ezmsg-sigproc 1.2.2__py3-none-any.whl → 2.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ezmsg/sigproc/__init__.py +1 -1
- ezmsg/sigproc/__version__.py +34 -1
- ezmsg/sigproc/activation.py +78 -0
- ezmsg/sigproc/adaptive_lattice_notch.py +212 -0
- ezmsg/sigproc/affinetransform.py +235 -0
- ezmsg/sigproc/aggregate.py +276 -0
- ezmsg/sigproc/bandpower.py +80 -0
- ezmsg/sigproc/base.py +149 -0
- ezmsg/sigproc/butterworthfilter.py +129 -39
- ezmsg/sigproc/butterworthzerophase.py +305 -0
- ezmsg/sigproc/cheby.py +125 -0
- ezmsg/sigproc/combfilter.py +160 -0
- ezmsg/sigproc/coordinatespaces.py +159 -0
- ezmsg/sigproc/decimate.py +46 -18
- ezmsg/sigproc/denormalize.py +78 -0
- ezmsg/sigproc/detrend.py +28 -0
- ezmsg/sigproc/diff.py +82 -0
- ezmsg/sigproc/downsample.py +97 -49
- ezmsg/sigproc/ewma.py +217 -0
- ezmsg/sigproc/ewmfilter.py +45 -19
- ezmsg/sigproc/extract_axis.py +39 -0
- ezmsg/sigproc/fbcca.py +307 -0
- ezmsg/sigproc/filter.py +282 -117
- ezmsg/sigproc/filterbank.py +292 -0
- ezmsg/sigproc/filterbankdesign.py +129 -0
- ezmsg/sigproc/fir_hilbert.py +336 -0
- ezmsg/sigproc/fir_pmc.py +209 -0
- ezmsg/sigproc/firfilter.py +117 -0
- ezmsg/sigproc/gaussiansmoothing.py +89 -0
- ezmsg/sigproc/kaiser.py +106 -0
- ezmsg/sigproc/linear.py +120 -0
- ezmsg/sigproc/math/__init__.py +0 -0
- ezmsg/sigproc/math/abs.py +35 -0
- ezmsg/sigproc/math/add.py +120 -0
- ezmsg/sigproc/math/clip.py +48 -0
- ezmsg/sigproc/math/difference.py +143 -0
- ezmsg/sigproc/math/invert.py +28 -0
- ezmsg/sigproc/math/log.py +57 -0
- ezmsg/sigproc/math/scale.py +39 -0
- ezmsg/sigproc/messages.py +3 -6
- ezmsg/sigproc/quantize.py +68 -0
- ezmsg/sigproc/resample.py +278 -0
- ezmsg/sigproc/rollingscaler.py +232 -0
- ezmsg/sigproc/sampler.py +232 -241
- ezmsg/sigproc/scaler.py +165 -0
- ezmsg/sigproc/signalinjector.py +70 -0
- ezmsg/sigproc/slicer.py +138 -0
- ezmsg/sigproc/spectral.py +6 -132
- ezmsg/sigproc/spectrogram.py +90 -0
- ezmsg/sigproc/spectrum.py +277 -0
- ezmsg/sigproc/transpose.py +134 -0
- ezmsg/sigproc/util/__init__.py +0 -0
- ezmsg/sigproc/util/asio.py +25 -0
- ezmsg/sigproc/util/axisarray_buffer.py +365 -0
- ezmsg/sigproc/util/buffer.py +449 -0
- ezmsg/sigproc/util/message.py +17 -0
- ezmsg/sigproc/util/profile.py +23 -0
- ezmsg/sigproc/util/sparse.py +115 -0
- ezmsg/sigproc/util/typeresolution.py +17 -0
- ezmsg/sigproc/wavelets.py +187 -0
- ezmsg/sigproc/window.py +301 -117
- ezmsg_sigproc-2.10.0.dist-info/METADATA +60 -0
- ezmsg_sigproc-2.10.0.dist-info/RECORD +65 -0
- {ezmsg_sigproc-1.2.2.dist-info → ezmsg_sigproc-2.10.0.dist-info}/WHEEL +1 -2
- ezmsg/sigproc/synth.py +0 -411
- ezmsg_sigproc-1.2.2.dist-info/METADATA +0 -36
- ezmsg_sigproc-1.2.2.dist-info/RECORD +0 -17
- ezmsg_sigproc-1.2.2.dist-info/top_level.txt +0 -1
- /ezmsg_sigproc-1.2.2.dist-info/LICENSE.txt → /ezmsg_sigproc-2.10.0.dist-info/licenses/LICENSE +0 -0
|
@@ -0,0 +1,305 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Streaming zero-phase Butterworth filter implemented as a two-stage composite processor.
|
|
3
|
+
|
|
4
|
+
Stage 1: Forward causal Butterworth filter (from ezmsg.sigproc.butterworthfilter)
|
|
5
|
+
Stage 2: Backward acausal filter with buffering (ButterworthBackwardFilterTransformer)
|
|
6
|
+
|
|
7
|
+
The output is delayed by `pad_length` samples to ensure the backward pass has sufficient
|
|
8
|
+
future context. The pad_length is computed analytically using scipy's heuristic.
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
import functools
|
|
12
|
+
import typing
|
|
13
|
+
|
|
14
|
+
import numpy as np
|
|
15
|
+
import scipy.signal
|
|
16
|
+
from ezmsg.baseproc import BaseTransformerUnit
|
|
17
|
+
from ezmsg.baseproc.composite import CompositeProcessor
|
|
18
|
+
from ezmsg.util.messages.axisarray import AxisArray
|
|
19
|
+
from ezmsg.util.messages.util import replace
|
|
20
|
+
|
|
21
|
+
from .butterworthfilter import (
|
|
22
|
+
ButterworthFilterSettings,
|
|
23
|
+
ButterworthFilterTransformer,
|
|
24
|
+
butter_design_fun,
|
|
25
|
+
)
|
|
26
|
+
from .filter import BACoeffs, FilterByDesignTransformer, SOSCoeffs
|
|
27
|
+
from .util.axisarray_buffer import HybridAxisArrayBuffer
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class ButterworthZeroPhaseSettings(ButterworthFilterSettings):
|
|
31
|
+
"""
|
|
32
|
+
Settings for :obj:`ButterworthZeroPhase`.
|
|
33
|
+
|
|
34
|
+
This implements a streaming zero-phase Butterworth filter using forward-backward
|
|
35
|
+
filtering. The output is delayed by `pad_length` samples to ensure the backward
|
|
36
|
+
pass has sufficient future context.
|
|
37
|
+
|
|
38
|
+
The pad_length is computed by finding where the filter's impulse response decays
|
|
39
|
+
to `settle_cutoff` fraction of its peak value. This accounts for the filter's
|
|
40
|
+
actual time constant rather than just its order.
|
|
41
|
+
"""
|
|
42
|
+
|
|
43
|
+
# Inherits from ButterworthFilterSettings:
|
|
44
|
+
# axis, coef_type, order, cuton, cutoff, wn_hz
|
|
45
|
+
|
|
46
|
+
settle_cutoff: float = 0.01
|
|
47
|
+
"""
|
|
48
|
+
Fraction of peak impulse response used to determine settling time.
|
|
49
|
+
The pad_length is set to the number of samples until the impulse response
|
|
50
|
+
decays to this fraction of its peak. Default is 0.01 (1% of peak).
|
|
51
|
+
"""
|
|
52
|
+
|
|
53
|
+
max_pad_duration: float | None = None
|
|
54
|
+
"""
|
|
55
|
+
Maximum pad duration in seconds. If set, the pad_length will be capped
|
|
56
|
+
at this value times the sampling rate. Use this to limit latency for
|
|
57
|
+
filters with very long impulse responses. Default is None (no limit).
|
|
58
|
+
"""
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
class ButterworthBackwardFilterTransformer(FilterByDesignTransformer[ButterworthFilterSettings, BACoeffs | SOSCoeffs]):
|
|
62
|
+
"""
|
|
63
|
+
Backward (acausal) Butterworth filter with buffering.
|
|
64
|
+
|
|
65
|
+
This transformer buffers its input and applies the filter in reverse,
|
|
66
|
+
outputting only the "settled" portion where transients have decayed.
|
|
67
|
+
This introduces a lag of ``pad_length`` samples.
|
|
68
|
+
|
|
69
|
+
Intended to be used as stage 2 in a zero-phase filter pipeline, receiving
|
|
70
|
+
forward-filtered data from a ButterworthFilterTransformer.
|
|
71
|
+
"""
|
|
72
|
+
|
|
73
|
+
# Instance attributes (initialized in _reset_state)
|
|
74
|
+
_buffer: HybridAxisArrayBuffer | None
|
|
75
|
+
_coefs_cache: BACoeffs | SOSCoeffs | None
|
|
76
|
+
_zi_tiled: np.ndarray | None
|
|
77
|
+
_pad_length: int
|
|
78
|
+
|
|
79
|
+
def get_design_function(
|
|
80
|
+
self,
|
|
81
|
+
) -> typing.Callable[[float], BACoeffs | SOSCoeffs | None]:
|
|
82
|
+
return functools.partial(
|
|
83
|
+
butter_design_fun,
|
|
84
|
+
order=self.settings.order,
|
|
85
|
+
cuton=self.settings.cuton,
|
|
86
|
+
cutoff=self.settings.cutoff,
|
|
87
|
+
coef_type=self.settings.coef_type,
|
|
88
|
+
wn_hz=self.settings.wn_hz,
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
def _compute_pad_length(self, fs: float) -> int:
|
|
92
|
+
"""
|
|
93
|
+
Compute pad length based on the filter's impulse response settling time.
|
|
94
|
+
|
|
95
|
+
The pad_length is determined by finding where the impulse response decays
|
|
96
|
+
to `settle_cutoff` fraction of its peak value. This is then optionally
|
|
97
|
+
capped by `max_pad_duration`.
|
|
98
|
+
|
|
99
|
+
Args:
|
|
100
|
+
fs: Sampling frequency in Hz.
|
|
101
|
+
|
|
102
|
+
Returns:
|
|
103
|
+
Number of samples for the pad length.
|
|
104
|
+
"""
|
|
105
|
+
# Design the filter to compute impulse response
|
|
106
|
+
coefs = self.get_design_function()(fs)
|
|
107
|
+
if coefs is None:
|
|
108
|
+
# Filter design failed or is disabled
|
|
109
|
+
return 0
|
|
110
|
+
|
|
111
|
+
# Generate impulse response - use a generous length initially
|
|
112
|
+
# Start with scipy's heuristic as minimum, then extend if needed
|
|
113
|
+
if self.settings.coef_type == "ba":
|
|
114
|
+
min_length = 3 * (self.settings.order + 1)
|
|
115
|
+
else:
|
|
116
|
+
n_sections = (self.settings.order + 1) // 2
|
|
117
|
+
min_length = 3 * n_sections * 2
|
|
118
|
+
|
|
119
|
+
# Use 10x the minimum as initial impulse length, or at least 10000 samples
|
|
120
|
+
# (10000 samples allows for ~333ms at 30kHz, covering most practical cases)
|
|
121
|
+
impulse_length = max(min_length * 10, 10000)
|
|
122
|
+
|
|
123
|
+
# Cap impulse length computation if max_pad_duration is set
|
|
124
|
+
if self.settings.max_pad_duration is not None:
|
|
125
|
+
max_samples = int(self.settings.max_pad_duration * fs)
|
|
126
|
+
impulse_length = min(impulse_length, max_samples + 1)
|
|
127
|
+
|
|
128
|
+
impulse = np.zeros(impulse_length)
|
|
129
|
+
impulse[0] = 1.0
|
|
130
|
+
|
|
131
|
+
if self.settings.coef_type == "ba":
|
|
132
|
+
b, a = coefs
|
|
133
|
+
h = scipy.signal.lfilter(b, a, impulse)
|
|
134
|
+
else:
|
|
135
|
+
h = scipy.signal.sosfilt(coefs, impulse)
|
|
136
|
+
|
|
137
|
+
# Find where impulse response settles to settle_cutoff of peak
|
|
138
|
+
abs_h = np.abs(h)
|
|
139
|
+
peak = abs_h.max()
|
|
140
|
+
if peak == 0:
|
|
141
|
+
return min_length
|
|
142
|
+
|
|
143
|
+
threshold = self.settings.settle_cutoff * peak
|
|
144
|
+
above_threshold = np.where(abs_h > threshold)[0]
|
|
145
|
+
|
|
146
|
+
if len(above_threshold) == 0:
|
|
147
|
+
pad_length = min_length
|
|
148
|
+
else:
|
|
149
|
+
pad_length = above_threshold[-1] + 1
|
|
150
|
+
|
|
151
|
+
# Ensure at least the scipy heuristic minimum
|
|
152
|
+
pad_length = max(pad_length, min_length)
|
|
153
|
+
|
|
154
|
+
# Apply max_pad_duration cap if set
|
|
155
|
+
if self.settings.max_pad_duration is not None:
|
|
156
|
+
max_samples = int(self.settings.max_pad_duration * fs)
|
|
157
|
+
pad_length = min(pad_length, max_samples)
|
|
158
|
+
|
|
159
|
+
return pad_length
|
|
160
|
+
|
|
161
|
+
def _reset_state(self, message: AxisArray) -> None:
|
|
162
|
+
"""Reset filter state when stream changes."""
|
|
163
|
+
self._coefs_cache = None
|
|
164
|
+
self._zi_tiled = None
|
|
165
|
+
self._buffer = None
|
|
166
|
+
# Compute pad_length based on the message's sampling rate
|
|
167
|
+
axis = message.dims[0] if self.settings.axis is None else self.settings.axis
|
|
168
|
+
fs = 1 / message.axes[axis].gain
|
|
169
|
+
self._pad_length = self._compute_pad_length(fs)
|
|
170
|
+
self.state.needs_redesign = True
|
|
171
|
+
|
|
172
|
+
def _compute_zi_tiled(self, data: np.ndarray, ax_idx: int) -> None:
|
|
173
|
+
"""Compute and cache the tiled zi for the given data shape.
|
|
174
|
+
|
|
175
|
+
Called once per stream (or after filter redesign). The result is
|
|
176
|
+
broadcast-ready for multiplication by the edge sample on each chunk.
|
|
177
|
+
"""
|
|
178
|
+
if self.settings.coef_type == "ba":
|
|
179
|
+
b, a = self._coefs_cache
|
|
180
|
+
zi_base = scipy.signal.lfilter_zi(b, a)
|
|
181
|
+
else: # sos
|
|
182
|
+
zi_base = scipy.signal.sosfilt_zi(self._coefs_cache)
|
|
183
|
+
|
|
184
|
+
n_tail = data.ndim - ax_idx - 1
|
|
185
|
+
|
|
186
|
+
if self.settings.coef_type == "ba":
|
|
187
|
+
zi_expand = (None,) * ax_idx + (slice(None),) + (None,) * n_tail
|
|
188
|
+
n_tile = data.shape[:ax_idx] + (1,) + data.shape[ax_idx + 1 :]
|
|
189
|
+
else: # sos
|
|
190
|
+
zi_expand = (slice(None),) + (None,) * ax_idx + (slice(None),) + (None,) * n_tail
|
|
191
|
+
n_tile = (1,) + data.shape[:ax_idx] + (1,) + data.shape[ax_idx + 1 :]
|
|
192
|
+
|
|
193
|
+
self._zi_tiled = np.tile(zi_base[zi_expand], n_tile)
|
|
194
|
+
|
|
195
|
+
def _initialize_zi(self, data: np.ndarray, ax_idx: int) -> np.ndarray:
|
|
196
|
+
"""Initialize filter state (zi) scaled by edge value."""
|
|
197
|
+
if self._zi_tiled is None:
|
|
198
|
+
self._compute_zi_tiled(data, ax_idx)
|
|
199
|
+
first_sample = np.take(data, [0], axis=ax_idx)
|
|
200
|
+
return self._zi_tiled * first_sample
|
|
201
|
+
|
|
202
|
+
def _process(self, message: AxisArray) -> AxisArray:
|
|
203
|
+
axis = message.dims[0] if self.settings.axis is None else self.settings.axis
|
|
204
|
+
ax_idx = message.get_axis_idx(axis)
|
|
205
|
+
fs = 1 / message.axes[axis].gain
|
|
206
|
+
|
|
207
|
+
# Check if we need to redesign filter
|
|
208
|
+
if self._coefs_cache is None or self.state.needs_redesign:
|
|
209
|
+
self._coefs_cache = self.get_design_function()(fs)
|
|
210
|
+
self._pad_length = self._compute_pad_length(fs)
|
|
211
|
+
self._zi_tiled = None # Invalidate; recomputed on next use.
|
|
212
|
+
self.state.needs_redesign = False
|
|
213
|
+
|
|
214
|
+
# Initialize buffer with duration based on pad_length
|
|
215
|
+
# Add some margin to handle variable chunk sizes
|
|
216
|
+
buffer_duration = (self._pad_length + 1) / fs
|
|
217
|
+
self._buffer = HybridAxisArrayBuffer(duration=buffer_duration, axis=axis)
|
|
218
|
+
|
|
219
|
+
# Early exit if filter is effectively disabled
|
|
220
|
+
if self._coefs_cache is None or self.settings.order <= 0 or message.data.size <= 0:
|
|
221
|
+
return message
|
|
222
|
+
|
|
223
|
+
# Write new data to buffer
|
|
224
|
+
self._buffer.write(message)
|
|
225
|
+
n_available = self._buffer.available()
|
|
226
|
+
n_output = n_available - self._pad_length
|
|
227
|
+
|
|
228
|
+
# If we don't have enough data yet, return empty
|
|
229
|
+
if n_output <= 0:
|
|
230
|
+
new_shape = list(message.data.shape)
|
|
231
|
+
new_shape[ax_idx] = 0
|
|
232
|
+
empty_data = np.empty(new_shape, dtype=message.data.dtype)
|
|
233
|
+
return replace(message, data=empty_data)
|
|
234
|
+
|
|
235
|
+
# Peek all available data from buffer
|
|
236
|
+
# Note: HybridAxisArrayBuffer moves the target axis to position 0
|
|
237
|
+
buffered = self._buffer.peek(n_available)
|
|
238
|
+
combined = buffered.data
|
|
239
|
+
buffer_ax_idx = 0 # Buffer always puts time axis at position 0
|
|
240
|
+
|
|
241
|
+
# Backward filter on reversed data
|
|
242
|
+
combined_rev = np.flip(combined, axis=buffer_ax_idx)
|
|
243
|
+
backward_zi = self._initialize_zi(combined_rev, buffer_ax_idx)
|
|
244
|
+
|
|
245
|
+
if self.settings.coef_type == "ba":
|
|
246
|
+
b, a = self._coefs_cache
|
|
247
|
+
y_bwd_rev, _ = scipy.signal.lfilter(b, a, combined_rev, axis=buffer_ax_idx, zi=backward_zi)
|
|
248
|
+
else: # sos
|
|
249
|
+
y_bwd_rev, _ = scipy.signal.sosfilt(self._coefs_cache, combined_rev, axis=buffer_ax_idx, zi=backward_zi)
|
|
250
|
+
|
|
251
|
+
# Reverse back to get output in correct time order
|
|
252
|
+
y_bwd = np.flip(y_bwd_rev, axis=buffer_ax_idx)
|
|
253
|
+
|
|
254
|
+
# Output the settled portion (first n_output samples)
|
|
255
|
+
y = y_bwd[:n_output]
|
|
256
|
+
|
|
257
|
+
# Advance buffer read head to discard output samples, keep pad_length
|
|
258
|
+
self._buffer.seek(n_output)
|
|
259
|
+
|
|
260
|
+
# Build output with adjusted time axis
|
|
261
|
+
# LinearAxis offset is already correct from the buffer
|
|
262
|
+
out_axis = buffered.axes[axis]
|
|
263
|
+
|
|
264
|
+
# Move axis back to original position if needed
|
|
265
|
+
if ax_idx != 0:
|
|
266
|
+
y = np.moveaxis(y, 0, ax_idx)
|
|
267
|
+
|
|
268
|
+
return replace(
|
|
269
|
+
message,
|
|
270
|
+
data=y,
|
|
271
|
+
axes={**message.axes, axis: out_axis},
|
|
272
|
+
)
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
class ButterworthZeroPhaseTransformer(CompositeProcessor[ButterworthZeroPhaseSettings, AxisArray, AxisArray]):
|
|
276
|
+
"""
|
|
277
|
+
Streaming zero-phase Butterworth filter as a composite of two stages.
|
|
278
|
+
|
|
279
|
+
Stage 1 (forward): Standard causal Butterworth filter with state
|
|
280
|
+
Stage 2 (backward): Acausal Butterworth filter with buffering
|
|
281
|
+
|
|
282
|
+
The output is delayed by ``pad_length`` samples.
|
|
283
|
+
"""
|
|
284
|
+
|
|
285
|
+
@staticmethod
|
|
286
|
+
def _initialize_processors(
|
|
287
|
+
settings: ButterworthZeroPhaseSettings,
|
|
288
|
+
) -> dict[str, typing.Any]:
|
|
289
|
+
# Both stages use the same filter design settings
|
|
290
|
+
return {
|
|
291
|
+
"forward": ButterworthFilterTransformer(settings),
|
|
292
|
+
"backward": ButterworthBackwardFilterTransformer(settings),
|
|
293
|
+
}
|
|
294
|
+
|
|
295
|
+
@classmethod
|
|
296
|
+
def get_message_type(cls, dir: str) -> type[AxisArray]:
|
|
297
|
+
if dir in ("in", "out"):
|
|
298
|
+
return AxisArray
|
|
299
|
+
raise ValueError(f"Invalid direction: {dir}. Must be 'in' or 'out'.")
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
class ButterworthZeroPhase(
|
|
303
|
+
BaseTransformerUnit[ButterworthZeroPhaseSettings, AxisArray, AxisArray, ButterworthZeroPhaseTransformer]
|
|
304
|
+
):
|
|
305
|
+
SETTINGS = ButterworthZeroPhaseSettings
|
ezmsg/sigproc/cheby.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
1
|
+
import functools
|
|
2
|
+
import typing
|
|
3
|
+
|
|
4
|
+
import scipy.signal
|
|
5
|
+
from scipy.signal import normalize
|
|
6
|
+
|
|
7
|
+
from .filter import (
|
|
8
|
+
BACoeffs,
|
|
9
|
+
BaseFilterByDesignTransformerUnit,
|
|
10
|
+
FilterBaseSettings,
|
|
11
|
+
FilterByDesignTransformer,
|
|
12
|
+
SOSCoeffs,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class ChebyshevFilterSettings(FilterBaseSettings):
|
|
17
|
+
"""Settings for :obj:`ChebyshevFilter`."""
|
|
18
|
+
|
|
19
|
+
# axis and coef_type are inherited from FilterBaseSettings
|
|
20
|
+
|
|
21
|
+
order: int = 0
|
|
22
|
+
"""
|
|
23
|
+
Filter order
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
ripple_tol: float | None = None
|
|
27
|
+
"""
|
|
28
|
+
The maximum ripple allowed below unity gain in the passband. Specified in decibels, as a positive number.
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
Wn: float | tuple[float, float] | None = None
|
|
32
|
+
"""
|
|
33
|
+
A scalar or length-2 sequence giving the critical frequencies.
|
|
34
|
+
For Type I filters, this is the point in the transition band at which the gain first drops below -rp.
|
|
35
|
+
For digital filters, Wn are in the same units as fs unless wn_hz is False.
|
|
36
|
+
For analog filters, Wn is an angular frequency (e.g., rad/s).
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
btype: str = "lowpass"
|
|
40
|
+
"""
|
|
41
|
+
{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}
|
|
42
|
+
"""
|
|
43
|
+
|
|
44
|
+
analog: bool = False
|
|
45
|
+
"""
|
|
46
|
+
When True, return an analog filter, otherwise a digital filter is returned.
|
|
47
|
+
"""
|
|
48
|
+
|
|
49
|
+
cheby_type: str = "cheby1"
|
|
50
|
+
"""
|
|
51
|
+
Which type of Chebyshev filter to design. Either "cheby1" or "cheby2".
|
|
52
|
+
"""
|
|
53
|
+
|
|
54
|
+
wn_hz: bool = True
|
|
55
|
+
"""
|
|
56
|
+
Set False if provided Wn are normalized from 0 to 1, where 1 is the Nyquist frequency
|
|
57
|
+
"""
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def cheby_design_fun(
|
|
61
|
+
fs: float,
|
|
62
|
+
order: int = 0,
|
|
63
|
+
ripple_tol: float | None = None,
|
|
64
|
+
Wn: float | tuple[float, float] | None = None,
|
|
65
|
+
btype: str = "lowpass",
|
|
66
|
+
analog: bool = False,
|
|
67
|
+
coef_type: str = "ba",
|
|
68
|
+
cheby_type: str = "cheby1",
|
|
69
|
+
wn_hz: bool = True,
|
|
70
|
+
) -> BACoeffs | SOSCoeffs | None:
|
|
71
|
+
"""
|
|
72
|
+
Chebyshev type I and type II digital and analog filter design.
|
|
73
|
+
Design an `order`th-order digital or analog Chebyshev type I or type II filter and return the filter coefficients.
|
|
74
|
+
See :obj:`ChebyFilterSettings` for argument description.
|
|
75
|
+
|
|
76
|
+
Returns:
|
|
77
|
+
The filter coefficients as a tuple of (b, a) for coef_type "ba", or as a single ndarray for "sos",
|
|
78
|
+
or (z, p, k) for "zpk".
|
|
79
|
+
"""
|
|
80
|
+
coefs = None
|
|
81
|
+
if order > 0:
|
|
82
|
+
if cheby_type == "cheby1":
|
|
83
|
+
coefs = scipy.signal.cheby1(
|
|
84
|
+
order,
|
|
85
|
+
ripple_tol,
|
|
86
|
+
Wn,
|
|
87
|
+
btype=btype,
|
|
88
|
+
analog=analog,
|
|
89
|
+
output=coef_type,
|
|
90
|
+
fs=fs if wn_hz else None,
|
|
91
|
+
)
|
|
92
|
+
elif cheby_type == "cheby2":
|
|
93
|
+
coefs = scipy.signal.cheby2(
|
|
94
|
+
order,
|
|
95
|
+
ripple_tol,
|
|
96
|
+
Wn,
|
|
97
|
+
btype=btype,
|
|
98
|
+
analog=analog,
|
|
99
|
+
output=coef_type,
|
|
100
|
+
fs=fs,
|
|
101
|
+
)
|
|
102
|
+
if coefs is not None and coef_type == "ba":
|
|
103
|
+
coefs = normalize(*coefs)
|
|
104
|
+
return coefs
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class ChebyshevFilterTransformer(FilterByDesignTransformer[ChebyshevFilterSettings, BACoeffs | SOSCoeffs]):
|
|
108
|
+
def get_design_function(
|
|
109
|
+
self,
|
|
110
|
+
) -> typing.Callable[[float], BACoeffs | SOSCoeffs | None]:
|
|
111
|
+
return functools.partial(
|
|
112
|
+
cheby_design_fun,
|
|
113
|
+
order=self.settings.order,
|
|
114
|
+
ripple_tol=self.settings.ripple_tol,
|
|
115
|
+
Wn=self.settings.Wn,
|
|
116
|
+
btype=self.settings.btype,
|
|
117
|
+
analog=self.settings.analog,
|
|
118
|
+
coef_type=self.settings.coef_type,
|
|
119
|
+
cheby_type=self.settings.cheby_type,
|
|
120
|
+
wn_hz=self.settings.wn_hz,
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
class ChebyshevFilter(BaseFilterByDesignTransformerUnit[ChebyshevFilterSettings, ChebyshevFilterTransformer]):
|
|
125
|
+
SETTINGS = ChebyshevFilterSettings
|
|
@@ -0,0 +1,160 @@
|
|
|
1
|
+
import functools
|
|
2
|
+
import typing
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import scipy.signal
|
|
6
|
+
from scipy.signal import normalize
|
|
7
|
+
|
|
8
|
+
from .filter import (
|
|
9
|
+
BACoeffs,
|
|
10
|
+
BaseFilterByDesignTransformerUnit,
|
|
11
|
+
FilterBaseSettings,
|
|
12
|
+
FilterByDesignTransformer,
|
|
13
|
+
SOSCoeffs,
|
|
14
|
+
)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class CombFilterSettings(FilterBaseSettings):
|
|
18
|
+
"""Settings for :obj:`CombFilter`."""
|
|
19
|
+
|
|
20
|
+
# axis and coef_type are inherited from FilterBaseSettings
|
|
21
|
+
|
|
22
|
+
fundamental_freq: float = 60.0
|
|
23
|
+
"""
|
|
24
|
+
Fundamental frequency in Hz
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
num_harmonics: int = 3
|
|
28
|
+
"""
|
|
29
|
+
Number of harmonics to include (including fundamental)
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
q_factor: float = 35.0
|
|
33
|
+
"""
|
|
34
|
+
Quality factor (Q) for each peak/notch
|
|
35
|
+
"""
|
|
36
|
+
|
|
37
|
+
filter_type: str = "notch"
|
|
38
|
+
"""
|
|
39
|
+
Type of comb filter: 'notch' removes harmonics, 'peak' passes harmonics at the expense of others.
|
|
40
|
+
"""
|
|
41
|
+
|
|
42
|
+
quality_scaling: str = "constant"
|
|
43
|
+
"""
|
|
44
|
+
'constant': same quality for all harmonics results in wider bands at higher frequencies,
|
|
45
|
+
'proportional': quality proportional to frequency results in constant bandwidths.
|
|
46
|
+
"""
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def comb_design_fun(
|
|
50
|
+
fs: float,
|
|
51
|
+
fundamental_freq: float = 60.0,
|
|
52
|
+
num_harmonics: int = 3,
|
|
53
|
+
q_factor: float = 35.0,
|
|
54
|
+
filter_type: str = "notch",
|
|
55
|
+
coef_type: str = "sos",
|
|
56
|
+
quality_scaling: str = "constant",
|
|
57
|
+
) -> BACoeffs | SOSCoeffs | None:
|
|
58
|
+
"""
|
|
59
|
+
Design a comb filter as cascaded second-order sections targeting a fundamental frequency and its harmonics.
|
|
60
|
+
|
|
61
|
+
Returns:
|
|
62
|
+
The filter coefficients as SOS (recommended) or (b, a) for finite precision stability.
|
|
63
|
+
"""
|
|
64
|
+
if coef_type != "sos" and coef_type != "ba":
|
|
65
|
+
raise ValueError("Comb filter only supports 'sos' or 'ba' coefficient types")
|
|
66
|
+
|
|
67
|
+
# Generate all SOS sections
|
|
68
|
+
all_sos = []
|
|
69
|
+
|
|
70
|
+
for i in range(1, num_harmonics + 1):
|
|
71
|
+
freq = fundamental_freq * i
|
|
72
|
+
|
|
73
|
+
# Skip if frequency exceeds Nyquist
|
|
74
|
+
if freq >= fs / 2:
|
|
75
|
+
continue
|
|
76
|
+
|
|
77
|
+
# Adjust Q factor based on scaling method
|
|
78
|
+
current_q = q_factor
|
|
79
|
+
if quality_scaling == "proportional":
|
|
80
|
+
current_q = q_factor * i
|
|
81
|
+
|
|
82
|
+
if filter_type == "notch":
|
|
83
|
+
sos = scipy.signal.iirnotch(w0=freq, Q=current_q, fs=fs)
|
|
84
|
+
else: # peak filter
|
|
85
|
+
sos = scipy.signal.iirpeak(w0=freq, Q=current_q, fs=fs)
|
|
86
|
+
# Though .iirnotch and .iirpeak return b, a pairs, these are second order so
|
|
87
|
+
# we can use them directly as SOS sections.
|
|
88
|
+
# Check:
|
|
89
|
+
# assert np.allclose(scipy.signal.tf2sos(sos[0], sos[1])[0], np.hstack(sos))
|
|
90
|
+
|
|
91
|
+
all_sos.append(np.hstack(sos))
|
|
92
|
+
|
|
93
|
+
if not all_sos:
|
|
94
|
+
return None
|
|
95
|
+
|
|
96
|
+
# Combine all SOS sections
|
|
97
|
+
combined_sos = np.vstack(all_sos)
|
|
98
|
+
|
|
99
|
+
if coef_type == "ba":
|
|
100
|
+
# Convert to transfer function form
|
|
101
|
+
b, a = scipy.signal.sos2tf(combined_sos)
|
|
102
|
+
return normalize(b, a)
|
|
103
|
+
|
|
104
|
+
return combined_sos
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class CombFilterTransformer(FilterByDesignTransformer[CombFilterSettings, BACoeffs | SOSCoeffs]):
|
|
108
|
+
def get_design_function(
|
|
109
|
+
self,
|
|
110
|
+
) -> typing.Callable[[float], BACoeffs | SOSCoeffs | None]:
|
|
111
|
+
return functools.partial(
|
|
112
|
+
comb_design_fun,
|
|
113
|
+
fundamental_freq=self.settings.fundamental_freq,
|
|
114
|
+
num_harmonics=self.settings.num_harmonics,
|
|
115
|
+
q_factor=self.settings.q_factor,
|
|
116
|
+
filter_type=self.settings.filter_type,
|
|
117
|
+
coef_type=self.settings.coef_type,
|
|
118
|
+
quality_scaling=self.settings.quality_scaling,
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
class CombFilterUnit(BaseFilterByDesignTransformerUnit[CombFilterSettings, CombFilterTransformer]):
|
|
123
|
+
SETTINGS = CombFilterSettings
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def comb(
|
|
127
|
+
axis: str | None,
|
|
128
|
+
fundamental_freq: float = 50.0,
|
|
129
|
+
num_harmonics: int = 3,
|
|
130
|
+
q_factor: float = 35.0,
|
|
131
|
+
filter_type: str = "notch",
|
|
132
|
+
coef_type: str = "sos",
|
|
133
|
+
quality_scaling: str = "constant",
|
|
134
|
+
) -> CombFilterTransformer:
|
|
135
|
+
"""
|
|
136
|
+
Create a comb filter for enhancing or removing a fundamental frequency and its harmonics.
|
|
137
|
+
|
|
138
|
+
Args:
|
|
139
|
+
axis: Axis to filter along
|
|
140
|
+
fundamental_freq: Base frequency in Hz
|
|
141
|
+
num_harmonics: Number of harmonic peaks/notches (including fundamental)
|
|
142
|
+
q_factor: Quality factor for peak/notch width
|
|
143
|
+
filter_type: 'notch' to remove or 'peak' to enhance harmonics
|
|
144
|
+
coef_type: Coefficient type ('sos' recommended for stability)
|
|
145
|
+
quality_scaling: How to handle bandwidths across harmonics
|
|
146
|
+
|
|
147
|
+
Returns:
|
|
148
|
+
CombFilterTransformer
|
|
149
|
+
"""
|
|
150
|
+
return CombFilterTransformer(
|
|
151
|
+
CombFilterSettings(
|
|
152
|
+
axis=axis,
|
|
153
|
+
fundamental_freq=fundamental_freq,
|
|
154
|
+
num_harmonics=num_harmonics,
|
|
155
|
+
q_factor=q_factor,
|
|
156
|
+
filter_type=filter_type,
|
|
157
|
+
coef_type=coef_type,
|
|
158
|
+
quality_scaling=quality_scaling,
|
|
159
|
+
)
|
|
160
|
+
)
|