ezmsg-sigproc 1.7.0__py3-none-any.whl → 2.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ezmsg/sigproc/__version__.py +22 -4
- ezmsg/sigproc/activation.py +31 -40
- ezmsg/sigproc/adaptive_lattice_notch.py +212 -0
- ezmsg/sigproc/affinetransform.py +171 -169
- ezmsg/sigproc/aggregate.py +190 -97
- ezmsg/sigproc/bandpower.py +60 -55
- ezmsg/sigproc/base.py +143 -33
- ezmsg/sigproc/butterworthfilter.py +34 -38
- ezmsg/sigproc/butterworthzerophase.py +305 -0
- ezmsg/sigproc/cheby.py +23 -17
- ezmsg/sigproc/combfilter.py +160 -0
- ezmsg/sigproc/coordinatespaces.py +159 -0
- ezmsg/sigproc/decimate.py +15 -10
- ezmsg/sigproc/denormalize.py +78 -0
- ezmsg/sigproc/detrend.py +28 -0
- ezmsg/sigproc/diff.py +82 -0
- ezmsg/sigproc/downsample.py +72 -81
- ezmsg/sigproc/ewma.py +217 -0
- ezmsg/sigproc/ewmfilter.py +1 -1
- ezmsg/sigproc/extract_axis.py +39 -0
- ezmsg/sigproc/fbcca.py +307 -0
- ezmsg/sigproc/filter.py +254 -148
- ezmsg/sigproc/filterbank.py +226 -214
- ezmsg/sigproc/filterbankdesign.py +129 -0
- ezmsg/sigproc/fir_hilbert.py +336 -0
- ezmsg/sigproc/fir_pmc.py +209 -0
- ezmsg/sigproc/firfilter.py +117 -0
- ezmsg/sigproc/gaussiansmoothing.py +89 -0
- ezmsg/sigproc/kaiser.py +106 -0
- ezmsg/sigproc/linear.py +120 -0
- ezmsg/sigproc/math/abs.py +23 -22
- ezmsg/sigproc/math/add.py +120 -0
- ezmsg/sigproc/math/clip.py +33 -25
- ezmsg/sigproc/math/difference.py +117 -43
- ezmsg/sigproc/math/invert.py +18 -25
- ezmsg/sigproc/math/log.py +38 -33
- ezmsg/sigproc/math/scale.py +24 -25
- ezmsg/sigproc/messages.py +1 -2
- ezmsg/sigproc/quantize.py +68 -0
- ezmsg/sigproc/resample.py +278 -0
- ezmsg/sigproc/rollingscaler.py +232 -0
- ezmsg/sigproc/sampler.py +209 -254
- ezmsg/sigproc/scaler.py +93 -218
- ezmsg/sigproc/signalinjector.py +44 -43
- ezmsg/sigproc/slicer.py +74 -102
- ezmsg/sigproc/spectral.py +3 -3
- ezmsg/sigproc/spectrogram.py +70 -70
- ezmsg/sigproc/spectrum.py +187 -173
- ezmsg/sigproc/transpose.py +134 -0
- ezmsg/sigproc/util/__init__.py +0 -0
- ezmsg/sigproc/util/asio.py +25 -0
- ezmsg/sigproc/util/axisarray_buffer.py +365 -0
- ezmsg/sigproc/util/buffer.py +449 -0
- ezmsg/sigproc/util/message.py +17 -0
- ezmsg/sigproc/util/profile.py +23 -0
- ezmsg/sigproc/util/sparse.py +115 -0
- ezmsg/sigproc/util/typeresolution.py +17 -0
- ezmsg/sigproc/wavelets.py +147 -154
- ezmsg/sigproc/window.py +248 -210
- ezmsg_sigproc-2.10.0.dist-info/METADATA +60 -0
- ezmsg_sigproc-2.10.0.dist-info/RECORD +65 -0
- {ezmsg_sigproc-1.7.0.dist-info → ezmsg_sigproc-2.10.0.dist-info}/WHEEL +1 -1
- ezmsg/sigproc/synth.py +0 -621
- ezmsg_sigproc-1.7.0.dist-info/METADATA +0 -58
- ezmsg_sigproc-1.7.0.dist-info/RECORD +0 -36
- /ezmsg_sigproc-1.7.0.dist-info/licenses/LICENSE.txt → /ezmsg_sigproc-2.10.0.dist-info/licenses/LICENSE +0 -0
ezmsg/sigproc/__version__.py
CHANGED
|
@@ -1,16 +1,34 @@
|
|
|
1
|
-
# file generated by
|
|
1
|
+
# file generated by setuptools-scm
|
|
2
2
|
# don't change, don't track in version control
|
|
3
|
+
|
|
4
|
+
__all__ = [
|
|
5
|
+
"__version__",
|
|
6
|
+
"__version_tuple__",
|
|
7
|
+
"version",
|
|
8
|
+
"version_tuple",
|
|
9
|
+
"__commit_id__",
|
|
10
|
+
"commit_id",
|
|
11
|
+
]
|
|
12
|
+
|
|
3
13
|
TYPE_CHECKING = False
|
|
4
14
|
if TYPE_CHECKING:
|
|
5
|
-
from typing import Tuple
|
|
15
|
+
from typing import Tuple
|
|
16
|
+
from typing import Union
|
|
17
|
+
|
|
6
18
|
VERSION_TUPLE = Tuple[Union[int, str], ...]
|
|
19
|
+
COMMIT_ID = Union[str, None]
|
|
7
20
|
else:
|
|
8
21
|
VERSION_TUPLE = object
|
|
22
|
+
COMMIT_ID = object
|
|
9
23
|
|
|
10
24
|
version: str
|
|
11
25
|
__version__: str
|
|
12
26
|
__version_tuple__: VERSION_TUPLE
|
|
13
27
|
version_tuple: VERSION_TUPLE
|
|
28
|
+
commit_id: COMMIT_ID
|
|
29
|
+
__commit_id__: COMMIT_ID
|
|
30
|
+
|
|
31
|
+
__version__ = version = '2.10.0'
|
|
32
|
+
__version_tuple__ = version_tuple = (2, 10, 0)
|
|
14
33
|
|
|
15
|
-
|
|
16
|
-
__version_tuple__ = version_tuple = (1, 7, 0)
|
|
34
|
+
__commit_id__ = commit_id = None
|
ezmsg/sigproc/activation.py
CHANGED
|
@@ -1,14 +1,10 @@
|
|
|
1
|
-
import typing
|
|
2
|
-
|
|
3
|
-
import numpy as np
|
|
4
|
-
import scipy.special
|
|
5
1
|
import ezmsg.core as ez
|
|
2
|
+
import scipy.special
|
|
3
|
+
from ezmsg.baseproc import BaseTransformer, BaseTransformerUnit
|
|
6
4
|
from ezmsg.util.messages.axisarray import AxisArray
|
|
7
5
|
from ezmsg.util.messages.util import replace
|
|
8
|
-
from ezmsg.util.generator import consumer
|
|
9
6
|
|
|
10
7
|
from .spectral import OptionsEnum
|
|
11
|
-
from .base import GenAxisArray
|
|
12
8
|
|
|
13
9
|
|
|
14
10
|
class ActivationFunction(OptionsEnum):
|
|
@@ -39,10 +35,35 @@ ACTIVATIONS = {
|
|
|
39
35
|
}
|
|
40
36
|
|
|
41
37
|
|
|
42
|
-
|
|
38
|
+
class ActivationSettings(ez.Settings):
|
|
39
|
+
function: str | ActivationFunction = ActivationFunction.NONE
|
|
40
|
+
"""An enum value from ActivationFunction or a string representing the activation function.
|
|
41
|
+
Possible values are: SIGMOID, EXPIT, LOGIT, LOGEXPIT, "sigmoid", "expit", "logit", "log_expit".
|
|
42
|
+
SIGMOID and EXPIT are equivalent. See :obj:`scipy.special.expit` for more details."""
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class ActivationTransformer(BaseTransformer[ActivationSettings, AxisArray, AxisArray]):
|
|
46
|
+
def _process(self, message: AxisArray) -> AxisArray:
|
|
47
|
+
if type(self.settings.function) is ActivationFunction:
|
|
48
|
+
func = ACTIVATIONS[self.settings.function]
|
|
49
|
+
else:
|
|
50
|
+
# str type handling
|
|
51
|
+
function = self.settings.function.lower()
|
|
52
|
+
if function not in ActivationFunction.options():
|
|
53
|
+
raise ValueError(f"Unrecognized activation function {function}. Must be one of {ACTIVATIONS.keys()}")
|
|
54
|
+
function = list(ACTIVATIONS.keys())[ActivationFunction.options().index(function)]
|
|
55
|
+
func = ACTIVATIONS[function]
|
|
56
|
+
|
|
57
|
+
return replace(message, data=func(message.data))
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
class Activation(BaseTransformerUnit[ActivationSettings, AxisArray, AxisArray, ActivationTransformer]):
|
|
61
|
+
SETTINGS = ActivationSettings
|
|
62
|
+
|
|
63
|
+
|
|
43
64
|
def activation(
|
|
44
65
|
function: str | ActivationFunction,
|
|
45
|
-
) ->
|
|
66
|
+
) -> ActivationTransformer:
|
|
46
67
|
"""
|
|
47
68
|
Transform the data with a simple activation function.
|
|
48
69
|
|
|
@@ -51,37 +72,7 @@ def activation(
|
|
|
51
72
|
Possible values are: SIGMOID, EXPIT, LOGIT, LOGEXPIT, "sigmoid", "expit", "logit", "log_expit".
|
|
52
73
|
SIGMOID and EXPIT are equivalent. See :obj:`scipy.special.expit` for more details.
|
|
53
74
|
|
|
54
|
-
Returns:
|
|
55
|
-
with the data payload containing a transformed version of the input data.
|
|
75
|
+
Returns: :obj:`ActivationTransformer`
|
|
56
76
|
|
|
57
77
|
"""
|
|
58
|
-
|
|
59
|
-
func = ACTIVATIONS[function]
|
|
60
|
-
else:
|
|
61
|
-
# str type. There's probably an easier way to support either enum or str argument. Oh well this works.
|
|
62
|
-
function: str = function.lower()
|
|
63
|
-
if function not in ActivationFunction.options():
|
|
64
|
-
raise ValueError(
|
|
65
|
-
f"Unrecognized activation function {function}. Must be one of {ACTIVATIONS.keys()}"
|
|
66
|
-
)
|
|
67
|
-
function = list(ACTIVATIONS.keys())[
|
|
68
|
-
ActivationFunction.options().index(function)
|
|
69
|
-
]
|
|
70
|
-
func = ACTIVATIONS[function]
|
|
71
|
-
|
|
72
|
-
msg_out = AxisArray(np.array([]), dims=[""])
|
|
73
|
-
|
|
74
|
-
while True:
|
|
75
|
-
msg_in: AxisArray = yield msg_out
|
|
76
|
-
msg_out = replace(msg_in, data=func(msg_in.data))
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
class ActivationSettings(ez.Settings):
|
|
80
|
-
function: str = ActivationFunction.NONE
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
class Activation(GenAxisArray):
|
|
84
|
-
SETTINGS = ActivationSettings
|
|
85
|
-
|
|
86
|
-
def construct_generator(self):
|
|
87
|
-
self.STATE.gen = activation(function=self.SETTINGS.function)
|
|
78
|
+
return ActivationTransformer(ActivationSettings(function=function))
|
|
@@ -0,0 +1,212 @@
|
|
|
1
|
+
import ezmsg.core as ez
|
|
2
|
+
import numpy as np
|
|
3
|
+
import numpy.typing as npt
|
|
4
|
+
import scipy.signal
|
|
5
|
+
from ezmsg.baseproc import BaseStatefulTransformer, processor_state
|
|
6
|
+
from ezmsg.util.messages.axisarray import AxisArray, CoordinateAxis
|
|
7
|
+
from ezmsg.util.messages.util import replace
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class AdaptiveLatticeNotchFilterSettings(ez.Settings):
|
|
11
|
+
"""Settings for the Adaptive Lattice Notch Filter."""
|
|
12
|
+
|
|
13
|
+
gamma: float = 0.995
|
|
14
|
+
"""Pole-zero contraction factor"""
|
|
15
|
+
mu: float = 0.99
|
|
16
|
+
"""Smoothing factor"""
|
|
17
|
+
eta: float = 0.99
|
|
18
|
+
"""Forgetting factor"""
|
|
19
|
+
axis: str = "time"
|
|
20
|
+
"""Axis to apply filter to"""
|
|
21
|
+
init_notch_freq: float | None = None
|
|
22
|
+
"""Initial notch frequency. Should be < nyquist."""
|
|
23
|
+
chunkwise: bool = False
|
|
24
|
+
"""Speed up processing by updating the target freq once per chunk only."""
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@processor_state
|
|
28
|
+
class AdaptiveLatticeNotchFilterState:
|
|
29
|
+
"""State for the Adaptive Lattice Notch Filter."""
|
|
30
|
+
|
|
31
|
+
s_history: npt.NDArray | None = None
|
|
32
|
+
"""Historical `s` values for the adaptive filter."""
|
|
33
|
+
|
|
34
|
+
p: npt.NDArray | None = None
|
|
35
|
+
"""Accumulated product for reflection coefficient update"""
|
|
36
|
+
|
|
37
|
+
q: npt.NDArray | None = None
|
|
38
|
+
"""Accumulated product for reflection coefficient update"""
|
|
39
|
+
|
|
40
|
+
k1: npt.NDArray | None = None
|
|
41
|
+
"""Reflection coefficient"""
|
|
42
|
+
|
|
43
|
+
freq_template: CoordinateAxis | None = None
|
|
44
|
+
"""Template for the frequency axis on the output"""
|
|
45
|
+
|
|
46
|
+
zi: npt.NDArray | None = None
|
|
47
|
+
"""Initial conditions for the filter, updated after every chunk"""
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
class AdaptiveLatticeNotchFilterTransformer(
|
|
51
|
+
BaseStatefulTransformer[
|
|
52
|
+
AdaptiveLatticeNotchFilterSettings,
|
|
53
|
+
AxisArray,
|
|
54
|
+
AxisArray,
|
|
55
|
+
AdaptiveLatticeNotchFilterState,
|
|
56
|
+
]
|
|
57
|
+
):
|
|
58
|
+
"""
|
|
59
|
+
Adaptive Lattice Notch Filter implementation as a stateful transformer.
|
|
60
|
+
|
|
61
|
+
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-13-170
|
|
62
|
+
|
|
63
|
+
The filter automatically tracks and removes frequency components from the input signal.
|
|
64
|
+
It outputs the estimated frequency (in Hz) and the filtered sample.
|
|
65
|
+
"""
|
|
66
|
+
|
|
67
|
+
def _hash_message(self, message: AxisArray) -> int:
|
|
68
|
+
ax_idx = message.get_axis_idx(self.settings.axis)
|
|
69
|
+
sample_shape = message.data.shape[:ax_idx] + message.data.shape[ax_idx + 1 :]
|
|
70
|
+
return hash((message.key, message.axes[self.settings.axis].gain, sample_shape))
|
|
71
|
+
|
|
72
|
+
def _reset_state(self, message: AxisArray) -> None:
|
|
73
|
+
ax_idx = message.get_axis_idx(self.settings.axis)
|
|
74
|
+
sample_shape = message.data.shape[:ax_idx] + message.data.shape[ax_idx + 1 :]
|
|
75
|
+
|
|
76
|
+
fs = 1 / message.axes[self.settings.axis].gain
|
|
77
|
+
init_f = (
|
|
78
|
+
self.settings.init_notch_freq if self.settings.init_notch_freq is not None else 0.07178314656435313 * fs
|
|
79
|
+
)
|
|
80
|
+
init_omega = init_f * (2 * np.pi) / fs
|
|
81
|
+
init_k1 = -np.cos(init_omega)
|
|
82
|
+
|
|
83
|
+
"""Reset filter state to initial values."""
|
|
84
|
+
self._state = AdaptiveLatticeNotchFilterState()
|
|
85
|
+
self._state.s_history = np.zeros((2,) + sample_shape, dtype=float)
|
|
86
|
+
self._state.p = np.zeros(sample_shape, dtype=float)
|
|
87
|
+
self._state.q = np.zeros(sample_shape, dtype=float)
|
|
88
|
+
self._state.k1 = init_k1 + np.zeros(sample_shape, dtype=float)
|
|
89
|
+
self._state.freq_template = CoordinateAxis(
|
|
90
|
+
data=np.zeros((0,) + sample_shape, dtype=float),
|
|
91
|
+
dims=[self.settings.axis] + message.dims[:ax_idx] + message.dims[ax_idx + 1 :],
|
|
92
|
+
unit="Hz",
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
# Initialize the initial conditions for the filter
|
|
96
|
+
self._state.zi = np.zeros((2, np.prod(sample_shape)), dtype=float)
|
|
97
|
+
# Note: we could calculate it properly, but as long as we are initializing s_history with zeros,
|
|
98
|
+
# it will always be zero.
|
|
99
|
+
# a = [1, init_k1 * (1 + self.settings.gamma), self.settings.gamma]
|
|
100
|
+
# b = [1]
|
|
101
|
+
# s = np.reshape(self._state.s_history, (2, -1))
|
|
102
|
+
# for feat_ix in range(np.prod(sample_shape)):
|
|
103
|
+
# self._state.zi[:, feat_ix] = scipy.signal.lfiltic(b, a, s[::-1, feat_ix], x=None)
|
|
104
|
+
|
|
105
|
+
def _process(self, message: AxisArray) -> AxisArray:
|
|
106
|
+
x_data = message.data
|
|
107
|
+
ax_idx = message.get_axis_idx(self.settings.axis)
|
|
108
|
+
|
|
109
|
+
# TODO: Time should be moved to -1th axis, not the 0th axis
|
|
110
|
+
if message.dims[0] != self.settings.axis:
|
|
111
|
+
x_data = np.moveaxis(x_data, ax_idx, 0)
|
|
112
|
+
|
|
113
|
+
# Access settings once
|
|
114
|
+
gamma = self.settings.gamma
|
|
115
|
+
eta = self.settings.eta
|
|
116
|
+
mu = self.settings.mu
|
|
117
|
+
fs = 1 / message.axes[self.settings.axis].gain
|
|
118
|
+
|
|
119
|
+
# Pre-compute constants
|
|
120
|
+
one_minus_eta = 1 - eta
|
|
121
|
+
one_minus_mu = 1 - mu
|
|
122
|
+
gamma_plus_1 = 1 + gamma
|
|
123
|
+
omega_scale = fs / (2 * np.pi)
|
|
124
|
+
|
|
125
|
+
# For the lattice filter with constant k1:
|
|
126
|
+
# s_n = x_n - k1*(1+gamma)*s_n_1 - gamma*s_n_2
|
|
127
|
+
# This is equivalent to an IIR filter with b=1, a=[1, k1*(1+gamma), gamma]
|
|
128
|
+
|
|
129
|
+
# For the output filter:
|
|
130
|
+
# y_n = s_n + 2*k1*s_n_1 + s_n_2
|
|
131
|
+
# We can treat this as a direct-form FIR filter applied to s_out
|
|
132
|
+
|
|
133
|
+
if self.settings.chunkwise:
|
|
134
|
+
# Process each chunk using current filter parameters
|
|
135
|
+
# Reshape input and prepare output arrays
|
|
136
|
+
_s = self._state.s_history.reshape((2, -1))
|
|
137
|
+
_x = x_data.reshape((x_data.shape[0], -1))
|
|
138
|
+
s_n = np.zeros_like(_x)
|
|
139
|
+
y_out = np.zeros_like(_x)
|
|
140
|
+
|
|
141
|
+
# Apply static filter for each feature dimension
|
|
142
|
+
for ix, k in enumerate(self._state.k1.flatten()):
|
|
143
|
+
# Filter to get s_n (notch filter state)
|
|
144
|
+
a_s = [1, k * gamma_plus_1, gamma]
|
|
145
|
+
s_n[:, ix], self._state.zi[:, ix] = scipy.signal.lfilter([1], a_s, _x[:, ix], zi=self._state.zi[:, ix])
|
|
146
|
+
|
|
147
|
+
# Apply output filter to get y_out
|
|
148
|
+
b_y = [1, 2 * k, 1]
|
|
149
|
+
y_out[:, ix] = scipy.signal.lfilter(b_y, [1], s_n[:, ix])
|
|
150
|
+
|
|
151
|
+
# Update filter parameters using final values from the chunk
|
|
152
|
+
s_n_reshaped = s_n.reshape((s_n.shape[0],) + x_data.shape[1:])
|
|
153
|
+
s_final = s_n_reshaped[-1] # Current s_n
|
|
154
|
+
s_final_1 = s_n_reshaped[-2] # s_n_1
|
|
155
|
+
s_final_2 = s_n_reshaped[-3] if len(s_n_reshaped) > 2 else self._state.s_history[0] # s_n_2
|
|
156
|
+
|
|
157
|
+
# Update p and q using final values
|
|
158
|
+
self._state.p = eta * self._state.p + one_minus_eta * (s_final_1 * (s_final + s_final_2))
|
|
159
|
+
self._state.q = eta * self._state.q + one_minus_eta * (2 * (s_final_1 * s_final_1))
|
|
160
|
+
|
|
161
|
+
# Update reflection coefficient
|
|
162
|
+
new_k1 = -self._state.p / (self._state.q + 1e-8) # Avoid division by zero
|
|
163
|
+
new_k1 = np.clip(new_k1, -1, 1) # Clip to prevent instability
|
|
164
|
+
self._state.k1 = mu * self._state.k1 + one_minus_mu * new_k1 # Smoothed
|
|
165
|
+
|
|
166
|
+
# Calculate frequency from updated k1 value
|
|
167
|
+
omega_n = np.arccos(-self._state.k1)
|
|
168
|
+
freq = omega_n * omega_scale
|
|
169
|
+
freq_out = np.full_like(x_data.reshape(x_data.shape), freq)
|
|
170
|
+
|
|
171
|
+
# Update s_history for next chunk
|
|
172
|
+
self._state.s_history = s_n_reshaped[-2:].reshape((2,) + x_data.shape[1:])
|
|
173
|
+
|
|
174
|
+
# Reshape y_out back to original dimensions
|
|
175
|
+
y_out = y_out.reshape(x_data.shape)
|
|
176
|
+
|
|
177
|
+
else:
|
|
178
|
+
# Perform filtering, sample-by-sample
|
|
179
|
+
y_out = np.zeros_like(x_data)
|
|
180
|
+
freq_out = np.zeros_like(x_data)
|
|
181
|
+
for sample_ix, x_n in enumerate(x_data):
|
|
182
|
+
s_n_1 = self._state.s_history[-1]
|
|
183
|
+
s_n_2 = self._state.s_history[-2]
|
|
184
|
+
|
|
185
|
+
s_n = x_n - self._state.k1 * gamma_plus_1 * s_n_1 - gamma * s_n_2
|
|
186
|
+
y_out[sample_ix] = s_n + 2 * self._state.k1 * s_n_1 + s_n_2
|
|
187
|
+
|
|
188
|
+
# Update filter parameters
|
|
189
|
+
self._state.p = eta * self._state.p + one_minus_eta * (s_n_1 * (s_n + s_n_2))
|
|
190
|
+
self._state.q = eta * self._state.q + one_minus_eta * (2 * (s_n_1 * s_n_1))
|
|
191
|
+
|
|
192
|
+
# Update reflection coefficient
|
|
193
|
+
new_k1 = -self._state.p / (self._state.q + 1e-8) # Avoid division by zero
|
|
194
|
+
new_k1 = np.clip(new_k1, -1, 1) # Clip to prevent instability
|
|
195
|
+
self._state.k1 = mu * self._state.k1 + one_minus_mu * new_k1 # Smoothed
|
|
196
|
+
|
|
197
|
+
# Compute normalized angular frequency using equation 13 from the paper
|
|
198
|
+
omega_n = np.arccos(-self._state.k1)
|
|
199
|
+
freq_out[sample_ix] = omega_n * omega_scale # As Hz
|
|
200
|
+
|
|
201
|
+
# Update for next iteration
|
|
202
|
+
self._state.s_history[-2] = s_n_1
|
|
203
|
+
self._state.s_history[-1] = s_n
|
|
204
|
+
|
|
205
|
+
return replace(
|
|
206
|
+
message,
|
|
207
|
+
data=y_out,
|
|
208
|
+
axes={
|
|
209
|
+
**message.axes,
|
|
210
|
+
"freq": replace(self._state.freq_template, data=freq_out),
|
|
211
|
+
},
|
|
212
|
+
)
|