ezmsg-sigproc 1.2.2__py3-none-any.whl → 1.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ezmsg/sigproc/__init__.py +1 -1
- ezmsg/sigproc/__version__.py +16 -1
- ezmsg/sigproc/activation.py +75 -0
- ezmsg/sigproc/affinetransform.py +234 -0
- ezmsg/sigproc/aggregate.py +158 -0
- ezmsg/sigproc/bandpower.py +74 -0
- ezmsg/sigproc/base.py +38 -0
- ezmsg/sigproc/butterworthfilter.py +102 -11
- ezmsg/sigproc/decimate.py +7 -4
- ezmsg/sigproc/downsample.py +95 -51
- ezmsg/sigproc/ewmfilter.py +38 -16
- ezmsg/sigproc/filter.py +108 -20
- ezmsg/sigproc/filterbank.py +278 -0
- ezmsg/sigproc/math/__init__.py +0 -0
- ezmsg/sigproc/math/abs.py +28 -0
- ezmsg/sigproc/math/clip.py +30 -0
- ezmsg/sigproc/math/difference.py +60 -0
- ezmsg/sigproc/math/invert.py +29 -0
- ezmsg/sigproc/math/log.py +32 -0
- ezmsg/sigproc/math/scale.py +31 -0
- ezmsg/sigproc/messages.py +2 -3
- ezmsg/sigproc/sampler.py +259 -224
- ezmsg/sigproc/scaler.py +173 -0
- ezmsg/sigproc/signalinjector.py +64 -0
- ezmsg/sigproc/slicer.py +133 -0
- ezmsg/sigproc/spectral.py +6 -132
- ezmsg/sigproc/spectrogram.py +86 -0
- ezmsg/sigproc/spectrum.py +259 -0
- ezmsg/sigproc/synth.py +299 -105
- ezmsg/sigproc/wavelets.py +167 -0
- ezmsg/sigproc/window.py +254 -116
- ezmsg_sigproc-1.3.1.dist-info/METADATA +59 -0
- ezmsg_sigproc-1.3.1.dist-info/RECORD +35 -0
- {ezmsg_sigproc-1.2.2.dist-info → ezmsg_sigproc-1.3.1.dist-info}/WHEEL +1 -2
- ezmsg_sigproc-1.2.2.dist-info/METADATA +0 -36
- ezmsg_sigproc-1.2.2.dist-info/RECORD +0 -17
- ezmsg_sigproc-1.2.2.dist-info/top_level.txt +0 -1
- {ezmsg_sigproc-1.2.2.dist-info → ezmsg_sigproc-1.3.1.dist-info/licenses}/LICENSE.txt +0 -0
|
@@ -0,0 +1,259 @@
|
|
|
1
|
+
from dataclasses import replace
|
|
2
|
+
import enum
|
|
3
|
+
from functools import partial
|
|
4
|
+
import typing
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import ezmsg.core as ez
|
|
8
|
+
from ezmsg.util.messages.axisarray import AxisArray, slice_along_axis
|
|
9
|
+
from ezmsg.util.generator import consumer
|
|
10
|
+
|
|
11
|
+
from .base import GenAxisArray
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class OptionsEnum(enum.Enum):
|
|
15
|
+
@classmethod
|
|
16
|
+
def options(cls):
|
|
17
|
+
return list(map(lambda c: c.value, cls))
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class WindowFunction(OptionsEnum):
|
|
21
|
+
"""Windowing function prior to calculating spectrum."""
|
|
22
|
+
|
|
23
|
+
NONE = "None (Rectangular)"
|
|
24
|
+
"""None."""
|
|
25
|
+
|
|
26
|
+
HAMMING = "Hamming"
|
|
27
|
+
""":obj:`numpy.hamming`"""
|
|
28
|
+
|
|
29
|
+
HANNING = "Hanning"
|
|
30
|
+
""":obj:`numpy.hanning`"""
|
|
31
|
+
|
|
32
|
+
BARTLETT = "Bartlett"
|
|
33
|
+
""":obj:`numpy.bartlett`"""
|
|
34
|
+
|
|
35
|
+
BLACKMAN = "Blackman"
|
|
36
|
+
""":obj:`numpy.blackman`"""
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
WINDOWS = {
|
|
40
|
+
WindowFunction.NONE: np.ones,
|
|
41
|
+
WindowFunction.HAMMING: np.hamming,
|
|
42
|
+
WindowFunction.HANNING: np.hanning,
|
|
43
|
+
WindowFunction.BARTLETT: np.bartlett,
|
|
44
|
+
WindowFunction.BLACKMAN: np.blackman,
|
|
45
|
+
}
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class SpectralTransform(OptionsEnum):
|
|
49
|
+
"""Additional transformation functions to apply to the spectral result."""
|
|
50
|
+
|
|
51
|
+
RAW_COMPLEX = "Complex FFT Output"
|
|
52
|
+
REAL = "Real Component of FFT"
|
|
53
|
+
IMAG = "Imaginary Component of FFT"
|
|
54
|
+
REL_POWER = "Relative Power"
|
|
55
|
+
REL_DB = "Log Power (Relative dB)"
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
class SpectralOutput(OptionsEnum):
|
|
59
|
+
"""The expected spectral contents."""
|
|
60
|
+
|
|
61
|
+
FULL = "Full Spectrum"
|
|
62
|
+
POSITIVE = "Positive Frequencies"
|
|
63
|
+
NEGATIVE = "Negative Frequencies"
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
@consumer
|
|
67
|
+
def spectrum(
|
|
68
|
+
axis: typing.Optional[str] = None,
|
|
69
|
+
out_axis: typing.Optional[str] = "freq",
|
|
70
|
+
window: WindowFunction = WindowFunction.HANNING,
|
|
71
|
+
transform: SpectralTransform = SpectralTransform.REL_DB,
|
|
72
|
+
output: SpectralOutput = SpectralOutput.POSITIVE,
|
|
73
|
+
norm: typing.Optional[str] = "forward",
|
|
74
|
+
do_fftshift: bool = True,
|
|
75
|
+
nfft: typing.Optional[int] = None,
|
|
76
|
+
) -> typing.Generator[AxisArray, AxisArray, None]:
|
|
77
|
+
"""
|
|
78
|
+
Calculate a spectrum on a data slice.
|
|
79
|
+
|
|
80
|
+
Args:
|
|
81
|
+
axis: The name of the axis on which to calculate the spectrum.
|
|
82
|
+
out_axis: The name of the new axis. Defaults to "freq".
|
|
83
|
+
window: The :obj:`WindowFunction` to apply to the data slice prior to calculating the spectrum.
|
|
84
|
+
transform: The :obj:`SpectralTransform` to apply to the spectral magnitude.
|
|
85
|
+
output: The :obj:`SpectralOutput` format.
|
|
86
|
+
norm: Normalization mode. Default "forward" is best used when the inverse transform is not needed,
|
|
87
|
+
for example when the goal is to get spectral power. Use "backward" (equivalent to None) to not
|
|
88
|
+
scale the spectrum which is useful when the spectra will be manipulated and possibly inverse-transformed.
|
|
89
|
+
See numpy.fft.fft for details.
|
|
90
|
+
do_fftshift: Whether to apply fftshift to the output. Default is True. This value is ignored unless
|
|
91
|
+
output is SpectralOutput.FULL.
|
|
92
|
+
nfft: The number of points to use for the FFT. If None, the length of the input data is used.
|
|
93
|
+
|
|
94
|
+
Returns:
|
|
95
|
+
A primed generator object that expects `.send(axis_array)` of continuous data
|
|
96
|
+
and yields an AxisArray of spectral magnitudes or powers.
|
|
97
|
+
"""
|
|
98
|
+
msg_out = AxisArray(np.array([]), dims=[""])
|
|
99
|
+
|
|
100
|
+
# State variables
|
|
101
|
+
apply_window = window != WindowFunction.NONE
|
|
102
|
+
do_fftshift &= output == SpectralOutput.FULL
|
|
103
|
+
f_sl = slice(None)
|
|
104
|
+
freq_axis: typing.Optional[AxisArray.Axis] = None
|
|
105
|
+
fftfun: typing.Optional[typing.Callable] = None
|
|
106
|
+
f_transform: typing.Optional[typing.Callable] = None
|
|
107
|
+
new_dims: typing.Optional[typing.List[str]] = None
|
|
108
|
+
|
|
109
|
+
# Reset if input changes substantially
|
|
110
|
+
check_input = {
|
|
111
|
+
"n_time": None, # Need to recalc windows
|
|
112
|
+
"ndim": None, # Input ndim changed: Need to recalc windows
|
|
113
|
+
"kind": None, # Input dtype changed: Need to re-init fft funcs
|
|
114
|
+
"ax_idx": None, # Axis index changed: Need to re-init fft funcs
|
|
115
|
+
"gain": None, # Gain changed: Need to re-calc freqs
|
|
116
|
+
# "key": None # There's no temporal continuity; we can ignore key changes
|
|
117
|
+
}
|
|
118
|
+
|
|
119
|
+
while True:
|
|
120
|
+
msg_in: AxisArray = yield msg_out
|
|
121
|
+
|
|
122
|
+
# Get signal properties
|
|
123
|
+
axis = axis or msg_in.dims[0]
|
|
124
|
+
ax_idx = msg_in.get_axis_idx(axis)
|
|
125
|
+
ax_info = msg_in.axes[axis]
|
|
126
|
+
targ_len = msg_in.data.shape[ax_idx]
|
|
127
|
+
|
|
128
|
+
# Check signal properties for change
|
|
129
|
+
b_reset = targ_len != check_input["n_time"]
|
|
130
|
+
b_reset = b_reset or msg_in.data.ndim != check_input["ndim"]
|
|
131
|
+
b_reset = b_reset or msg_in.data.dtype.kind != check_input["kind"]
|
|
132
|
+
b_reset = b_reset or ax_idx != check_input["ax_idx"]
|
|
133
|
+
b_reset = b_reset or ax_info.gain != check_input["gain"]
|
|
134
|
+
if b_reset:
|
|
135
|
+
check_input["n_time"] = targ_len
|
|
136
|
+
check_input["ndim"] = msg_in.data.ndim
|
|
137
|
+
check_input["kind"] = msg_in.data.dtype.kind
|
|
138
|
+
check_input["ax_idx"] = ax_idx
|
|
139
|
+
check_input["gain"] = ax_info.gain
|
|
140
|
+
|
|
141
|
+
nfft = nfft or targ_len
|
|
142
|
+
|
|
143
|
+
# Pre-calculate windowing
|
|
144
|
+
window = WINDOWS[window](targ_len)
|
|
145
|
+
window = window.reshape(
|
|
146
|
+
[1] * ax_idx
|
|
147
|
+
+ [
|
|
148
|
+
len(window),
|
|
149
|
+
]
|
|
150
|
+
+ [1] * (msg_in.data.ndim - 1 - ax_idx)
|
|
151
|
+
)
|
|
152
|
+
if transform != SpectralTransform.RAW_COMPLEX and not (
|
|
153
|
+
transform == SpectralTransform.REAL
|
|
154
|
+
or transform == SpectralTransform.IMAG
|
|
155
|
+
):
|
|
156
|
+
scale = np.sum(window**2.0) * ax_info.gain
|
|
157
|
+
|
|
158
|
+
# Pre-calculate frequencies and select our fft function.
|
|
159
|
+
b_complex = msg_in.data.dtype.kind == "c"
|
|
160
|
+
if (not b_complex) and output == SpectralOutput.POSITIVE:
|
|
161
|
+
# If input is not complex and desired output is SpectralOutput.POSITIVE, we can save some computation
|
|
162
|
+
# by using rfft and rfftfreq.
|
|
163
|
+
fftfun = partial(np.fft.rfft, n=nfft, axis=ax_idx, norm=norm)
|
|
164
|
+
freqs = np.fft.rfftfreq(nfft, d=ax_info.gain * targ_len / nfft)
|
|
165
|
+
else:
|
|
166
|
+
fftfun = partial(np.fft.fft, n=nfft, axis=ax_idx, norm=norm)
|
|
167
|
+
freqs = np.fft.fftfreq(nfft, d=ax_info.gain * targ_len / nfft)
|
|
168
|
+
if output == SpectralOutput.POSITIVE:
|
|
169
|
+
f_sl = slice(None, nfft // 2 + 1 - (nfft % 2))
|
|
170
|
+
elif output == SpectralOutput.NEGATIVE:
|
|
171
|
+
freqs = np.fft.fftshift(freqs, axes=-1)
|
|
172
|
+
f_sl = slice(None, nfft // 2 + 1)
|
|
173
|
+
elif do_fftshift: # and FULL
|
|
174
|
+
freqs = np.fft.fftshift(freqs, axes=-1)
|
|
175
|
+
freqs = freqs[f_sl]
|
|
176
|
+
freqs = freqs.tolist() # To please type checking
|
|
177
|
+
freq_axis = AxisArray.Axis(
|
|
178
|
+
unit="Hz", gain=freqs[1] - freqs[0], offset=freqs[0]
|
|
179
|
+
)
|
|
180
|
+
if out_axis is None:
|
|
181
|
+
out_axis = axis
|
|
182
|
+
new_dims = (
|
|
183
|
+
msg_in.dims[:ax_idx]
|
|
184
|
+
+ [
|
|
185
|
+
out_axis,
|
|
186
|
+
]
|
|
187
|
+
+ msg_in.dims[ax_idx + 1 :]
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
def f_transform(x):
|
|
191
|
+
return x
|
|
192
|
+
|
|
193
|
+
if transform != SpectralTransform.RAW_COMPLEX:
|
|
194
|
+
if transform == SpectralTransform.REAL:
|
|
195
|
+
|
|
196
|
+
def f_transform(x):
|
|
197
|
+
return x.real
|
|
198
|
+
elif transform == SpectralTransform.IMAG:
|
|
199
|
+
|
|
200
|
+
def f_transform(x):
|
|
201
|
+
return x.imag
|
|
202
|
+
else:
|
|
203
|
+
|
|
204
|
+
def f1(x):
|
|
205
|
+
return (np.abs(x) ** 2.0) / scale
|
|
206
|
+
|
|
207
|
+
if transform == SpectralTransform.REL_DB:
|
|
208
|
+
|
|
209
|
+
def f_transform(x):
|
|
210
|
+
return 10 * np.log10(f1(x))
|
|
211
|
+
else:
|
|
212
|
+
f_transform = f1
|
|
213
|
+
|
|
214
|
+
new_axes = {k: v for k, v in msg_in.axes.items() if k not in [out_axis, axis]}
|
|
215
|
+
new_axes[out_axis] = freq_axis
|
|
216
|
+
|
|
217
|
+
if apply_window:
|
|
218
|
+
win_dat = msg_in.data * window
|
|
219
|
+
else:
|
|
220
|
+
win_dat = msg_in.data
|
|
221
|
+
spec = fftfun(win_dat, n=nfft, axis=ax_idx, norm=norm)
|
|
222
|
+
# Note: norm="forward" equivalent to `/ nfft`
|
|
223
|
+
if do_fftshift or output == SpectralOutput.NEGATIVE:
|
|
224
|
+
spec = np.fft.fftshift(spec, axes=ax_idx)
|
|
225
|
+
spec = f_transform(spec)
|
|
226
|
+
spec = slice_along_axis(spec, f_sl, ax_idx)
|
|
227
|
+
|
|
228
|
+
msg_out = replace(msg_in, data=spec, dims=new_dims, axes=new_axes)
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
class SpectrumSettings(ez.Settings):
|
|
232
|
+
"""
|
|
233
|
+
Settings for :obj:`Spectrum.
|
|
234
|
+
See :obj:`spectrum` for a description of the parameters.
|
|
235
|
+
"""
|
|
236
|
+
|
|
237
|
+
axis: typing.Optional[str] = None
|
|
238
|
+
# n: typing.Optional[int] = None # n parameter for fft
|
|
239
|
+
out_axis: typing.Optional[str] = "freq" # If none; don't change dim name
|
|
240
|
+
window: WindowFunction = WindowFunction.HAMMING
|
|
241
|
+
transform: SpectralTransform = SpectralTransform.REL_DB
|
|
242
|
+
output: SpectralOutput = SpectralOutput.POSITIVE
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
class Spectrum(GenAxisArray):
|
|
246
|
+
"""Unit for :obj:`spectrum`"""
|
|
247
|
+
|
|
248
|
+
SETTINGS = SpectrumSettings
|
|
249
|
+
|
|
250
|
+
INPUT_SETTINGS = ez.InputStream(SpectrumSettings)
|
|
251
|
+
|
|
252
|
+
def construct_generator(self):
|
|
253
|
+
self.STATE.gen = spectrum(
|
|
254
|
+
axis=self.SETTINGS.axis,
|
|
255
|
+
out_axis=self.SETTINGS.out_axis,
|
|
256
|
+
window=self.SETTINGS.window,
|
|
257
|
+
transform=self.SETTINGS.transform,
|
|
258
|
+
output=self.SETTINGS.output,
|
|
259
|
+
)
|