ezmsg-learn 1.0__py3-none-any.whl → 1.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ezmsg/learn/__version__.py +2 -2
- ezmsg/learn/dim_reduce/adaptive_decomp.py +9 -19
- ezmsg/learn/dim_reduce/incremental_decomp.py +8 -16
- ezmsg/learn/linear_model/adaptive_linear_regressor.py +6 -0
- ezmsg/learn/linear_model/linear_regressor.py +4 -0
- ezmsg/learn/linear_model/sgd.py +6 -2
- ezmsg/learn/linear_model/slda.py +7 -1
- ezmsg/learn/model/mlp.py +8 -14
- ezmsg/learn/model/refit_kalman.py +17 -49
- ezmsg/learn/nlin_model/mlp.py +5 -1
- ezmsg/learn/process/adaptive_linear_regressor.py +20 -36
- ezmsg/learn/process/base.py +12 -31
- ezmsg/learn/process/linear_regressor.py +13 -18
- ezmsg/learn/process/mlp_old.py +18 -31
- ezmsg/learn/process/refit_kalman.py +8 -13
- ezmsg/learn/process/rnn.py +14 -36
- ezmsg/learn/process/sgd.py +94 -109
- ezmsg/learn/process/sklearn.py +17 -51
- ezmsg/learn/process/slda.py +6 -15
- ezmsg/learn/process/ssr.py +374 -0
- ezmsg/learn/process/torch.py +12 -29
- ezmsg/learn/process/transformer.py +11 -19
- ezmsg/learn/util.py +5 -4
- {ezmsg_learn-1.0.dist-info → ezmsg_learn-1.2.0.dist-info}/METADATA +5 -9
- ezmsg_learn-1.2.0.dist-info/RECORD +38 -0
- {ezmsg_learn-1.0.dist-info → ezmsg_learn-1.2.0.dist-info}/WHEEL +1 -1
- ezmsg_learn-1.2.0.dist-info/licenses/LICENSE +21 -0
- ezmsg_learn-1.0.dist-info/RECORD +0 -36
|
@@ -2,9 +2,8 @@ import typing
|
|
|
2
2
|
|
|
3
3
|
import ezmsg.core as ez
|
|
4
4
|
import torch
|
|
5
|
-
from ezmsg.
|
|
6
|
-
from ezmsg.
|
|
7
|
-
from ezmsg.sigproc.util.profile import profile_subpub
|
|
5
|
+
from ezmsg.baseproc import BaseAdaptiveTransformer, BaseAdaptiveTransformerUnit
|
|
6
|
+
from ezmsg.baseproc.util.profile import profile_subpub
|
|
8
7
|
from ezmsg.util.messages.axisarray import AxisArray
|
|
9
8
|
from ezmsg.util.messages.util import replace
|
|
10
9
|
|
|
@@ -51,9 +50,7 @@ class TransformerState(TorchModelState):
|
|
|
51
50
|
|
|
52
51
|
|
|
53
52
|
class TransformerProcessor(
|
|
54
|
-
BaseAdaptiveTransformer[
|
|
55
|
-
TransformerSettings, AxisArray, AxisArray, TransformerState
|
|
56
|
-
],
|
|
53
|
+
BaseAdaptiveTransformer[TransformerSettings, AxisArray, AxisArray, TransformerState],
|
|
57
54
|
TorchProcessorMixin,
|
|
58
55
|
ModelInitMixin,
|
|
59
56
|
):
|
|
@@ -76,7 +73,8 @@ class TransformerProcessor(
|
|
|
76
73
|
and self.settings.autoregressive_head not in self._state.chan_ax
|
|
77
74
|
):
|
|
78
75
|
raise ValueError(
|
|
79
|
-
f"Autoregressive head '{self.settings.autoregressive_head}' not found in target
|
|
76
|
+
f"Autoregressive head '{self.settings.autoregressive_head}' not found in target"
|
|
77
|
+
f"dictionary keys: {list(self._state.chan_ax.keys())}"
|
|
80
78
|
)
|
|
81
79
|
self._state.ar_head = (
|
|
82
80
|
self.settings.autoregressive_head
|
|
@@ -101,15 +99,11 @@ class TransformerProcessor(
|
|
|
101
99
|
if self._state.tgt_cache is None:
|
|
102
100
|
self._state.tgt_cache = pred[:, -1:, :]
|
|
103
101
|
else:
|
|
104
|
-
self._state.tgt_cache = torch.cat(
|
|
105
|
-
[self._state.tgt_cache, pred[:, -1:, :]], dim=1
|
|
106
|
-
)
|
|
102
|
+
self._state.tgt_cache = torch.cat([self._state.tgt_cache, pred[:, -1:, :]], dim=1)
|
|
107
103
|
if self.settings.max_cache_len is not None:
|
|
108
104
|
if self._state.tgt_cache.shape[1] > self.settings.max_cache_len:
|
|
109
105
|
# Trim the cache to the maximum length
|
|
110
|
-
self._state.tgt_cache = self._state.tgt_cache[
|
|
111
|
-
:, -self.settings.max_cache_len :, :
|
|
112
|
-
]
|
|
106
|
+
self._state.tgt_cache = self._state.tgt_cache[:, -self.settings.max_cache_len :, :]
|
|
113
107
|
|
|
114
108
|
if isinstance(y_pred, dict):
|
|
115
109
|
return [
|
|
@@ -130,13 +124,13 @@ class TransformerProcessor(
|
|
|
130
124
|
)
|
|
131
125
|
]
|
|
132
126
|
|
|
133
|
-
def partial_fit(self, message:
|
|
127
|
+
def partial_fit(self, message: AxisArray) -> None:
|
|
134
128
|
self._state.model.train()
|
|
135
129
|
|
|
136
|
-
X = self._to_tensor(message.
|
|
130
|
+
X = self._to_tensor(message.data)
|
|
137
131
|
X, batched = self._ensure_batched(X)
|
|
138
132
|
|
|
139
|
-
y_targ = message.trigger.value
|
|
133
|
+
y_targ = message.attrs["trigger"].value
|
|
140
134
|
if not isinstance(y_targ, dict):
|
|
141
135
|
y_targ = {"output": y_targ}
|
|
142
136
|
y_targ = {key: self._to_tensor(value) for key, value in y_targ.items()}
|
|
@@ -186,9 +180,7 @@ class TransformerProcessor(
|
|
|
186
180
|
for key in y_targ.keys():
|
|
187
181
|
loss_fn = loss_fns.get(key)
|
|
188
182
|
if loss_fn is None:
|
|
189
|
-
raise ValueError(
|
|
190
|
-
f"Loss function for key '{key}' is not defined in settings."
|
|
191
|
-
)
|
|
183
|
+
raise ValueError(f"Loss function for key '{key}' is not defined in settings.")
|
|
192
184
|
loss = loss_fn(y_pred[key], y_targ[key])
|
|
193
185
|
weight = weights.get(key, 1.0)
|
|
194
186
|
losses.append(loss * weight)
|
ezmsg/learn/util.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
|
1
|
-
from enum import Enum
|
|
2
|
-
from dataclasses import dataclass, field
|
|
3
1
|
import typing
|
|
2
|
+
from dataclasses import dataclass, field
|
|
3
|
+
from enum import Enum
|
|
4
4
|
|
|
5
|
-
from ezmsg.util.messages.axisarray import AxisArray
|
|
6
|
-
import sklearn.linear_model
|
|
7
5
|
import river.linear_model
|
|
6
|
+
import sklearn.linear_model
|
|
7
|
+
from ezmsg.util.messages.axisarray import AxisArray
|
|
8
|
+
|
|
8
9
|
# from sklearn.neural_network import MLPClassifier
|
|
9
10
|
|
|
10
11
|
|
|
@@ -1,11 +1,13 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ezmsg-learn
|
|
3
|
-
Version: 1.0
|
|
3
|
+
Version: 1.2.0
|
|
4
4
|
Summary: ezmsg namespace package for machine learning
|
|
5
5
|
Author-email: Chadwick Boulay <chadwick.boulay@gmail.com>
|
|
6
6
|
License-Expression: MIT
|
|
7
|
+
License-File: LICENSE
|
|
7
8
|
Requires-Python: >=3.10.15
|
|
8
|
-
Requires-Dist: ezmsg-
|
|
9
|
+
Requires-Dist: ezmsg-baseproc>=1.3.0
|
|
10
|
+
Requires-Dist: ezmsg-sigproc>=2.15.0
|
|
9
11
|
Requires-Dist: river>=0.22.0
|
|
10
12
|
Requires-Dist: scikit-learn>=1.6.0
|
|
11
13
|
Requires-Dist: torch>=2.6.0
|
|
@@ -24,11 +26,5 @@ Processing units include dimensionality reduction, linear regression, and classi
|
|
|
24
26
|
This ezmsg namespace package is still highly experimental and under active development. It is not yet available on PyPI, so you will need to install it from source. The easiest way to do this is to use the `pip` command to install the package directly from GitHub:
|
|
25
27
|
|
|
26
28
|
```bash
|
|
27
|
-
pip install git+
|
|
28
|
-
```
|
|
29
|
-
|
|
30
|
-
Note that this package depends on a specific version of `ezmsg-sigproc` (specifically, [this branch]("70-use-protocols-for-axisarray-transformers")) that has yet to be merged and released. This may conflict with your project's separate dependency on ezmsg-sigproc. However, this specific version of ezmsg-sigproc should be backwards compatible with its main branch, so in your project you can modify the dependency on ezmsg-sigproc to point to the new branch. e.g.,
|
|
31
|
-
|
|
32
|
-
```bash
|
|
33
|
-
pip install git+ssh://git@github.com/ezmsg-org/ezmsg-sigproc@70-use-protocols-for-axisarray-transformers
|
|
29
|
+
pip install git+https://github.com/ezmsg-org/ezmsg-learn
|
|
34
30
|
```
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
ezmsg/learn/__init__.py,sha256=9vTW4C2EQCHgDAo8gIlGNDfOxcQpNGV3Cct9-HsBJKY,57
|
|
2
|
+
ezmsg/learn/__version__.py,sha256=-uLONazCO1SzFfcY-K6A1keL--LIVfTYccGX6ciADac,704
|
|
3
|
+
ezmsg/learn/util.py,sha256=cJPu07aWnsh_cIUMuVb0byXqm1CvLv9QO925U1t6oYs,2015
|
|
4
|
+
ezmsg/learn/dim_reduce/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
5
|
+
ezmsg/learn/dim_reduce/adaptive_decomp.py,sha256=SmxBuTATuo3DBrGkHiwC2BTg0rmiAF7kRMX_J8iObLM,9240
|
|
6
|
+
ezmsg/learn/dim_reduce/incremental_decomp.py,sha256=LxBbFf16cEW6YvZ73I6tnbiamJxRfGHCHLXnH_tIC88,6754
|
|
7
|
+
ezmsg/learn/linear_model/__init__.py,sha256=7_bcxc40W6UN2IfnJfjuVHe5mZ0BSPdHLKqCXpHPMwQ,78
|
|
8
|
+
ezmsg/learn/linear_model/adaptive_linear_regressor.py,sha256=AV0MaJ4jASfRMRDAaiKNY0I6a88si1JNhFPuyVpP__k,488
|
|
9
|
+
ezmsg/learn/linear_model/cca.py,sha256=H-NnK9QH5vI0OnGezf674lV-X15xGzgar6d6G-67fZU,57
|
|
10
|
+
ezmsg/learn/linear_model/linear_regressor.py,sha256=3Gi6DfvXIPf1J6wdeyO9nvm5AmSfK2J2CMMDDo2QLRg,297
|
|
11
|
+
ezmsg/learn/linear_model/sgd.py,sha256=xdef6lQ25m9kyqNueDBNtx7haNwrg-ljuyUPfimyxjA,198
|
|
12
|
+
ezmsg/learn/linear_model/slda.py,sha256=qJocbqbB8lgvl62VP0DCXQlF1jDc87CTBBFh0B2Bil8,244
|
|
13
|
+
ezmsg/learn/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
14
|
+
ezmsg/learn/model/cca.py,sha256=wf6vsfGHWiPt4FgZEG6veudKi1-GJDVp0bxaabxjJvE,4262
|
|
15
|
+
ezmsg/learn/model/mlp.py,sha256=zcuw2mNt1LGZxN0XOAxdG52JFWcscjO-JiIFfPNACnc,5476
|
|
16
|
+
ezmsg/learn/model/mlp_old.py,sha256=ODpeoU-6DFG_yZLF9jdBOeRsw1ptyMyWCKM-WGJBeRs,2140
|
|
17
|
+
ezmsg/learn/model/refit_kalman.py,sha256=bi3zoCnhJRwUbqrb4WpCNVSNLpeVUeMQChqcfpFXHJU,15747
|
|
18
|
+
ezmsg/learn/model/rnn.py,sha256=VmcRG2UcxROyrY10AJ-jwompOThtuj6SYjPzHWxAohw,6654
|
|
19
|
+
ezmsg/learn/model/transformer.py,sha256=Vfo_CATOmoNtaqkE4BRWJy6QcX-1J_Pz3rMG2ErQSLM,7535
|
|
20
|
+
ezmsg/learn/nlin_model/__init__.py,sha256=Ap62_lD7Dc3D-15ebhhBzT23PMrdyiV8fWV6eWy6wnE,101
|
|
21
|
+
ezmsg/learn/nlin_model/mlp.py,sha256=l3KNCS7w9KlMiNVRxooqBb7Agl8A4OwnbZiJkWD2lJU,233
|
|
22
|
+
ezmsg/learn/process/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
23
|
+
ezmsg/learn/process/adaptive_linear_regressor.py,sha256=1xq4KN_UbTdrsbZ4PqSRs47aAVWMRLZNWJ5ZaRDtJ78,5179
|
|
24
|
+
ezmsg/learn/process/base.py,sha256=1gfCMRh5JGRrKU-Obeh2abH1UW0dxHuc7kgxpBln76A,6655
|
|
25
|
+
ezmsg/learn/process/linear_regressor.py,sha256=8gacrdJJ78U3gBgC62qxvDpZOamZW0kn9NJoRgoLJHc,3032
|
|
26
|
+
ezmsg/learn/process/mlp_old.py,sha256=a2iS45ZlIfonPanerpKROSugYKPghas4JTErO7TM4RU,6700
|
|
27
|
+
ezmsg/learn/process/refit_kalman.py,sha256=wrVHb2ZHIDLT0LVlZsNfsD5rdl8dBECxZnqvxDiJuyE,15065
|
|
28
|
+
ezmsg/learn/process/rnn.py,sha256=HDc4PgZLTEtUVWGFUDqX9qA31Fid37Qj4eYR7jX7aUU,9418
|
|
29
|
+
ezmsg/learn/process/sgd.py,sha256=vkPWDiBKXNhF0EjHbpJt9SskSKw4TRAbhE7uHOYh1Ik,3704
|
|
30
|
+
ezmsg/learn/process/sklearn.py,sha256=Smpo2YITfjs8thVjSQ7kkqRjjSMa2FOL2ArW-fKMn38,9451
|
|
31
|
+
ezmsg/learn/process/slda.py,sha256=BtVKBYkggvlC8_rLkrWfqthOFkKKFv-r9CdX_jWRn2o,4315
|
|
32
|
+
ezmsg/learn/process/ssr.py,sha256=XiHcUSJ3tY3_HvATcQp427KhQIAZ9aVNvewCp-ODO8c,13939
|
|
33
|
+
ezmsg/learn/process/torch.py,sha256=HnFaUhimXM_ki2clcYDPN8wmwA1fpz_HEdcd_XhM4YM,13076
|
|
34
|
+
ezmsg/learn/process/transformer.py,sha256=bnVi87xv95O3plNJVBN5W6pukuS0lKkTvJ7lqkpED9o,7710
|
|
35
|
+
ezmsg_learn-1.2.0.dist-info/METADATA,sha256=v-okrlHbna_orkyBQ7xzzL1jpFgxH-AdhLf4FZ8GNhc,1494
|
|
36
|
+
ezmsg_learn-1.2.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
37
|
+
ezmsg_learn-1.2.0.dist-info/licenses/LICENSE,sha256=BDD8rfac1Ur7mp0_3izEdr6fHgSA3Or6U1Kb0ZAWsow,1066
|
|
38
|
+
ezmsg_learn-1.2.0.dist-info/RECORD,,
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 ezmsg-org
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
ezmsg_learn-1.0.dist-info/RECORD
DELETED
|
@@ -1,36 +0,0 @@
|
|
|
1
|
-
ezmsg/learn/__init__.py,sha256=9vTW4C2EQCHgDAo8gIlGNDfOxcQpNGV3Cct9-HsBJKY,57
|
|
2
|
-
ezmsg/learn/__version__.py,sha256=T-YAefOAMONzdzJN9AfYa3q6PjJ-HRflYoFg45W1xFU,699
|
|
3
|
-
ezmsg/learn/util.py,sha256=-WZ3k0sWSIJ1Z9aNiNFFYGa1-8oSbwQc-wI2i86w_C4,2014
|
|
4
|
-
ezmsg/learn/dim_reduce/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
5
|
-
ezmsg/learn/dim_reduce/adaptive_decomp.py,sha256=HmjantyGCIt7gP1d0iJ9mfoEtvR3-FjVrpv9JBT6mdc,9332
|
|
6
|
-
ezmsg/learn/dim_reduce/incremental_decomp.py,sha256=FRx0Rhn3q8yHe64e4jaHSwWNVJ9eJT1ltuZWZc-C1R8,6830
|
|
7
|
-
ezmsg/learn/linear_model/__init__.py,sha256=7_bcxc40W6UN2IfnJfjuVHe5mZ0BSPdHLKqCXpHPMwQ,78
|
|
8
|
-
ezmsg/learn/linear_model/adaptive_linear_regressor.py,sha256=zfbwjTaBGdlBzzDBU6Nu2nuUjmhFVYs7Co84VWyRqIE,332
|
|
9
|
-
ezmsg/learn/linear_model/cca.py,sha256=H-NnK9QH5vI0OnGezf674lV-X15xGzgar6d6G-67fZU,57
|
|
10
|
-
ezmsg/learn/linear_model/linear_regressor.py,sha256=qTkIV2FRMC-Lhg7RTxmX1pWWsov84gV-47x-YSdNGdM,211
|
|
11
|
-
ezmsg/learn/linear_model/sgd.py,sha256=6glInxmhapMVlBSZZB01w3vCqkNyGYOHoV8nfzrYCNI,138
|
|
12
|
-
ezmsg/learn/linear_model/slda.py,sha256=MmmDbfm5y-8XpLThgJlHVV3f2kqZ-mrpnNkkIUHrwWg,151
|
|
13
|
-
ezmsg/learn/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
14
|
-
ezmsg/learn/model/cca.py,sha256=wf6vsfGHWiPt4FgZEG6veudKi1-GJDVp0bxaabxjJvE,4262
|
|
15
|
-
ezmsg/learn/model/mlp.py,sha256=bMm4JX53sRdCLgMeh8gAvJnd2qruiTsyuv4MiwLpvCU,5574
|
|
16
|
-
ezmsg/learn/model/mlp_old.py,sha256=ODpeoU-6DFG_yZLF9jdBOeRsw1ptyMyWCKM-WGJBeRs,2140
|
|
17
|
-
ezmsg/learn/model/refit_kalman.py,sha256=PgjpMpIWkwHX7baSRLcT5loBA6h8uCf1L1spPfM4Nq8,16313
|
|
18
|
-
ezmsg/learn/model/rnn.py,sha256=VmcRG2UcxROyrY10AJ-jwompOThtuj6SYjPzHWxAohw,6654
|
|
19
|
-
ezmsg/learn/model/transformer.py,sha256=Vfo_CATOmoNtaqkE4BRWJy6QcX-1J_Pz3rMG2ErQSLM,7535
|
|
20
|
-
ezmsg/learn/nlin_model/__init__.py,sha256=Ap62_lD7Dc3D-15ebhhBzT23PMrdyiV8fWV6eWy6wnE,101
|
|
21
|
-
ezmsg/learn/nlin_model/mlp.py,sha256=zWTtI1JBP4KDcZCAqecHNn4Y59egEE9Bg2vi8-9la7k,165
|
|
22
|
-
ezmsg/learn/process/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
23
|
-
ezmsg/learn/process/adaptive_linear_regressor.py,sha256=0v6xRgWQWub0KlxOlb8ktYuohcwm4gvjHwOtv1qnNHg,5485
|
|
24
|
-
ezmsg/learn/process/base.py,sha256=MhJstPfoTBNqLMDBAZqwbKueYyr9HJhvLzeU3k-Wl8E,7023
|
|
25
|
-
ezmsg/learn/process/linear_regressor.py,sha256=2uKxvMraWITU0xZwbbI3O_mDD4cysl8RzHgl2XrPOPA,3119
|
|
26
|
-
ezmsg/learn/process/mlp_old.py,sha256=b86ee-l0RxUSwCuTGe8MdAPbyJLOToIehAKKvf7bais,6958
|
|
27
|
-
ezmsg/learn/process/refit_kalman.py,sha256=PWva0m33cPTjS8GX1aIK1tT5rgEHRub6Pp7GIgIhxsc,15220
|
|
28
|
-
ezmsg/learn/process/rnn.py,sha256=tF3ejKqCResqBBWmSZoa18KpgB36KHhkYrTohWbs8w4,9862
|
|
29
|
-
ezmsg/learn/process/sgd.py,sha256=DTg1MIA9M_K0qNTWF0oHhnMnn11jyL_MjvdAYKg8Gwk,4894
|
|
30
|
-
ezmsg/learn/process/sklearn.py,sha256=5nyMoJffqpLin86h-tZicVIZUmKYxCt1xT2mr5vGkc4,9988
|
|
31
|
-
ezmsg/learn/process/slda.py,sha256=M-zEiySPM4ovn0Os-ZaLRT8tyTTropsxoOj-veajSYg,4417
|
|
32
|
-
ezmsg/learn/process/torch.py,sha256=JMHSoVbuRCpYdg7JuCOeauhQkDHmnjiZ-XfuHp2TZjw,13353
|
|
33
|
-
ezmsg/learn/process/transformer.py,sha256=yhSDrREQy2PaiLVUzhwDppzg9g-NOox1gxatBMxj3BE,7872
|
|
34
|
-
ezmsg_learn-1.0.dist-info/METADATA,sha256=1qQqXG-QgCb9yXuqg6gQi-re5mmPt6gh98RbwfJlJ94,2012
|
|
35
|
-
ezmsg_learn-1.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
36
|
-
ezmsg_learn-1.0.dist-info/RECORD,,
|