == SpectralOutput.NEGATIVE:
175
- freqs = np.fft.fftshift(freqs, axes=-1)
176
- f_sl = slice(None, nfft // 2 + 1)
177
- elif do_fftshift: # and FULL
178
- freqs = np.fft.fftshift(freqs, axes=-1)
179
- freqs = freqs[f_sl]
180
- freqs = freqs.tolist() # To please type checking
181
- freq_axis = AxisArray.LinearAxis(
182
- unit="Hz", gain=freqs[1] - freqs[0], offset=freqs[0]
142
+ def _reset_state(self, message: AxisArray) -> None:
143
+ axis = self.settings.axis or message.dims[0]
144
+ ax_idx = message.get_axis_idx(axis)
145
+ ax_info = message.axes[axis]
146
+ targ_len = message.data.shape[ax_idx]
147
+ nfft = self.settings.nfft or targ_len
148
+
149
+ # Pre-calculate windowing
150
+ window = WINDOWS[self.settings.window](targ_len)
151
+ window = window.reshape(
152
+ [1] * ax_idx
153
+ + [
154
+ len(window),
155
+ ]
156
+ + [1] * (message.data.ndim - 1 - ax_idx)
157
+ )
158
+ if self.settings.transform != SpectralTransform.RAW_COMPLEX and not (
159
+ self.settings.transform == SpectralTransform.REAL
160
+ or self.settings.transform == SpectralTransform.IMAG
161
+ ):
162
+ scale = np.sum(window**2.0) * ax_info.gain
163
+
164
+ if self.settings.window != WindowFunction.NONE:
165
+ self.state.window = window
166
+
167
+ # Pre-calculate frequencies and select our fft function.
168
+ b_complex = message.data.dtype.kind == "c"
169
+ self.state.f_sl = slice(None)
170
+ if (not b_complex) and self.settings.output == SpectralOutput.POSITIVE:
171
+ # If input is not complex and desired output is SpectralOutput.POSITIVE, we can save some computation
172
+ # by using rfft and rfftfreq.
173
+ self.state.fftfun = partial(
174
+ np.fft.rfft, n=nfft, axis=ax_idx, norm=self.settings.norm
183
175
  )
184
- if out_axis is None:
185
- out_axis = axis
186
- new_dims = (
187
- msg_in.dims[:ax_idx]
188
- + [
189
- out_axis,
190
- ]
191
- + msg_in.dims[ax_idx + 1 :]
176
+ freqs = np.fft.rfftfreq(nfft, d=ax_info.gain * targ_len / nfft)
177
+ else:
178
+ self.state.fftfun = partial(
179
+ np.fft.fft, n=nfft, axis=ax_idx, norm=self.settings.norm
192
180
  )
181
+ freqs = np.fft.fftfreq(nfft, d=ax_info.gain * targ_len / nfft)
182
+ if self.settings.output == SpectralOutput.POSITIVE:
183
+ self.state.f_sl = slice(None, nfft // 2 + 1 - (nfft % 2))
184
+ elif self.settings.output == SpectralOutput.NEGATIVE:
185
+ freqs = np.fft.fftshift(freqs, axes=-1)
186
+ self.state.f_sl = slice(None, nfft // 2 + 1)
187
+ elif (
188
+ self.settings.do_fftshift
189
+ and self.settings.output == SpectralOutput.FULL
190
+ ):
191
+ freqs = np.fft.fftshift(freqs, axes=-1)
192
+ freqs = freqs[self.state.f_sl]
193
+ freqs = freqs.tolist() # To please type checking
194
+ self.state.freq_axis = AxisArray.LinearAxis(
195
+ unit="Hz", gain=freqs[1] - freqs[0], offset=freqs[0]
196
+ )
197
+ self.state.new_dims = (
198
+ message.dims[:ax_idx]
199
+ + [
200
+ self.settings.out_axis or axis,
201
+ ]
202
+ + message.dims[ax_idx + 1 :]
203
+ )
193
204
 
194
- def f_transform(x):
195
- return x
205
+ def f_transform(x):
206
+ return x
196
207
 
197
- if transform != SpectralTransform.RAW_COMPLEX:
198
- if transform == SpectralTransform.REAL:
208
+ if self.settings.transform != SpectralTransform.RAW_COMPLEX:
209
+ if self.settings.transform == SpectralTransform.REAL:
199
210
 
200
- def f_transform(x):
201
- return x.real
202
- elif transform == SpectralTransform.IMAG:
211
+ def f_transform(x):
212
+ return x.real
213
+ elif self.settings.transform == SpectralTransform.IMAG:
203
214
 
204
- def f_transform(x):
205
- return x.imag
206
- else:
207
-
208
- def f1(x):
209
- return (np.abs(x) ** 2.0) / scale
210
-
211
- if transform == SpectralTransform.REL_DB:
215
+ def f_transform(x):
216
+ return x.imag
217
+ else:
212
218
 
213
- def f_transform(x):
214
- return 10 * np.log10(f1(x))
215
- else:
216
- f_transform = f1
219
+ def f1(x):
220
+ return (np.abs(x) ** 2.0) / scale
217
221
 
218
- new_axes = {k: v for k, v in msg_in.axes.items() if k not in [out_axis, axis]}
219
- new_axes[out_axis] = freq_axis
222
+ if self.settings.transform == SpectralTransform.REL_DB:
220
223
 
221
- if apply_window:
222
- win_dat = msg_in.data * window
224
+ def f_transform(x):
225
+ return 10 * np.log10(f1(x))
226
+ else:
227
+ f_transform = f1
228
+ self.state.f_transform = f_transform
229
+
230
+ def _process(self, message: AxisArray) -> AxisArray:
231
+ axis = self.settings.axis or message.dims[0]
232
+ ax_idx = message.get_axis_idx(axis)
233
+ targ_len = message.data.shape[ax_idx]
234
+
235
+ new_axes = {
236
+ k: v
237
+ for k, v in message.axes.items()
238
+ if k not in [self.settings.out_axis, axis]
239
+ }
240
+ new_axes[self.settings.out_axis or axis] = self.state.freq_axis
241
+
242
+ if self.state.window is not None:
243
+ win_dat = message.data * self.state.window
223
244
  else:
224
- win_dat = msg_in.data
225
- spec = fftfun(win_dat, n=nfft, axis=ax_idx, norm=norm)
245
+ win_dat = message.data
246
+ spec = self.state.fftfun(
247
+ win_dat,
248
+ n=self.settings.nfft or targ_len,
249
+ axis=ax_idx,
250
+ norm=self.settings.norm,
251
+ )
226
252
  # Note: norm="forward" equivalent to `/ nfft`
227
- if do_fftshift or output == SpectralOutput.NEGATIVE:
253
+ if (
254
+ self.settings.do_fftshift and self.settings.output == SpectralOutput.FULL
255
+ ) or self.settings.output == SpectralOutput.NEGATIVE:
228
256
  spec = np.fft.fftshift(spec, axes=ax_idx)
229
- spec = f_transform(spec)
230
- spec = slice_along_axis(spec, f_sl, ax_idx)
231
-
232
- msg_out = replace(msg_in, data=spec, dims=new_dims, axes=new_axes)
257
+ spec = self.state.f_transform(spec)
258
+ spec = slice_along_axis(spec, self.state.f_sl, ax_idx)
233
259
 
260
+ msg_out = replace(message, data=spec, dims=self.state.new_dims, axes=new_axes)
261
+ return msg_out
234
262
 
235
- class SpectrumSettings(ez.Settings):
236
- """
237
- Settings for :obj:`Spectrum.
238
- See :obj:`spectrum` for a description of the parameters.
239
- """
240
-
241
- axis: str | None = None
242
- # n: int | None = None # n parameter for fft
243
- out_axis: str | None = "freq" # If none; don't change dim name
244
- window: WindowFunction = WindowFunction.HAMMING
245
- transform: SpectralTransform = SpectralTransform.REL_DB
246
- output: SpectralOutput = SpectralOutput.POSITIVE
247
-
248
-
249
- class Spectrum(GenAxisArray):
250
- """Unit for :obj:`spectrum`"""
251
263
 
264
+ class Spectrum(
265
+ BaseTransformerUnit[SpectrumSettings, AxisArray, AxisArray, SpectrumTransformer]
266
+ ):
252
267
  SETTINGS = SpectrumSettings
253
268
 
254
- INPUT_SETTINGS = ez.InputStream(SpectrumSettings)
255
269
 
256
- def construct_generator(self):
257
- self.STATE.gen = spectrum(
258
- axis=self.SETTINGS.axis,
259
- out_axis=self.SETTINGS.out_axis,
260
- window=self.SETTINGS.window,
261
- transform=self.SETTINGS.transform,
262
- output=self.SETTINGS.output,
270
+ def spectrum(
271
+ axis: str | None = None,
272
+ out_axis: str | None = "freq",
273
+ window: WindowFunction = WindowFunction.HANNING,
274
+ transform: SpectralTransform = SpectralTransform.REL_DB,
275
+ output: SpectralOutput = SpectralOutput.POSITIVE,
276
+ norm: str | None = "forward",
277
+ do_fftshift: bool = True,
278
+ nfft: int | None = None,
279
+ ) -> SpectrumTransformer:
280
+ """
281
+ Calculate a spectrum on a data slice.
282
+
283
+ Returns:
284
+ A :obj:`SpectrumTransformer` object that expects an :obj:`AxisArray` via `.(axis_array)` (__call__)
285
+ containing continuous data and returns an :obj:`AxisArray` with data of spectral magnitudes or powers.
286
+ """
287
+ return SpectrumTransformer(
288
+ SpectrumSettings(
289
+ axis=axis,
290
+ out_axis=out_axis,
291
+ window=window,
292
+ transform=transform,
293
+ output=output,
294
+ norm=norm,
295
+ do_fftshift=do_fftshift,
296
+ nfft=nfft,
263
297
  )
298
+ )