ezKit 1.9.12__py3-none-any.whl → 1.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ezKit-1.9.12.dist-info → ezKit-1.10.0.dist-info}/METADATA +1 -1
- {ezKit-1.9.12.dist-info → ezKit-1.10.0.dist-info}/RECORD +5 -7
- ezKit/cls.py +0 -313
- ezKit/stock.py +0 -355
- {ezKit-1.9.12.dist-info → ezKit-1.10.0.dist-info}/LICENSE +0 -0
- {ezKit-1.9.12.dist-info → ezKit-1.10.0.dist-info}/WHEEL +0 -0
- {ezKit-1.9.12.dist-info → ezKit-1.10.0.dist-info}/top_level.txt +0 -0
@@ -2,19 +2,17 @@ ezKit/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
2
|
ezKit/bottle.py,sha256=usKK1wVaZw4_D-4VwMYmOIc8jtz4TrpM30nck59HMFw,180178
|
3
3
|
ezKit/bottle_extensions.py,sha256=3reEQVZuHklXTl6r7F8kiBFFPb0RaAGc3mYJJnrMDjQ,1129
|
4
4
|
ezKit/cipher.py,sha256=0T_StbjiNI4zgrjVgcfU-ffKgu1waBA9UDudAnqFcNM,2896
|
5
|
-
ezKit/cls.py,sha256=e7_72kv0Q_o023xcjKNtrkfKg7frABQvCF_JjoHV94U,10800
|
6
5
|
ezKit/database.py,sha256=Rc4RgjHOOtf5dMLvMkK1beRfbIai5E1x4HTsDwKsA-Q,6822
|
7
6
|
ezKit/http.py,sha256=i3Kn5AMAMicDMcDjxKKZU7zqEKTU88Ec9_LwCuBJy-0,1801
|
8
7
|
ezKit/mongo.py,sha256=dOm_1wXEPp_e8Ml5Qq78M7FDNrQUAZaThzVIiiLJJwk,2393
|
9
8
|
ezKit/qywx.py,sha256=X_H4fzP-iEqeDEbumr7D1bXi6dxczaxfO8iyutzy02s,7171
|
10
9
|
ezKit/redis.py,sha256=g2_V4jvq0djRc20jLZkgeAeF_bYrq-Rbl_kHcCUPZcA,1965
|
11
10
|
ezKit/sendemail.py,sha256=tRXCsJm_RfTJ9xEWe_lTQ5kOs2JxHGPXvq0oWA7prq0,7263
|
12
|
-
ezKit/stock.py,sha256=4wphZahpiDs0MuPVCUcD22joOQldJhmXjogdroxyR00,12346
|
13
11
|
ezKit/token.py,sha256=HKREyZj_T2S8-aFoFIrBXTaCKExQq4zE66OHXhGHqQg,1750
|
14
12
|
ezKit/utils.py,sha256=TDsL3PRkQy6NdZgphkgwacbWvHqEmq4LOkfNzmxV4DY,42682
|
15
13
|
ezKit/xftp.py,sha256=XyIdr_2rxRVLqPofG6fIYWhAMVsFwTyp46dg5P9FLW4,7774
|
16
|
-
ezKit-1.
|
17
|
-
ezKit-1.
|
18
|
-
ezKit-1.
|
19
|
-
ezKit-1.
|
20
|
-
ezKit-1.
|
14
|
+
ezKit-1.10.0.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
15
|
+
ezKit-1.10.0.dist-info/METADATA,sha256=O02PkOxx-UBmJsu2R7TIJNrTw2d4GvsLsbCgvmHmgp0,191
|
16
|
+
ezKit-1.10.0.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
17
|
+
ezKit-1.10.0.dist-info/top_level.txt,sha256=aYLB_1WODsqNTsTFWcKP-BN0KCTKcV-HZJ4zlHkCFw8,6
|
18
|
+
ezKit-1.10.0.dist-info/RECORD,,
|
ezKit/cls.py
DELETED
@@ -1,313 +0,0 @@
|
|
1
|
-
"""财联社数据"""
|
2
|
-
import re
|
3
|
-
|
4
|
-
import pandas as pd
|
5
|
-
import requests
|
6
|
-
from loguru import logger
|
7
|
-
|
8
|
-
from . import stock, utils
|
9
|
-
|
10
|
-
|
11
|
-
def up_down_analysis(
|
12
|
-
target: str = "up_pool",
|
13
|
-
df: bool = False
|
14
|
-
) -> list | pd.DataFrame | None:
|
15
|
-
"""涨停跌停数据"""
|
16
|
-
|
17
|
-
# 判断参数是否正确
|
18
|
-
match True:
|
19
|
-
case True if not utils.isTrue(target, str):
|
20
|
-
logger.error("argument error: target")
|
21
|
-
return None
|
22
|
-
case _:
|
23
|
-
pass
|
24
|
-
|
25
|
-
info: str = "获取涨停池股票"
|
26
|
-
match True:
|
27
|
-
case True if target == "up_pool":
|
28
|
-
info = "获取涨停池股票"
|
29
|
-
case True if target == "continuous_up_pool":
|
30
|
-
info = "获取连板池股票"
|
31
|
-
case True if target == "up_open_pool":
|
32
|
-
info = "获取炸板池股票"
|
33
|
-
case True if target == "down_pool":
|
34
|
-
info = "获取跌停池股票"
|
35
|
-
case _:
|
36
|
-
pass
|
37
|
-
|
38
|
-
try:
|
39
|
-
logger.info(f"{info} ......")
|
40
|
-
|
41
|
-
user_agent = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
|
42
|
-
headers = {"User-Agent": user_agent}
|
43
|
-
|
44
|
-
# 涨停池: https://x-quote.cls.cn/quote/index/up_down_analysis?rever=1&way=last_px&type=up_pool
|
45
|
-
# 连板池: https://x-quote.cls.cn/quote/index/up_down_analysis?rever=1&way=last_px&type=continuous_up_pool
|
46
|
-
# 炸板池: https://x-quote.cls.cn/quote/index/up_down_analysis?rever=1&way=last_px&type=up_open_pool
|
47
|
-
# 跌停池: https://x-quote.cls.cn/quote/index/up_down_analysis?rever=1&way=last_px&type=down_pool
|
48
|
-
api = f"https://x-quote.cls.cn/quote/index/up_down_analysis?rever=1&way=last_px&type={target}"
|
49
|
-
|
50
|
-
response = requests.get(api, headers=headers, timeout=10)
|
51
|
-
|
52
|
-
response_dict: dict = response.json()
|
53
|
-
|
54
|
-
result: list = []
|
55
|
-
|
56
|
-
for i in response_dict["data"]:
|
57
|
-
|
58
|
-
# if re.match(r"^(sz00|sh60)", i["secu_code"]):
|
59
|
-
# print(i["secu_code"])
|
60
|
-
|
61
|
-
# if re.search(r"ST|银行", i["secu_name"]):
|
62
|
-
# print(i["secu_name"])
|
63
|
-
|
64
|
-
# 主板, 非ST, 非银行, 非证券
|
65
|
-
if (not re.match(r"^(sz00|sh60)", i["secu_code"])) or re.search(r"ST|银行|证券", i["secu_name"]):
|
66
|
-
continue
|
67
|
-
|
68
|
-
if target in ["up_pool", "up_pool"]:
|
69
|
-
result.append({
|
70
|
-
"code": stock.coderename(i["secu_code"], restore=True),
|
71
|
-
"name": i["secu_name"],
|
72
|
-
"up_days": i["limit_up_days"],
|
73
|
-
"reason": i["up_reason"]
|
74
|
-
})
|
75
|
-
|
76
|
-
if target in ["up_open_pool", "down_pool"]:
|
77
|
-
result.append({
|
78
|
-
"code": stock.coderename(i["secu_code"], restore=True),
|
79
|
-
"name": i["secu_name"]
|
80
|
-
})
|
81
|
-
|
82
|
-
if not utils.isTrue(df, bool):
|
83
|
-
logger.success(f"{info} [成功]")
|
84
|
-
return result
|
85
|
-
|
86
|
-
# data: pd.DataFrame = pd.DataFrame(response_dict["data"], columns=["secu_code", "secu_name", "limit_up_days", "up_reason"])
|
87
|
-
# data = data.rename(columns={"secu_code": "code", "secu_name": "name", "limit_up_days": "up_days", "up_reason": "reason"})
|
88
|
-
|
89
|
-
return pd.DataFrame(data=pd.DataFrame(result))
|
90
|
-
|
91
|
-
except Exception as e:
|
92
|
-
logger.error(f"{info} [失败]")
|
93
|
-
logger.exception(e)
|
94
|
-
return None
|
95
|
-
|
96
|
-
|
97
|
-
# --------------------------------------------------------------------------------------------------
|
98
|
-
|
99
|
-
|
100
|
-
def latest_data(
|
101
|
-
payload: str | dict,
|
102
|
-
data_type: str = "stock",
|
103
|
-
df: bool = False
|
104
|
-
) -> list | pd.DataFrame | None:
|
105
|
-
"""股票或板块的最新数据"""
|
106
|
-
|
107
|
-
# 热门板块
|
108
|
-
# https://www.cls.cn/hotPlate
|
109
|
-
# 行业板块
|
110
|
-
# https://x-quote.cls.cn/web_quote/plate/plate_list?rever=1&way=change&type=industry
|
111
|
-
# 概念板块
|
112
|
-
# https://x-quote.cls.cn/web_quote/plate/plate_list?rever=1&way=change&type=concept
|
113
|
-
# 地域板块
|
114
|
-
# https://x-quote.cls.cn/web_quote/plate/plate_list?rever=1&way=change&type=area
|
115
|
-
|
116
|
-
# ----------------------------------------------------------------------------------------------
|
117
|
-
|
118
|
-
# 判断参数类型
|
119
|
-
match True:
|
120
|
-
case True if not utils.isTrue(payload, (str, dict)):
|
121
|
-
logger.error("argument error: payload")
|
122
|
-
return None
|
123
|
-
case True if not utils.isTrue(data_type, str):
|
124
|
-
logger.error("argument error: data_type")
|
125
|
-
return None
|
126
|
-
case _:
|
127
|
-
pass
|
128
|
-
|
129
|
-
# ----------------------------------------------------------------------------------------------
|
130
|
-
|
131
|
-
# 判断数据类型. 数据类型: 个股, 板块 (产业链: industry)
|
132
|
-
if data_type not in ["stock", "plate"]:
|
133
|
-
logger.error("data_type error")
|
134
|
-
return None
|
135
|
-
|
136
|
-
# ----------------------------------------------------------------------------------------------
|
137
|
-
|
138
|
-
# 日志信息
|
139
|
-
|
140
|
-
# 个股 (默认)
|
141
|
-
info: str = "获取股票最新数据"
|
142
|
-
|
143
|
-
# 板块
|
144
|
-
if data_type == "plate":
|
145
|
-
info = "获取板块最新数据"
|
146
|
-
|
147
|
-
# match True:
|
148
|
-
# case True if data_type == "plate":
|
149
|
-
# info = "获取板块最新数据"
|
150
|
-
# case True if data_type == "industry":
|
151
|
-
# info = "获取产业链最新数据"
|
152
|
-
# case _:
|
153
|
-
# pass
|
154
|
-
|
155
|
-
# ----------------------------------------------------------------------------------------------
|
156
|
-
|
157
|
-
try:
|
158
|
-
|
159
|
-
logger.info(f"{info} ......")
|
160
|
-
|
161
|
-
# ------------------------------------------------------------------------------------------
|
162
|
-
|
163
|
-
# HTTP User Agent
|
164
|
-
user_agent = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
|
165
|
-
|
166
|
-
# HTTP Headers
|
167
|
-
headers = {"User-Agent": user_agent}
|
168
|
-
|
169
|
-
# ------------------------------------------------------------------------------------------
|
170
|
-
|
171
|
-
# 请求参数
|
172
|
-
params: dict = {}
|
173
|
-
|
174
|
-
# 默认请求参数
|
175
|
-
if isinstance(payload, str) and utils.isTrue(payload, str):
|
176
|
-
params = {"secu_code": payload}
|
177
|
-
|
178
|
-
# 请求参数
|
179
|
-
if isinstance(payload, dict) and utils.isTrue(payload, dict):
|
180
|
-
params = payload
|
181
|
-
|
182
|
-
# ------------------------------------------------------------------------------------------
|
183
|
-
|
184
|
-
# 不直接在API后面跟参数, 使用 params 传递参数
|
185
|
-
|
186
|
-
# API: 股票
|
187
|
-
# api: str = f"https://x-quote.cls.cn/quote/stock/basic?secu_code={code}"
|
188
|
-
api: str = "https://x-quote.cls.cn/quote/stock/basic"
|
189
|
-
|
190
|
-
# API: 板块
|
191
|
-
if data_type == "plate":
|
192
|
-
# api = f"https://x-quote.cls.cn/web_quote/plate/stocks?secu_code={code}"
|
193
|
-
api = "https://x-quote.cls.cn/web_quote/plate/stocks"
|
194
|
-
|
195
|
-
# match True:
|
196
|
-
# case True if data_type == "plate":
|
197
|
-
# # 板块
|
198
|
-
# # api = f"https://x-quote.cls.cn/web_quote/plate/stocks?secu_code={code}"
|
199
|
-
# api = "https://x-quote.cls.cn/web_quote/plate/stocks"
|
200
|
-
# case True if data_type == "industry":
|
201
|
-
# # 产业链
|
202
|
-
# # api = f"https://x-quote.cls.cn/web_quote/plate/industry?secu_code={code}"
|
203
|
-
# api = "https://x-quote.cls.cn/web_quote/plate/industry"
|
204
|
-
# case _:
|
205
|
-
# pass
|
206
|
-
|
207
|
-
# ------------------------------------------------------------------------------------------
|
208
|
-
|
209
|
-
# 获取数据
|
210
|
-
# response = requests.get(api, headers=headers, timeout=10)
|
211
|
-
response = requests.get(api, headers=headers, params=params, timeout=10)
|
212
|
-
|
213
|
-
# 转换数据类型
|
214
|
-
response_dict: dict = response.json()
|
215
|
-
|
216
|
-
# 判断数据是否正确
|
217
|
-
if True not in [utils.isTrue(response_dict["data"], dict), utils.isTrue(response_dict["data"], list)]:
|
218
|
-
logger.error(f"{info} [失败]")
|
219
|
-
return None
|
220
|
-
|
221
|
-
# ------------------------------------------------------------------------------------------
|
222
|
-
|
223
|
-
# 个股
|
224
|
-
|
225
|
-
if data_type == "stock":
|
226
|
-
|
227
|
-
# 停牌, 返回 None
|
228
|
-
if response_dict["data"]["trade_status"] == "STOPT":
|
229
|
-
logger.error(f"{info} [停牌]")
|
230
|
-
return None
|
231
|
-
|
232
|
-
# pd.DataFrame 数据
|
233
|
-
if utils.isTrue(df, bool):
|
234
|
-
df_data = {
|
235
|
-
# "date": [pd.to_datetime(date_today)],
|
236
|
-
"open": [float(response_dict["data"]["open_px"])],
|
237
|
-
"close": [float(response_dict["data"]["last_px"])],
|
238
|
-
"high": [float(response_dict["data"]["high_px"])],
|
239
|
-
"low": [float(response_dict["data"]["low_px"])],
|
240
|
-
"volume": [int(response_dict["data"]["business_amount"])],
|
241
|
-
"turnover": [float(response_dict["data"]["tr"])]
|
242
|
-
}
|
243
|
-
logger.success(f"{info} [成功]")
|
244
|
-
return pd.DataFrame(data=df_data)
|
245
|
-
|
246
|
-
# 默认返回的数据
|
247
|
-
logger.success(f"{info} [成功]")
|
248
|
-
return response_dict["data"]
|
249
|
-
|
250
|
-
# ------------------------------------------------------------------------------------------
|
251
|
-
|
252
|
-
# 板块
|
253
|
-
|
254
|
-
# 板块数据不能转换为 pd.DataFrame
|
255
|
-
if (data_type == "plate") and utils.isTrue(df, bool):
|
256
|
-
logger.error(f"{info} [错误]")
|
257
|
-
return None
|
258
|
-
|
259
|
-
# 数据结果
|
260
|
-
result: list = []
|
261
|
-
|
262
|
-
# 筛选 主板, 非ST, 非银行, 非证券 的股票
|
263
|
-
for i in response_dict["data"]["stocks"]:
|
264
|
-
if (re.match(r"^(sz00|sh60)", i["secu_code"])) and (not re.search(r"ST|银行|证券", i["secu_name"])):
|
265
|
-
result.append(i)
|
266
|
-
|
267
|
-
# 返回数据
|
268
|
-
logger.success(f"{info} [成功]")
|
269
|
-
return result
|
270
|
-
|
271
|
-
except Exception as e:
|
272
|
-
logger.error(f"{info} [失败]")
|
273
|
-
logger.exception(e)
|
274
|
-
return None
|
275
|
-
|
276
|
-
|
277
|
-
# --------------------------------------------------------------------------------------------------
|
278
|
-
|
279
|
-
|
280
|
-
def plate_codes(
|
281
|
-
plate: str
|
282
|
-
) -> list | None:
|
283
|
-
"""获取板块成分股代码"""
|
284
|
-
|
285
|
-
# 判断参数是否正确
|
286
|
-
match True:
|
287
|
-
case True if not utils.isTrue(plate, str):
|
288
|
-
logger.error("argument error: plate")
|
289
|
-
return None
|
290
|
-
case _:
|
291
|
-
pass
|
292
|
-
|
293
|
-
info: str = "获取板块成分股代码"
|
294
|
-
|
295
|
-
try:
|
296
|
-
|
297
|
-
logger.info(f"{info} ......")
|
298
|
-
|
299
|
-
items = latest_data(payload=plate, data_type="plate")
|
300
|
-
|
301
|
-
if isinstance(items, list):
|
302
|
-
codes: list = [stock.coderename(i["secu_code"], restore=True) for i in items]
|
303
|
-
codes.sort()
|
304
|
-
logger.success(f"{info} [成功]")
|
305
|
-
return codes
|
306
|
-
|
307
|
-
logger.error(f"{info} [失败]")
|
308
|
-
return None
|
309
|
-
|
310
|
-
except Exception as e:
|
311
|
-
logger.error(f"{info} [失败]")
|
312
|
-
logger.exception(e)
|
313
|
-
return None
|
ezKit/stock.py
DELETED
@@ -1,355 +0,0 @@
|
|
1
|
-
"""股票"""
|
2
|
-
import re
|
3
|
-
from copy import deepcopy
|
4
|
-
|
5
|
-
import akshare as ak
|
6
|
-
import numpy as np
|
7
|
-
import talib as ta
|
8
|
-
from loguru import logger
|
9
|
-
from pandas import DataFrame
|
10
|
-
from sqlalchemy.engine import Engine
|
11
|
-
|
12
|
-
from . import utils
|
13
|
-
|
14
|
-
|
15
|
-
def coderename(
|
16
|
-
target: str | dict,
|
17
|
-
restore: bool = False
|
18
|
-
) -> str | dict | None:
|
19
|
-
"""代码重命名"""
|
20
|
-
|
21
|
-
# 正向:
|
22
|
-
# coderename('000001') => 'sz000001'
|
23
|
-
# coderename({'code': '000001', 'name': '平安银行'}) => {'code': 'sz000001', 'name': '平安银行'}
|
24
|
-
# 反向:
|
25
|
-
# coderename('sz000001', restore=True) => '000001'
|
26
|
-
# coderename({'code': 'sz000001', 'name': '平安银行'}) => {'code': '000001', 'name': '平安银行'}
|
27
|
-
|
28
|
-
# 判断参数是否正确
|
29
|
-
match True:
|
30
|
-
case True if not utils.isTrue(target, (str, dict)):
|
31
|
-
logger.error("argument error: target")
|
32
|
-
return None
|
33
|
-
case _:
|
34
|
-
pass
|
35
|
-
|
36
|
-
try:
|
37
|
-
|
38
|
-
# 初始化
|
39
|
-
code_object: dict = {}
|
40
|
-
code_name: str | dict = ""
|
41
|
-
|
42
|
-
# 判断 target 是 string 还是 dictionary
|
43
|
-
if isinstance(target, str) and utils.isTrue(target, str):
|
44
|
-
code_name = target
|
45
|
-
elif isinstance(target, dict) and utils.isTrue(target, dict):
|
46
|
-
code_object = deepcopy(target)
|
47
|
-
code_name = str(deepcopy(target["code"]))
|
48
|
-
else:
|
49
|
-
return None
|
50
|
-
|
51
|
-
# 是否还原
|
52
|
-
if utils.isTrue(restore, bool):
|
53
|
-
if len(code_name) == 8 and re.match(r"^(sz|sh)", code_name):
|
54
|
-
code_name = deepcopy(code_name[2:8])
|
55
|
-
else:
|
56
|
-
return None
|
57
|
-
else:
|
58
|
-
if code_name[0:2] == "00":
|
59
|
-
code_name = f"sz{code_name}"
|
60
|
-
elif code_name[0:2] == "60":
|
61
|
-
code_name = f"sh{code_name}"
|
62
|
-
else:
|
63
|
-
return None
|
64
|
-
|
65
|
-
# 返回结果
|
66
|
-
if utils.isTrue(target, str):
|
67
|
-
return code_name
|
68
|
-
|
69
|
-
if utils.isTrue(target, dict):
|
70
|
-
code_object["code"] = code_name
|
71
|
-
return code_object
|
72
|
-
|
73
|
-
return None
|
74
|
-
|
75
|
-
except Exception as e:
|
76
|
-
logger.exception(e)
|
77
|
-
return None
|
78
|
-
|
79
|
-
|
80
|
-
# --------------------------------------------------------------------------------------------------
|
81
|
-
|
82
|
-
|
83
|
-
def kdj_vector(
|
84
|
-
df: DataFrame,
|
85
|
-
kdj_options: tuple[int, int, int] = (9, 3, 3)
|
86
|
-
) -> DataFrame | None:
|
87
|
-
"""KDJ计算器"""
|
88
|
-
|
89
|
-
# 计算周期:Calculation Period, 也可使用 Lookback Period 表示回溯周期, 指用于计算指标值的时间周期.
|
90
|
-
# 移动平均周期: Smoothing Period 或 Moving Average Period, 指对指标进行平滑处理时采用的周期.
|
91
|
-
# 同花顺默认参数: 9 3 3
|
92
|
-
# https://www.daimajiaoliu.com/daima/4ed4ffa26100400
|
93
|
-
# 说明: KDJ 指标的中文名称又叫随机指标, 融合了动量观念、强弱指标和移动平均线的一些优点, 能够比较迅速、快捷、直观地研判行情, 被广泛用于股市的中短期趋势分析.
|
94
|
-
# 有采用 ewm 使用 com=2 的, 但是如果使用 com=2 在默认值的情况下KDJ值是正确的.
|
95
|
-
# 但是非默认值, 比如调整参数, 尝试慢速 KDJ 时就不对了, 最终采用 alpha = 1/m 的情况, 对比同花顺数据, 是正确的.
|
96
|
-
|
97
|
-
# 检查参数
|
98
|
-
if isinstance(df, DataFrame) and df.empty:
|
99
|
-
logger.error("argument error: df")
|
100
|
-
return None
|
101
|
-
|
102
|
-
if not utils.check_arguments([(kdj_options, tuple, "kdj_options")]):
|
103
|
-
return None
|
104
|
-
|
105
|
-
if not all(utils.isTrue(item, int) for item in kdj_options):
|
106
|
-
logger.error("argument error: kdj_options")
|
107
|
-
return None
|
108
|
-
|
109
|
-
try:
|
110
|
-
low_list = df['low'].rolling(kdj_options[0]).min()
|
111
|
-
high_list = df['high'].rolling(kdj_options[0]).max()
|
112
|
-
rsv = (df['close'] - low_list) / (high_list - low_list) * 100
|
113
|
-
df['K'] = rsv.ewm(alpha=1 / kdj_options[1], adjust=False).mean()
|
114
|
-
df['D'] = df['K'].ewm(alpha=1 / kdj_options[2], adjust=False).mean()
|
115
|
-
df['J'] = (3 * df['K']) - (2 * df['D'])
|
116
|
-
return df
|
117
|
-
except Exception as e:
|
118
|
-
logger.exception(e)
|
119
|
-
return None
|
120
|
-
|
121
|
-
|
122
|
-
# --------------------------------------------------------------------------------------------------
|
123
|
-
|
124
|
-
|
125
|
-
def data_vector(
|
126
|
-
df: DataFrame,
|
127
|
-
macd_options: tuple[int, int, int] = (12, 26, 9),
|
128
|
-
kdj_options: tuple[int, int, int] = (9, 3, 3)
|
129
|
-
) -> DataFrame | None:
|
130
|
-
"""数据运算"""
|
131
|
-
|
132
|
-
# 检查参数
|
133
|
-
if isinstance(df, DataFrame) and df.empty:
|
134
|
-
logger.error("argument error: df")
|
135
|
-
return None
|
136
|
-
|
137
|
-
if not utils.check_arguments([(macd_options, tuple, "macd_options"), (kdj_options, tuple, "kdj_options")]):
|
138
|
-
return None
|
139
|
-
|
140
|
-
if not all(utils.isTrue(item, int) for item in macd_options):
|
141
|
-
logger.error("argument error: macd_options")
|
142
|
-
return None
|
143
|
-
|
144
|
-
if not all(utils.isTrue(item, int) for item in kdj_options):
|
145
|
-
logger.error("argument error: kdj_options")
|
146
|
-
return None
|
147
|
-
|
148
|
-
try:
|
149
|
-
|
150
|
-
# ------------------------------------------------------------------------------------------
|
151
|
-
|
152
|
-
# 计算均线: 3,7日均线
|
153
|
-
# pylint: disable=E1101
|
154
|
-
# df['SMA03'] = ta.SMA(df['close'], timeperiod=3) # type: ignore
|
155
|
-
# df['SMA07'] = ta.SMA(df['close'], timeperiod=7) # type: ignore
|
156
|
-
|
157
|
-
# 3,7日均线金叉: 0 无, 1 金叉, 2 死叉
|
158
|
-
# df['SMA37_X'] = 0
|
159
|
-
# sma37_position = df['SMA03'] > df['SMA07']
|
160
|
-
# df.loc[sma37_position[(sma37_position is True) & (sma37_position.shift() is False)].index, 'SMA37_X'] = 1 # type: ignore
|
161
|
-
# df.loc[sma37_position[(sma37_position is False) & (sma37_position.shift() is True)].index, 'SMA37_X'] = 2 # type: ignore
|
162
|
-
|
163
|
-
# 计算均线: 20,25日均线
|
164
|
-
# df['SMA20'] = ta.SMA(df['close'], timeperiod=20) # type: ignore
|
165
|
-
# df['SMA25'] = ta.SMA(df['close'], timeperiod=25) # type: ignore
|
166
|
-
|
167
|
-
# 20,25日均线金叉: 0 无, 1 金叉, 2 死叉
|
168
|
-
# df['SMA225_X'] = 0
|
169
|
-
# sma225_position = df['SMA20'] > df['SMA25']
|
170
|
-
# df.loc[sma225_position[(sma225_position is True) & (sma225_position.shift() is False)].index, 'SMA225_X'] = 1 # type: ignore
|
171
|
-
# df.loc[sma225_position[(sma225_position is False) & (sma225_position.shift() is True)].index, 'SMA225_X'] = 2 # type: ignore
|
172
|
-
|
173
|
-
# ------------------------------------------------------------------------------------------
|
174
|
-
|
175
|
-
# 计算 MACD: 默认参数 12 26 9
|
176
|
-
macd_dif, macd_dea, macd_bar = ta.MACD( # type: ignore
|
177
|
-
df['close'].values,
|
178
|
-
fastperiod=macd_options[0],
|
179
|
-
slowperiod=macd_options[1],
|
180
|
-
signalperiod=macd_options[2]
|
181
|
-
)
|
182
|
-
|
183
|
-
macd_dif[np.isnan(macd_dif)], macd_dea[np.isnan(macd_dea)], macd_bar[np.isnan(macd_bar)] = 0, 0, 0
|
184
|
-
|
185
|
-
# https://www.bilibili.com/read/cv10185856
|
186
|
-
df['MACD'] = 2 * (macd_dif - macd_dea)
|
187
|
-
df['MACD_DIF'] = macd_dif
|
188
|
-
df['MACD_DEA'] = macd_dea
|
189
|
-
|
190
|
-
# 初始化 MACD_X 列(0 无, 1 金叉, 2 死叉)
|
191
|
-
df['MACD_X'] = 0
|
192
|
-
|
193
|
-
# 计算 MACD 条件
|
194
|
-
macd_position = df['MACD_DIF'] > df['MACD_DEA']
|
195
|
-
|
196
|
-
# 设置 MACD_X = 1: 从 False 变为 True 的位置
|
197
|
-
df.loc[macd_position & ~macd_position.shift(fill_value=False), 'MACD_X'] = 1
|
198
|
-
|
199
|
-
# 设置 MACD_X = 2: 从 True 变为 False 的位置
|
200
|
-
df.loc[~macd_position & macd_position.shift(fill_value=False), 'MACD_X'] = 2
|
201
|
-
|
202
|
-
# 将浮点数限制为小数点后两位
|
203
|
-
df['MACD'] = df['MACD'].round(2)
|
204
|
-
df['MACD_DIF'] = df['MACD_DIF'].round(2)
|
205
|
-
df['MACD_DEA'] = df['MACD_DEA'].round(2)
|
206
|
-
|
207
|
-
# ------------------------------------------------------------------------------------------
|
208
|
-
|
209
|
-
# # 计算 KDJ: : 默认参数 9 3 3
|
210
|
-
kdj_data = kdj_vector(df, kdj_options)
|
211
|
-
|
212
|
-
if kdj_data is not None:
|
213
|
-
|
214
|
-
# KDJ 数据
|
215
|
-
df['K'] = kdj_data['K'].values
|
216
|
-
df['D'] = kdj_data['D'].values
|
217
|
-
df['J'] = kdj_data['J'].values
|
218
|
-
|
219
|
-
# 初始化 KDJ_X 列(0 无, 1 金叉, 2 死叉)
|
220
|
-
df['KDJ_X'] = 0
|
221
|
-
|
222
|
-
# 计算 MACD 条件
|
223
|
-
kdj_position = df['J'] > df['D']
|
224
|
-
|
225
|
-
# 设置 KDJ_X = 1: 从 False 变为 True 的位置
|
226
|
-
df.loc[kdj_position & ~kdj_position.shift(fill_value=False), 'KDJ_X'] = 1
|
227
|
-
|
228
|
-
# 设置 KDJ_X = 2: 从 True 变为 False 的位置
|
229
|
-
df.loc[~kdj_position & kdj_position.shift(fill_value=False), 'KDJ_X'] = 2
|
230
|
-
|
231
|
-
# 将浮点数限制为小数点后两位
|
232
|
-
df['K'] = df['K'].round(2)
|
233
|
-
df['D'] = df['D'].round(2)
|
234
|
-
df['J'] = df['J'].round(2)
|
235
|
-
|
236
|
-
# ------------------------------------------------------------------------------------------
|
237
|
-
|
238
|
-
return df
|
239
|
-
|
240
|
-
except Exception as e:
|
241
|
-
logger.exception(e)
|
242
|
-
return None
|
243
|
-
|
244
|
-
|
245
|
-
# --------------------------------------------------------------------------------------------------
|
246
|
-
|
247
|
-
|
248
|
-
def get_code_name_from_akshare() -> DataFrame | None:
|
249
|
-
"""获取股票代码和名称"""
|
250
|
-
info = "获取股票代码和名称"
|
251
|
-
try:
|
252
|
-
logger.info(f"{info} ......")
|
253
|
-
df: DataFrame = ak.stock_info_a_code_name()
|
254
|
-
if df.empty:
|
255
|
-
logger.error(f"{info} [失败]")
|
256
|
-
return None
|
257
|
-
# 排除 ST、证券和银行
|
258
|
-
# https://towardsdatascience.com/8-ways-to-filter-pandas-dataframes-d34ba585c1b8
|
259
|
-
df = df[df.code.str.contains("^00|^60") & ~df.name.str.contains("ST|证券|银行")]
|
260
|
-
logger.success(f"{info} [成功]")
|
261
|
-
return df
|
262
|
-
except Exception as e:
|
263
|
-
logger.error(f"{info} [失败]")
|
264
|
-
logger.exception(e)
|
265
|
-
return None
|
266
|
-
|
267
|
-
|
268
|
-
# --------------------------------------------------------------------------------------------------
|
269
|
-
|
270
|
-
|
271
|
-
def get_stock_data_from_akshare(
|
272
|
-
code: str,
|
273
|
-
adjust: str = "qfq",
|
274
|
-
period: str = "daily",
|
275
|
-
start_date: str = "19700101",
|
276
|
-
end_date: str = "20500101",
|
277
|
-
timeout: float = 10
|
278
|
-
) -> DataFrame | None:
|
279
|
-
"""从 akshare 获取股票数据"""
|
280
|
-
info = f"获取股票数据: {code}"
|
281
|
-
try:
|
282
|
-
logger.info(f"{info} ......")
|
283
|
-
# https://akshare.akfamily.xyz/data/stock/stock.html#id22
|
284
|
-
df: DataFrame = ak.stock_zh_a_hist(symbol=code, adjust=adjust, period=period, start_date=start_date, end_date=end_date, timeout=timeout)
|
285
|
-
df = df.rename(columns={
|
286
|
-
"日期": "date",
|
287
|
-
"开盘": "open",
|
288
|
-
"收盘": "close",
|
289
|
-
"最高": "high",
|
290
|
-
"最低": "low",
|
291
|
-
"成交量": "volume"
|
292
|
-
})
|
293
|
-
logger.success(f"{info} [成功]")
|
294
|
-
return df[['date', 'open', 'close', 'high', 'low', 'volume']].copy()
|
295
|
-
except Exception as e:
|
296
|
-
logger.error(f"{info} [失败]")
|
297
|
-
logger.exception(e)
|
298
|
-
return None
|
299
|
-
|
300
|
-
|
301
|
-
# --------------------------------------------------------------------------------------------------
|
302
|
-
|
303
|
-
|
304
|
-
def save_data_to_database(engine: Engine, code: str, latest: bool = False) -> bool:
|
305
|
-
"""保存股票所有数据到数据库"""
|
306
|
-
|
307
|
-
# 默认将所有数据保存到数据库中的表里
|
308
|
-
# 如果 latest 为 True, 插入最新的数据到数据库中的表里
|
309
|
-
# 即: 将最后一条数据插入到数据库中的表里
|
310
|
-
|
311
|
-
info: str = "保存股票所有数据到数据库"
|
312
|
-
|
313
|
-
if utils.isTrue(latest, bool):
|
314
|
-
info = "保存股票最新数据到数据库"
|
315
|
-
|
316
|
-
try:
|
317
|
-
|
318
|
-
logger.info(f"{info} ......")
|
319
|
-
|
320
|
-
# 代码名称转换
|
321
|
-
name = coderename(code)
|
322
|
-
|
323
|
-
if not isinstance(name, str):
|
324
|
-
logger.error(f"{info} [代码名称转换错误]")
|
325
|
-
return False
|
326
|
-
|
327
|
-
# 获取数据
|
328
|
-
df: DataFrame | None = get_stock_data_from_akshare(code)
|
329
|
-
|
330
|
-
if df is None:
|
331
|
-
logger.error(f"{info} [获取数据错误]")
|
332
|
-
return False
|
333
|
-
|
334
|
-
# 计算数据
|
335
|
-
df: DataFrame | None = data_vector(df)
|
336
|
-
|
337
|
-
if df is None:
|
338
|
-
logger.error(f"{info} [计算数据错误]")
|
339
|
-
return False
|
340
|
-
|
341
|
-
# 保存到数据库
|
342
|
-
if utils.isTrue(latest, bool):
|
343
|
-
df = df.tail(1)
|
344
|
-
df.to_sql(name=name, con=engine, if_exists="append", index=False)
|
345
|
-
else:
|
346
|
-
df.to_sql(name=name, con=engine, if_exists="replace", index=False)
|
347
|
-
|
348
|
-
logger.success(f"{info} [成功]")
|
349
|
-
|
350
|
-
return True
|
351
|
-
|
352
|
-
except Exception as e:
|
353
|
-
logger.success(f"{info} [失败]")
|
354
|
-
logger.exception(e)
|
355
|
-
return False
|
File without changes
|
File without changes
|
File without changes
|