eye-cv 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- eye/__init__.py +115 -0
- eye/__init___supervision_original.py +120 -0
- eye/annotators/__init__.py +0 -0
- eye/annotators/base.py +22 -0
- eye/annotators/core.py +2699 -0
- eye/annotators/line.py +107 -0
- eye/annotators/modern.py +529 -0
- eye/annotators/trace.py +142 -0
- eye/annotators/utils.py +177 -0
- eye/assets/__init__.py +2 -0
- eye/assets/downloader.py +95 -0
- eye/assets/list.py +83 -0
- eye/classification/__init__.py +0 -0
- eye/classification/core.py +188 -0
- eye/config.py +2 -0
- eye/core/__init__.py +0 -0
- eye/core/trackers/__init__.py +1 -0
- eye/core/trackers/botsort_tracker.py +336 -0
- eye/core/trackers/bytetrack_tracker.py +284 -0
- eye/core/trackers/sort_tracker.py +200 -0
- eye/core/tracking.py +146 -0
- eye/dataset/__init__.py +0 -0
- eye/dataset/core.py +919 -0
- eye/dataset/formats/__init__.py +0 -0
- eye/dataset/formats/coco.py +258 -0
- eye/dataset/formats/pascal_voc.py +279 -0
- eye/dataset/formats/yolo.py +272 -0
- eye/dataset/utils.py +259 -0
- eye/detection/__init__.py +0 -0
- eye/detection/auto_convert.py +155 -0
- eye/detection/core.py +1529 -0
- eye/detection/detections_enhanced.py +392 -0
- eye/detection/line_zone.py +859 -0
- eye/detection/lmm.py +184 -0
- eye/detection/overlap_filter.py +270 -0
- eye/detection/tools/__init__.py +0 -0
- eye/detection/tools/csv_sink.py +181 -0
- eye/detection/tools/inference_slicer.py +288 -0
- eye/detection/tools/json_sink.py +142 -0
- eye/detection/tools/polygon_zone.py +202 -0
- eye/detection/tools/smoother.py +123 -0
- eye/detection/tools/smoothing.py +179 -0
- eye/detection/tools/smoothing_config.py +202 -0
- eye/detection/tools/transformers.py +247 -0
- eye/detection/utils.py +1175 -0
- eye/draw/__init__.py +0 -0
- eye/draw/color.py +154 -0
- eye/draw/utils.py +374 -0
- eye/filters.py +112 -0
- eye/geometry/__init__.py +0 -0
- eye/geometry/core.py +128 -0
- eye/geometry/utils.py +47 -0
- eye/keypoint/__init__.py +0 -0
- eye/keypoint/annotators.py +442 -0
- eye/keypoint/core.py +687 -0
- eye/keypoint/skeletons.py +2647 -0
- eye/metrics/__init__.py +21 -0
- eye/metrics/core.py +72 -0
- eye/metrics/detection.py +843 -0
- eye/metrics/f1_score.py +648 -0
- eye/metrics/mean_average_precision.py +628 -0
- eye/metrics/mean_average_recall.py +697 -0
- eye/metrics/precision.py +653 -0
- eye/metrics/recall.py +652 -0
- eye/metrics/utils/__init__.py +0 -0
- eye/metrics/utils/object_size.py +158 -0
- eye/metrics/utils/utils.py +9 -0
- eye/py.typed +0 -0
- eye/quick.py +104 -0
- eye/tracker/__init__.py +0 -0
- eye/tracker/byte_tracker/__init__.py +0 -0
- eye/tracker/byte_tracker/core.py +386 -0
- eye/tracker/byte_tracker/kalman_filter.py +205 -0
- eye/tracker/byte_tracker/matching.py +69 -0
- eye/tracker/byte_tracker/single_object_track.py +178 -0
- eye/tracker/byte_tracker/utils.py +18 -0
- eye/utils/__init__.py +0 -0
- eye/utils/conversion.py +132 -0
- eye/utils/file.py +159 -0
- eye/utils/image.py +794 -0
- eye/utils/internal.py +200 -0
- eye/utils/iterables.py +84 -0
- eye/utils/notebook.py +114 -0
- eye/utils/video.py +307 -0
- eye/utils_eye/__init__.py +1 -0
- eye/utils_eye/geometry.py +71 -0
- eye/utils_eye/nms.py +55 -0
- eye/validators/__init__.py +140 -0
- eye/web.py +271 -0
- eye_cv-1.0.0.dist-info/METADATA +319 -0
- eye_cv-1.0.0.dist-info/RECORD +94 -0
- eye_cv-1.0.0.dist-info/WHEEL +5 -0
- eye_cv-1.0.0.dist-info/licenses/LICENSE +21 -0
- eye_cv-1.0.0.dist-info/top_level.txt +1 -0
eye/dataset/core.py
ADDED
|
@@ -0,0 +1,919 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
from abc import ABC, abstractmethod
|
|
5
|
+
from dataclasses import dataclass
|
|
6
|
+
from itertools import chain
|
|
7
|
+
from pathlib import Path
|
|
8
|
+
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
|
9
|
+
|
|
10
|
+
import cv2
|
|
11
|
+
import numpy as np
|
|
12
|
+
|
|
13
|
+
from eye.classification.core import Classifications
|
|
14
|
+
from eye.dataset.formats.coco import (
|
|
15
|
+
load_coco_annotations,
|
|
16
|
+
save_coco_annotations,
|
|
17
|
+
)
|
|
18
|
+
from eye.dataset.formats.pascal_voc import (
|
|
19
|
+
detections_to_pascal_voc,
|
|
20
|
+
load_pascal_voc_annotations,
|
|
21
|
+
)
|
|
22
|
+
from eye.dataset.formats.yolo import (
|
|
23
|
+
load_yolo_annotations,
|
|
24
|
+
save_data_yaml,
|
|
25
|
+
save_yolo_annotations,
|
|
26
|
+
)
|
|
27
|
+
from eye.dataset.utils import (
|
|
28
|
+
build_class_index_mapping,
|
|
29
|
+
map_detections_class_id,
|
|
30
|
+
merge_class_lists,
|
|
31
|
+
save_dataset_images,
|
|
32
|
+
train_test_split,
|
|
33
|
+
)
|
|
34
|
+
from eye.detection.core import Detections
|
|
35
|
+
from eye.utils.internal import deprecated, warn_deprecated
|
|
36
|
+
from eye.utils.iterables import find_duplicates
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class BaseDataset(ABC):
|
|
40
|
+
@abstractmethod
|
|
41
|
+
def __len__(self) -> int:
|
|
42
|
+
pass
|
|
43
|
+
|
|
44
|
+
@abstractmethod
|
|
45
|
+
def split(
|
|
46
|
+
self,
|
|
47
|
+
split_ratio: float = 0.8,
|
|
48
|
+
random_state: Optional[int] = None,
|
|
49
|
+
shuffle: bool = True,
|
|
50
|
+
) -> Tuple[BaseDataset, BaseDataset]:
|
|
51
|
+
pass
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class DetectionDataset(BaseDataset):
|
|
55
|
+
"""
|
|
56
|
+
Contains information about a detection dataset. Handles lazy image loading
|
|
57
|
+
and annotation retrieval, dataset splitting, conversions into multiple
|
|
58
|
+
formats.
|
|
59
|
+
|
|
60
|
+
Attributes:
|
|
61
|
+
classes (List[str]): List containing dataset class names.
|
|
62
|
+
images (Union[List[str], Dict[str, np.ndarray]]):
|
|
63
|
+
Accepts a list of image paths, or dictionaries of loaded cv2 images
|
|
64
|
+
with paths as keys. If you pass a list of paths, the dataset will
|
|
65
|
+
lazily load images on demand, which is much more memory-efficient.
|
|
66
|
+
annotations (Dict[str, Detections]): Dictionary mapping
|
|
67
|
+
image path to annotations. The dictionary keys match
|
|
68
|
+
match the keys in `images` or entries in the list of
|
|
69
|
+
image paths.
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
def __init__(
|
|
73
|
+
self,
|
|
74
|
+
classes: List[str],
|
|
75
|
+
images: Union[List[str], Dict[str, np.ndarray]],
|
|
76
|
+
annotations: Dict[str, Detections],
|
|
77
|
+
) -> None:
|
|
78
|
+
self.classes = classes
|
|
79
|
+
|
|
80
|
+
if set(images) != set(annotations):
|
|
81
|
+
raise ValueError(
|
|
82
|
+
"The keys of the images and annotations dictionaries must match."
|
|
83
|
+
)
|
|
84
|
+
self.annotations = annotations
|
|
85
|
+
|
|
86
|
+
# Eliminate duplicates while preserving order
|
|
87
|
+
self.image_paths = list(dict.fromkeys(images))
|
|
88
|
+
|
|
89
|
+
self._images_in_memory: Dict[str, np.ndarray] = {}
|
|
90
|
+
if isinstance(images, dict):
|
|
91
|
+
self._images_in_memory = images
|
|
92
|
+
warn_deprecated(
|
|
93
|
+
"Passing a `Dict[str, np.ndarray]` into `DetectionDataset` is "
|
|
94
|
+
"deprecated and will be removed in `eye-0.26.0`. Use "
|
|
95
|
+
"a list of paths `List[str]` instead."
|
|
96
|
+
)
|
|
97
|
+
# TODO: when eye-0.26.0 is released, and Dict[str, np.ndarray]
|
|
98
|
+
# for images is no longer supported, also simplify the rest of
|
|
99
|
+
# the code. E.g. list(images) is no longer needed, and merge can
|
|
100
|
+
# be simplified.
|
|
101
|
+
|
|
102
|
+
@property
|
|
103
|
+
@deprecated(
|
|
104
|
+
"`DetectionDataset.images` property is deprecated and will be removed in "
|
|
105
|
+
"`eye-0.26.0`. Iterate with `for path, image, annotation in dataset:` "
|
|
106
|
+
"instead."
|
|
107
|
+
)
|
|
108
|
+
def images(self) -> Dict[str, np.ndarray]:
|
|
109
|
+
"""
|
|
110
|
+
Load all images to memory and return them as a dictionary.
|
|
111
|
+
|
|
112
|
+
!!! warning
|
|
113
|
+
|
|
114
|
+
Only use this when you need all images at once.
|
|
115
|
+
It is much more memory-efficient to initialize dataset with
|
|
116
|
+
image paths and use `for path, image, annotation in dataset:`.
|
|
117
|
+
"""
|
|
118
|
+
if self._images_in_memory:
|
|
119
|
+
return self._images_in_memory
|
|
120
|
+
|
|
121
|
+
images = {image_path: cv2.imread(image_path) for image_path in self.image_paths}
|
|
122
|
+
return images
|
|
123
|
+
|
|
124
|
+
def _get_image(self, image_path: str) -> np.ndarray:
|
|
125
|
+
"""Assumes that image is in dataset"""
|
|
126
|
+
if self._images_in_memory:
|
|
127
|
+
return self._images_in_memory[image_path]
|
|
128
|
+
return cv2.imread(image_path)
|
|
129
|
+
|
|
130
|
+
def __len__(self) -> int:
|
|
131
|
+
return len(self._images_in_memory) or len(self.image_paths)
|
|
132
|
+
|
|
133
|
+
def __getitem__(self, i: int) -> Tuple[str, np.ndarray, Detections]:
|
|
134
|
+
"""
|
|
135
|
+
Returns:
|
|
136
|
+
Tuple[str, np.ndarray, Detections]: The image path, image data,
|
|
137
|
+
and its corresponding annotation at index i.
|
|
138
|
+
"""
|
|
139
|
+
image_path = self.image_paths[i]
|
|
140
|
+
image = self._get_image(image_path)
|
|
141
|
+
annotation = self.annotations[image_path]
|
|
142
|
+
return image_path, image, annotation
|
|
143
|
+
|
|
144
|
+
def __iter__(self) -> Iterator[Tuple[str, np.ndarray, Detections]]:
|
|
145
|
+
"""
|
|
146
|
+
Iterate over the images and annotations in the dataset.
|
|
147
|
+
|
|
148
|
+
Yields:
|
|
149
|
+
Iterator[Tuple[str, np.ndarray, Detections]]:
|
|
150
|
+
An iterator that yields tuples containing the image path,
|
|
151
|
+
the image data, and its corresponding annotation.
|
|
152
|
+
"""
|
|
153
|
+
for i in range(len(self)):
|
|
154
|
+
image_path, image, annotation = self[i]
|
|
155
|
+
yield image_path, image, annotation
|
|
156
|
+
|
|
157
|
+
def __eq__(self, other) -> bool:
|
|
158
|
+
if not isinstance(other, DetectionDataset):
|
|
159
|
+
return False
|
|
160
|
+
|
|
161
|
+
if set(self.classes) != set(other.classes):
|
|
162
|
+
return False
|
|
163
|
+
|
|
164
|
+
if self.image_paths != other.image_paths:
|
|
165
|
+
return False
|
|
166
|
+
|
|
167
|
+
if self._images_in_memory or other._images_in_memory:
|
|
168
|
+
if not np.array_equal(
|
|
169
|
+
list(self._images_in_memory.values()),
|
|
170
|
+
list(other._images_in_memory.values()),
|
|
171
|
+
):
|
|
172
|
+
return False
|
|
173
|
+
|
|
174
|
+
if self.annotations != other.annotations:
|
|
175
|
+
return False
|
|
176
|
+
|
|
177
|
+
return True
|
|
178
|
+
|
|
179
|
+
def split(
|
|
180
|
+
self,
|
|
181
|
+
split_ratio: float = 0.8,
|
|
182
|
+
random_state: Optional[int] = None,
|
|
183
|
+
shuffle: bool = True,
|
|
184
|
+
) -> Tuple[DetectionDataset, DetectionDataset]:
|
|
185
|
+
"""
|
|
186
|
+
Splits the dataset into two parts (training and testing)
|
|
187
|
+
using the provided split_ratio.
|
|
188
|
+
|
|
189
|
+
Args:
|
|
190
|
+
split_ratio (float): The ratio of the training
|
|
191
|
+
set to the entire dataset.
|
|
192
|
+
random_state (Optional[int]): The seed for the random number generator.
|
|
193
|
+
This is used for reproducibility.
|
|
194
|
+
shuffle (bool): Whether to shuffle the data before splitting.
|
|
195
|
+
|
|
196
|
+
Returns:
|
|
197
|
+
Tuple[DetectionDataset, DetectionDataset]: A tuple containing
|
|
198
|
+
the training and testing datasets.
|
|
199
|
+
|
|
200
|
+
Examples:
|
|
201
|
+
```python
|
|
202
|
+
import eye as sv
|
|
203
|
+
|
|
204
|
+
ds = sv.DetectionDataset(...)
|
|
205
|
+
train_ds, test_ds = ds.split(split_ratio=0.7, random_state=42, shuffle=True)
|
|
206
|
+
len(train_ds), len(test_ds)
|
|
207
|
+
# (700, 300)
|
|
208
|
+
```
|
|
209
|
+
"""
|
|
210
|
+
|
|
211
|
+
train_paths, test_paths = train_test_split(
|
|
212
|
+
data=self.image_paths,
|
|
213
|
+
train_ratio=split_ratio,
|
|
214
|
+
random_state=random_state,
|
|
215
|
+
shuffle=shuffle,
|
|
216
|
+
)
|
|
217
|
+
|
|
218
|
+
train_input: Union[List[str], Dict[str, np.ndarray]]
|
|
219
|
+
test_input: Union[List[str], Dict[str, np.ndarray]]
|
|
220
|
+
if self._images_in_memory:
|
|
221
|
+
train_input = {path: self._images_in_memory[path] for path in train_paths}
|
|
222
|
+
test_input = {path: self._images_in_memory[path] for path in test_paths}
|
|
223
|
+
else:
|
|
224
|
+
train_input = train_paths
|
|
225
|
+
test_input = test_paths
|
|
226
|
+
train_annotations = {path: self.annotations[path] for path in train_paths}
|
|
227
|
+
test_annotations = {path: self.annotations[path] for path in test_paths}
|
|
228
|
+
|
|
229
|
+
train_dataset = DetectionDataset(
|
|
230
|
+
classes=self.classes,
|
|
231
|
+
images=train_input,
|
|
232
|
+
annotations=train_annotations,
|
|
233
|
+
)
|
|
234
|
+
test_dataset = DetectionDataset(
|
|
235
|
+
classes=self.classes,
|
|
236
|
+
images=test_input,
|
|
237
|
+
annotations=test_annotations,
|
|
238
|
+
)
|
|
239
|
+
return train_dataset, test_dataset
|
|
240
|
+
|
|
241
|
+
@classmethod
|
|
242
|
+
def merge(cls, dataset_list: List[DetectionDataset]) -> DetectionDataset:
|
|
243
|
+
"""
|
|
244
|
+
Merge a list of `DetectionDataset` objects into a single
|
|
245
|
+
`DetectionDataset` object.
|
|
246
|
+
|
|
247
|
+
This method takes a list of `DetectionDataset` objects and combines
|
|
248
|
+
their respective fields (`classes`, `images`,
|
|
249
|
+
`annotations`) into a single `DetectionDataset` object.
|
|
250
|
+
|
|
251
|
+
Args:
|
|
252
|
+
dataset_list (List[DetectionDataset]): A list of `DetectionDataset`
|
|
253
|
+
objects to merge.
|
|
254
|
+
|
|
255
|
+
Returns:
|
|
256
|
+
(DetectionDataset): A single `DetectionDataset` object containing
|
|
257
|
+
the merged data from the input list.
|
|
258
|
+
|
|
259
|
+
Examples:
|
|
260
|
+
```python
|
|
261
|
+
import eye as sv
|
|
262
|
+
|
|
263
|
+
ds_1 = sv.DetectionDataset(...)
|
|
264
|
+
len(ds_1)
|
|
265
|
+
# 100
|
|
266
|
+
ds_1.classes
|
|
267
|
+
# ['dog', 'person']
|
|
268
|
+
|
|
269
|
+
ds_2 = sv.DetectionDataset(...)
|
|
270
|
+
len(ds_2)
|
|
271
|
+
# 200
|
|
272
|
+
ds_2.classes
|
|
273
|
+
# ['cat']
|
|
274
|
+
|
|
275
|
+
ds_merged = sv.DetectionDataset.merge([ds_1, ds_2])
|
|
276
|
+
len(ds_merged)
|
|
277
|
+
# 300
|
|
278
|
+
ds_merged.classes
|
|
279
|
+
# ['cat', 'dog', 'person']
|
|
280
|
+
```
|
|
281
|
+
"""
|
|
282
|
+
|
|
283
|
+
def is_in_memory(dataset: DetectionDataset) -> bool:
|
|
284
|
+
return len(dataset._images_in_memory) > 0 or len(dataset.image_paths) == 0
|
|
285
|
+
|
|
286
|
+
def is_lazy(dataset: DetectionDataset) -> bool:
|
|
287
|
+
return len(dataset._images_in_memory) == 0
|
|
288
|
+
|
|
289
|
+
all_in_memory = all([is_in_memory(dataset) for dataset in dataset_list])
|
|
290
|
+
all_lazy = all([is_lazy(dataset) for dataset in dataset_list])
|
|
291
|
+
if not all_in_memory and not all_lazy:
|
|
292
|
+
raise ValueError(
|
|
293
|
+
"Merging lazy and in-memory DetectionDatasets is not supported."
|
|
294
|
+
)
|
|
295
|
+
|
|
296
|
+
images_in_memory = {}
|
|
297
|
+
for dataset in dataset_list:
|
|
298
|
+
images_in_memory.update(dataset._images_in_memory)
|
|
299
|
+
|
|
300
|
+
image_paths = list(
|
|
301
|
+
chain.from_iterable(dataset.image_paths for dataset in dataset_list)
|
|
302
|
+
)
|
|
303
|
+
image_paths_unique = list(dict.fromkeys(image_paths))
|
|
304
|
+
if len(image_paths) != len(image_paths_unique):
|
|
305
|
+
duplicates = find_duplicates(image_paths)
|
|
306
|
+
raise ValueError(
|
|
307
|
+
f"Image paths {duplicates} are not unique across datasets."
|
|
308
|
+
)
|
|
309
|
+
image_paths = image_paths_unique
|
|
310
|
+
|
|
311
|
+
classes = merge_class_lists(
|
|
312
|
+
class_lists=[dataset.classes for dataset in dataset_list]
|
|
313
|
+
)
|
|
314
|
+
|
|
315
|
+
annotations = {}
|
|
316
|
+
for dataset in dataset_list:
|
|
317
|
+
annotations.update(dataset.annotations)
|
|
318
|
+
for dataset in dataset_list:
|
|
319
|
+
class_index_mapping = build_class_index_mapping(
|
|
320
|
+
source_classes=dataset.classes, target_classes=classes
|
|
321
|
+
)
|
|
322
|
+
for image_path in dataset.image_paths:
|
|
323
|
+
annotations[image_path] = map_detections_class_id(
|
|
324
|
+
source_to_target_mapping=class_index_mapping,
|
|
325
|
+
detections=annotations[image_path],
|
|
326
|
+
)
|
|
327
|
+
|
|
328
|
+
return cls(
|
|
329
|
+
classes=classes,
|
|
330
|
+
images=images_in_memory or image_paths,
|
|
331
|
+
annotations=annotations,
|
|
332
|
+
)
|
|
333
|
+
|
|
334
|
+
def as_pascal_voc(
|
|
335
|
+
self,
|
|
336
|
+
images_directory_path: Optional[str] = None,
|
|
337
|
+
annotations_directory_path: Optional[str] = None,
|
|
338
|
+
min_image_area_percentage: float = 0.0,
|
|
339
|
+
max_image_area_percentage: float = 1.0,
|
|
340
|
+
approximation_percentage: float = 0.0,
|
|
341
|
+
) -> None:
|
|
342
|
+
"""
|
|
343
|
+
Exports the dataset to PASCAL VOC format. This method saves the images
|
|
344
|
+
and their corresponding annotations in PASCAL VOC format.
|
|
345
|
+
|
|
346
|
+
Args:
|
|
347
|
+
images_directory_path (Optional[str]): The path to the directory
|
|
348
|
+
where the images should be saved.
|
|
349
|
+
If not provided, images will not be saved.
|
|
350
|
+
annotations_directory_path (Optional[str]): The path to
|
|
351
|
+
the directory where the annotations in PASCAL VOC format should be
|
|
352
|
+
saved. If not provided, annotations will not be saved.
|
|
353
|
+
min_image_area_percentage (float): The minimum percentage of
|
|
354
|
+
detection area relative to
|
|
355
|
+
the image area for a detection to be included.
|
|
356
|
+
Argument is used only for segmentation datasets.
|
|
357
|
+
max_image_area_percentage (float): The maximum percentage
|
|
358
|
+
of detection area relative to
|
|
359
|
+
the image area for a detection to be included.
|
|
360
|
+
Argument is used only for segmentation datasets.
|
|
361
|
+
approximation_percentage (float): The percentage of
|
|
362
|
+
polygon points to be removed from the input polygon,
|
|
363
|
+
in the range [0, 1). Argument is used only for segmentation datasets.
|
|
364
|
+
"""
|
|
365
|
+
if images_directory_path:
|
|
366
|
+
save_dataset_images(
|
|
367
|
+
dataset=self,
|
|
368
|
+
images_directory_path=images_directory_path,
|
|
369
|
+
)
|
|
370
|
+
if annotations_directory_path:
|
|
371
|
+
Path(annotations_directory_path).mkdir(parents=True, exist_ok=True)
|
|
372
|
+
for image_path, image, annotations in self:
|
|
373
|
+
annotation_name = Path(image_path).stem
|
|
374
|
+
annotations_path = os.path.join(
|
|
375
|
+
annotations_directory_path, f"{annotation_name}.xml"
|
|
376
|
+
)
|
|
377
|
+
image_name = Path(image_path).name
|
|
378
|
+
pascal_voc_xml = detections_to_pascal_voc(
|
|
379
|
+
detections=annotations,
|
|
380
|
+
classes=self.classes,
|
|
381
|
+
filename=image_name,
|
|
382
|
+
image_shape=image.shape, # type: ignore
|
|
383
|
+
min_image_area_percentage=min_image_area_percentage,
|
|
384
|
+
max_image_area_percentage=max_image_area_percentage,
|
|
385
|
+
approximation_percentage=approximation_percentage,
|
|
386
|
+
)
|
|
387
|
+
|
|
388
|
+
with open(annotations_path, "w") as f:
|
|
389
|
+
f.write(pascal_voc_xml)
|
|
390
|
+
|
|
391
|
+
@classmethod
|
|
392
|
+
def from_pascal_voc(
|
|
393
|
+
cls,
|
|
394
|
+
images_directory_path: str,
|
|
395
|
+
annotations_directory_path: str,
|
|
396
|
+
force_masks: bool = False,
|
|
397
|
+
) -> DetectionDataset:
|
|
398
|
+
"""
|
|
399
|
+
Creates a Dataset instance from PASCAL VOC formatted data.
|
|
400
|
+
|
|
401
|
+
Args:
|
|
402
|
+
images_directory_path (str): Path to the directory containing the images.
|
|
403
|
+
annotations_directory_path (str): Path to the directory
|
|
404
|
+
containing the PASCAL VOC XML annotations.
|
|
405
|
+
force_masks (bool): If True, forces masks to
|
|
406
|
+
be loaded for all annotations, regardless of whether they are present.
|
|
407
|
+
|
|
408
|
+
Returns:
|
|
409
|
+
DetectionDataset: A DetectionDataset instance containing
|
|
410
|
+
the loaded images and annotations.
|
|
411
|
+
|
|
412
|
+
Examples:
|
|
413
|
+
```python
|
|
414
|
+
import roboflow
|
|
415
|
+
from roboflow import Roboflow
|
|
416
|
+
import eye as sv
|
|
417
|
+
|
|
418
|
+
roboflow.login()
|
|
419
|
+
|
|
420
|
+
rf = Roboflow()
|
|
421
|
+
|
|
422
|
+
project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
|
|
423
|
+
dataset = project.version(PROJECT_VERSION).download("voc")
|
|
424
|
+
|
|
425
|
+
ds = sv.DetectionDataset.from_pascal_voc(
|
|
426
|
+
images_directory_path=f"{dataset.location}/train/images",
|
|
427
|
+
annotations_directory_path=f"{dataset.location}/train/labels"
|
|
428
|
+
)
|
|
429
|
+
|
|
430
|
+
ds.classes
|
|
431
|
+
# ['dog', 'person']
|
|
432
|
+
```
|
|
433
|
+
"""
|
|
434
|
+
|
|
435
|
+
classes, image_paths, annotations = load_pascal_voc_annotations(
|
|
436
|
+
images_directory_path=images_directory_path,
|
|
437
|
+
annotations_directory_path=annotations_directory_path,
|
|
438
|
+
force_masks=force_masks,
|
|
439
|
+
)
|
|
440
|
+
|
|
441
|
+
return DetectionDataset(
|
|
442
|
+
classes=classes, images=image_paths, annotations=annotations
|
|
443
|
+
)
|
|
444
|
+
|
|
445
|
+
@classmethod
|
|
446
|
+
def from_yolo(
|
|
447
|
+
cls,
|
|
448
|
+
images_directory_path: str,
|
|
449
|
+
annotations_directory_path: str,
|
|
450
|
+
data_yaml_path: str,
|
|
451
|
+
force_masks: bool = False,
|
|
452
|
+
is_obb: bool = False,
|
|
453
|
+
) -> DetectionDataset:
|
|
454
|
+
"""
|
|
455
|
+
Creates a Dataset instance from YOLO formatted data.
|
|
456
|
+
|
|
457
|
+
Args:
|
|
458
|
+
images_directory_path (str): The path to the
|
|
459
|
+
directory containing the images.
|
|
460
|
+
annotations_directory_path (str): The path to the directory
|
|
461
|
+
containing the YOLO annotation files.
|
|
462
|
+
data_yaml_path (str): The path to the data
|
|
463
|
+
YAML file containing class information.
|
|
464
|
+
force_masks (bool): If True, forces
|
|
465
|
+
masks to be loaded for all annotations,
|
|
466
|
+
regardless of whether they are present.
|
|
467
|
+
is_obb (bool): If True, loads the annotations in OBB format.
|
|
468
|
+
OBB annotations are defined as `[class_id, x, y, x, y, x, y, x, y]`,
|
|
469
|
+
where pairs of [x, y] are box corners.
|
|
470
|
+
|
|
471
|
+
Returns:
|
|
472
|
+
DetectionDataset: A DetectionDataset instance
|
|
473
|
+
containing the loaded images and annotations.
|
|
474
|
+
|
|
475
|
+
Examples:
|
|
476
|
+
```python
|
|
477
|
+
import roboflow
|
|
478
|
+
from roboflow import Roboflow
|
|
479
|
+
import eye as sv
|
|
480
|
+
|
|
481
|
+
roboflow.login()
|
|
482
|
+
rf = Roboflow()
|
|
483
|
+
|
|
484
|
+
project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
|
|
485
|
+
dataset = project.version(PROJECT_VERSION).download("yolov5")
|
|
486
|
+
|
|
487
|
+
ds = sv.DetectionDataset.from_yolo(
|
|
488
|
+
images_directory_path=f"{dataset.location}/train/images",
|
|
489
|
+
annotations_directory_path=f"{dataset.location}/train/labels",
|
|
490
|
+
data_yaml_path=f"{dataset.location}/data.yaml"
|
|
491
|
+
)
|
|
492
|
+
|
|
493
|
+
ds.classes
|
|
494
|
+
# ['dog', 'person']
|
|
495
|
+
```
|
|
496
|
+
"""
|
|
497
|
+
classes, image_paths, annotations = load_yolo_annotations(
|
|
498
|
+
images_directory_path=images_directory_path,
|
|
499
|
+
annotations_directory_path=annotations_directory_path,
|
|
500
|
+
data_yaml_path=data_yaml_path,
|
|
501
|
+
force_masks=force_masks,
|
|
502
|
+
is_obb=is_obb,
|
|
503
|
+
)
|
|
504
|
+
return DetectionDataset(
|
|
505
|
+
classes=classes, images=image_paths, annotations=annotations
|
|
506
|
+
)
|
|
507
|
+
|
|
508
|
+
def as_yolo(
|
|
509
|
+
self,
|
|
510
|
+
images_directory_path: Optional[str] = None,
|
|
511
|
+
annotations_directory_path: Optional[str] = None,
|
|
512
|
+
data_yaml_path: Optional[str] = None,
|
|
513
|
+
min_image_area_percentage: float = 0.0,
|
|
514
|
+
max_image_area_percentage: float = 1.0,
|
|
515
|
+
approximation_percentage: float = 0.0,
|
|
516
|
+
) -> None:
|
|
517
|
+
"""
|
|
518
|
+
Exports the dataset to YOLO format. This method saves the
|
|
519
|
+
images and their corresponding annotations in YOLO format.
|
|
520
|
+
|
|
521
|
+
Args:
|
|
522
|
+
images_directory_path (Optional[str]): The path to the
|
|
523
|
+
directory where the images should be saved.
|
|
524
|
+
If not provided, images will not be saved.
|
|
525
|
+
annotations_directory_path (Optional[str]): The path to the
|
|
526
|
+
directory where the annotations in
|
|
527
|
+
YOLO format should be saved. If not provided,
|
|
528
|
+
annotations will not be saved.
|
|
529
|
+
data_yaml_path (Optional[str]): The path where the data.yaml
|
|
530
|
+
file should be saved.
|
|
531
|
+
If not provided, the file will not be saved.
|
|
532
|
+
min_image_area_percentage (float): The minimum percentage of
|
|
533
|
+
detection area relative to
|
|
534
|
+
the image area for a detection to be included.
|
|
535
|
+
Argument is used only for segmentation datasets.
|
|
536
|
+
max_image_area_percentage (float): The maximum percentage
|
|
537
|
+
of detection area relative to
|
|
538
|
+
the image area for a detection to be included.
|
|
539
|
+
Argument is used only for segmentation datasets.
|
|
540
|
+
approximation_percentage (float): The percentage of polygon points to
|
|
541
|
+
be removed from the input polygon, in the range [0, 1).
|
|
542
|
+
This is useful for simplifying the annotations.
|
|
543
|
+
Argument is used only for segmentation datasets.
|
|
544
|
+
"""
|
|
545
|
+
if images_directory_path is not None:
|
|
546
|
+
save_dataset_images(
|
|
547
|
+
dataset=self, images_directory_path=images_directory_path
|
|
548
|
+
)
|
|
549
|
+
if annotations_directory_path is not None:
|
|
550
|
+
save_yolo_annotations(
|
|
551
|
+
dataset=self,
|
|
552
|
+
annotations_directory_path=annotations_directory_path,
|
|
553
|
+
min_image_area_percentage=min_image_area_percentage,
|
|
554
|
+
max_image_area_percentage=max_image_area_percentage,
|
|
555
|
+
approximation_percentage=approximation_percentage,
|
|
556
|
+
)
|
|
557
|
+
if data_yaml_path is not None:
|
|
558
|
+
save_data_yaml(data_yaml_path=data_yaml_path, classes=self.classes)
|
|
559
|
+
|
|
560
|
+
@classmethod
|
|
561
|
+
def from_coco(
|
|
562
|
+
cls,
|
|
563
|
+
images_directory_path: str,
|
|
564
|
+
annotations_path: str,
|
|
565
|
+
force_masks: bool = False,
|
|
566
|
+
) -> DetectionDataset:
|
|
567
|
+
"""
|
|
568
|
+
Creates a Dataset instance from COCO formatted data.
|
|
569
|
+
|
|
570
|
+
Args:
|
|
571
|
+
images_directory_path (str): The path to the
|
|
572
|
+
directory containing the images.
|
|
573
|
+
annotations_path (str): The path to the json annotation files.
|
|
574
|
+
force_masks (bool): If True,
|
|
575
|
+
forces masks to be loaded for all annotations,
|
|
576
|
+
regardless of whether they are present.
|
|
577
|
+
|
|
578
|
+
Returns:
|
|
579
|
+
DetectionDataset: A DetectionDataset instance containing
|
|
580
|
+
the loaded images and annotations.
|
|
581
|
+
|
|
582
|
+
Examples:
|
|
583
|
+
```python
|
|
584
|
+
import roboflow
|
|
585
|
+
from roboflow import Roboflow
|
|
586
|
+
import eye as sv
|
|
587
|
+
|
|
588
|
+
roboflow.login()
|
|
589
|
+
rf = Roboflow()
|
|
590
|
+
|
|
591
|
+
project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
|
|
592
|
+
dataset = project.version(PROJECT_VERSION).download("coco")
|
|
593
|
+
|
|
594
|
+
ds = sv.DetectionDataset.from_coco(
|
|
595
|
+
images_directory_path=f"{dataset.location}/train",
|
|
596
|
+
annotations_path=f"{dataset.location}/train/_annotations.coco.json",
|
|
597
|
+
)
|
|
598
|
+
|
|
599
|
+
ds.classes
|
|
600
|
+
# ['dog', 'person']
|
|
601
|
+
```
|
|
602
|
+
"""
|
|
603
|
+
classes, images, annotations = load_coco_annotations(
|
|
604
|
+
images_directory_path=images_directory_path,
|
|
605
|
+
annotations_path=annotations_path,
|
|
606
|
+
force_masks=force_masks,
|
|
607
|
+
)
|
|
608
|
+
return DetectionDataset(classes=classes, images=images, annotations=annotations)
|
|
609
|
+
|
|
610
|
+
def as_coco(
|
|
611
|
+
self,
|
|
612
|
+
images_directory_path: Optional[str] = None,
|
|
613
|
+
annotations_path: Optional[str] = None,
|
|
614
|
+
min_image_area_percentage: float = 0.0,
|
|
615
|
+
max_image_area_percentage: float = 1.0,
|
|
616
|
+
approximation_percentage: float = 0.0,
|
|
617
|
+
) -> None:
|
|
618
|
+
"""
|
|
619
|
+
Exports the dataset to COCO format. This method saves the
|
|
620
|
+
images and their corresponding annotations in COCO format.
|
|
621
|
+
|
|
622
|
+
!!! tip
|
|
623
|
+
|
|
624
|
+
The format of the mask is determined automatically based on its structure:
|
|
625
|
+
|
|
626
|
+
- If a mask contains multiple disconnected components or holes, it will be
|
|
627
|
+
saved using the Run-Length Encoding (RLE) format for efficient storage and
|
|
628
|
+
processing.
|
|
629
|
+
- If a mask consists of a single, contiguous region without any holes, it
|
|
630
|
+
will be encoded as a polygon, preserving the outline of the object.
|
|
631
|
+
|
|
632
|
+
This automatic selection ensures that the masks are stored in the most
|
|
633
|
+
appropriate and space-efficient format, complying with COCO dataset
|
|
634
|
+
standards.
|
|
635
|
+
|
|
636
|
+
Args:
|
|
637
|
+
images_directory_path (Optional[str]): The path to the directory
|
|
638
|
+
where the images should be saved.
|
|
639
|
+
If not provided, images will not be saved.
|
|
640
|
+
annotations_path (Optional[str]): The path to COCO annotation file.
|
|
641
|
+
min_image_area_percentage (float): The minimum percentage of
|
|
642
|
+
detection area relative to
|
|
643
|
+
the image area for a detection to be included.
|
|
644
|
+
Argument is used only for segmentation datasets.
|
|
645
|
+
max_image_area_percentage (float): The maximum percentage of
|
|
646
|
+
detection area relative to
|
|
647
|
+
the image area for a detection to be included.
|
|
648
|
+
Argument is used only for segmentation datasets.
|
|
649
|
+
approximation_percentage (float): The percentage of polygon points
|
|
650
|
+
to be removed from the input polygon,
|
|
651
|
+
in the range [0, 1). This is useful for simplifying the annotations.
|
|
652
|
+
Argument is used only for segmentation datasets.
|
|
653
|
+
"""
|
|
654
|
+
if images_directory_path is not None:
|
|
655
|
+
save_dataset_images(
|
|
656
|
+
dataset=self, images_directory_path=images_directory_path
|
|
657
|
+
)
|
|
658
|
+
if annotations_path is not None:
|
|
659
|
+
save_coco_annotations(
|
|
660
|
+
dataset=self,
|
|
661
|
+
annotation_path=annotations_path,
|
|
662
|
+
min_image_area_percentage=min_image_area_percentage,
|
|
663
|
+
max_image_area_percentage=max_image_area_percentage,
|
|
664
|
+
approximation_percentage=approximation_percentage,
|
|
665
|
+
)
|
|
666
|
+
|
|
667
|
+
|
|
668
|
+
@dataclass
|
|
669
|
+
class ClassificationDataset(BaseDataset):
|
|
670
|
+
"""
|
|
671
|
+
Contains information about a classification dataset, handles lazy image
|
|
672
|
+
loading, dataset splitting.
|
|
673
|
+
|
|
674
|
+
Attributes:
|
|
675
|
+
classes (List[str]): List containing dataset class names.
|
|
676
|
+
images (Union[List[str], Dict[str, np.ndarray]]):
|
|
677
|
+
List of image paths or dictionary mapping image name to image data.
|
|
678
|
+
annotations (Dict[str, Classifications]): Dictionary mapping
|
|
679
|
+
image name to annotations.
|
|
680
|
+
"""
|
|
681
|
+
|
|
682
|
+
def __init__(
|
|
683
|
+
self,
|
|
684
|
+
classes: List[str],
|
|
685
|
+
images: Union[List[str], Dict[str, np.ndarray]],
|
|
686
|
+
annotations: Dict[str, Classifications],
|
|
687
|
+
) -> None:
|
|
688
|
+
self.classes = classes
|
|
689
|
+
|
|
690
|
+
if set(images) != set(annotations):
|
|
691
|
+
raise ValueError(
|
|
692
|
+
"The keys of the images and annotations dictionaries must match."
|
|
693
|
+
)
|
|
694
|
+
self.annotations = annotations
|
|
695
|
+
|
|
696
|
+
# Eliminate duplicates while preserving order
|
|
697
|
+
self.image_paths = list(dict.fromkeys(images))
|
|
698
|
+
|
|
699
|
+
self._images_in_memory: Dict[str, np.ndarray] = {}
|
|
700
|
+
if isinstance(images, dict):
|
|
701
|
+
self._images_in_memory = images
|
|
702
|
+
warn_deprecated(
|
|
703
|
+
"Passing a `Dict[str, np.ndarray]` into `ClassificationDataset` is "
|
|
704
|
+
"deprecated and will be removed in a future release. Use "
|
|
705
|
+
"a list of paths `List[str]` instead."
|
|
706
|
+
)
|
|
707
|
+
|
|
708
|
+
@property
|
|
709
|
+
@deprecated(
|
|
710
|
+
"`DetectionDataset.images` property is deprecated and will be removed in "
|
|
711
|
+
"`eye-0.26.0`. Iterate with `for path, image, annotation in dataset:` "
|
|
712
|
+
"instead."
|
|
713
|
+
)
|
|
714
|
+
def images(self) -> Dict[str, np.ndarray]:
|
|
715
|
+
"""
|
|
716
|
+
Load all images to memory and return them as a dictionary.
|
|
717
|
+
|
|
718
|
+
!!! warning
|
|
719
|
+
|
|
720
|
+
Only use this when you need all images at once.
|
|
721
|
+
It is much more memory-efficient to initialize dataset with
|
|
722
|
+
image paths and use `for path, image, annotation in dataset:`.
|
|
723
|
+
"""
|
|
724
|
+
if self._images_in_memory:
|
|
725
|
+
return self._images_in_memory
|
|
726
|
+
|
|
727
|
+
images = {image_path: cv2.imread(image_path) for image_path in self.image_paths}
|
|
728
|
+
return images
|
|
729
|
+
|
|
730
|
+
def _get_image(self, image_path: str) -> np.ndarray:
|
|
731
|
+
"""Assumes that image is in dataset"""
|
|
732
|
+
if self._images_in_memory:
|
|
733
|
+
return self._images_in_memory[image_path]
|
|
734
|
+
return cv2.imread(image_path)
|
|
735
|
+
|
|
736
|
+
def __len__(self) -> int:
|
|
737
|
+
return len(self._images_in_memory) or len(self.image_paths)
|
|
738
|
+
|
|
739
|
+
def __getitem__(self, i: int) -> Tuple[str, np.ndarray, Classifications]:
|
|
740
|
+
"""
|
|
741
|
+
Returns:
|
|
742
|
+
Tuple[str, np.ndarray, Classifications]: The image path, image data,
|
|
743
|
+
and its corresponding annotation at index i.
|
|
744
|
+
"""
|
|
745
|
+
image_path = self.image_paths[i]
|
|
746
|
+
image = self._get_image(image_path)
|
|
747
|
+
annotation = self.annotations[image_path]
|
|
748
|
+
return image_path, image, annotation
|
|
749
|
+
|
|
750
|
+
def __iter__(self) -> Iterator[Tuple[str, np.ndarray, Classifications]]:
|
|
751
|
+
"""
|
|
752
|
+
Iterate over the images and annotations in the dataset.
|
|
753
|
+
|
|
754
|
+
Yields:
|
|
755
|
+
Iterator[Tuple[str, np.ndarray, Detections]]:
|
|
756
|
+
An iterator that yields tuples containing the image path,
|
|
757
|
+
the image data, and its corresponding annotation.
|
|
758
|
+
"""
|
|
759
|
+
for i in range(len(self)):
|
|
760
|
+
image_path, image, annotation = self[i]
|
|
761
|
+
yield image_path, image, annotation
|
|
762
|
+
|
|
763
|
+
def __eq__(self, other) -> bool:
|
|
764
|
+
if not isinstance(other, ClassificationDataset):
|
|
765
|
+
return False
|
|
766
|
+
|
|
767
|
+
if set(self.classes) != set(other.classes):
|
|
768
|
+
return False
|
|
769
|
+
|
|
770
|
+
if self.image_paths != other.image_paths:
|
|
771
|
+
return False
|
|
772
|
+
|
|
773
|
+
if self._images_in_memory or other._images_in_memory:
|
|
774
|
+
if not np.array_equal(
|
|
775
|
+
list(self._images_in_memory.values()),
|
|
776
|
+
list(other._images_in_memory.values()),
|
|
777
|
+
):
|
|
778
|
+
return False
|
|
779
|
+
|
|
780
|
+
if self.annotations != other.annotations:
|
|
781
|
+
return False
|
|
782
|
+
|
|
783
|
+
return True
|
|
784
|
+
|
|
785
|
+
def split(
|
|
786
|
+
self,
|
|
787
|
+
split_ratio: float = 0.8,
|
|
788
|
+
random_state: Optional[int] = None,
|
|
789
|
+
shuffle: bool = True,
|
|
790
|
+
) -> Tuple[ClassificationDataset, ClassificationDataset]:
|
|
791
|
+
"""
|
|
792
|
+
Splits the dataset into two parts (training and testing)
|
|
793
|
+
using the provided split_ratio.
|
|
794
|
+
|
|
795
|
+
Args:
|
|
796
|
+
split_ratio (float): The ratio of the training
|
|
797
|
+
set to the entire dataset.
|
|
798
|
+
random_state (Optional[int]): The seed for the
|
|
799
|
+
random number generator. This is used for reproducibility.
|
|
800
|
+
shuffle (bool): Whether to shuffle the data before splitting.
|
|
801
|
+
|
|
802
|
+
Returns:
|
|
803
|
+
Tuple[ClassificationDataset, ClassificationDataset]: A tuple containing
|
|
804
|
+
the training and testing datasets.
|
|
805
|
+
|
|
806
|
+
Examples:
|
|
807
|
+
```python
|
|
808
|
+
import eye as sv
|
|
809
|
+
|
|
810
|
+
cd = sv.ClassificationDataset(...)
|
|
811
|
+
train_cd,test_cd = cd.split(split_ratio=0.7, random_state=42,shuffle=True)
|
|
812
|
+
len(train_cd), len(test_cd)
|
|
813
|
+
# (700, 300)
|
|
814
|
+
```
|
|
815
|
+
"""
|
|
816
|
+
train_paths, test_paths = train_test_split(
|
|
817
|
+
data=self.image_paths,
|
|
818
|
+
train_ratio=split_ratio,
|
|
819
|
+
random_state=random_state,
|
|
820
|
+
shuffle=shuffle,
|
|
821
|
+
)
|
|
822
|
+
|
|
823
|
+
train_input: Union[List[str], Dict[str, np.ndarray]]
|
|
824
|
+
test_input: Union[List[str], Dict[str, np.ndarray]]
|
|
825
|
+
if self._images_in_memory:
|
|
826
|
+
train_input = {path: self._images_in_memory[path] for path in train_paths}
|
|
827
|
+
test_input = {path: self._images_in_memory[path] for path in test_paths}
|
|
828
|
+
else:
|
|
829
|
+
train_input = train_paths
|
|
830
|
+
test_input = test_paths
|
|
831
|
+
train_annotations = {path: self.annotations[path] for path in train_paths}
|
|
832
|
+
test_annotations = {path: self.annotations[path] for path in test_paths}
|
|
833
|
+
|
|
834
|
+
train_dataset = ClassificationDataset(
|
|
835
|
+
classes=self.classes,
|
|
836
|
+
images=train_input,
|
|
837
|
+
annotations=train_annotations,
|
|
838
|
+
)
|
|
839
|
+
test_dataset = ClassificationDataset(
|
|
840
|
+
classes=self.classes,
|
|
841
|
+
images=test_input,
|
|
842
|
+
annotations=test_annotations,
|
|
843
|
+
)
|
|
844
|
+
|
|
845
|
+
return train_dataset, test_dataset
|
|
846
|
+
|
|
847
|
+
def as_folder_structure(self, root_directory_path: str) -> None:
|
|
848
|
+
"""
|
|
849
|
+
Saves the dataset as a multi-class folder structure.
|
|
850
|
+
|
|
851
|
+
Args:
|
|
852
|
+
root_directory_path (str): The path to the directory
|
|
853
|
+
where the dataset will be saved.
|
|
854
|
+
"""
|
|
855
|
+
os.makedirs(root_directory_path, exist_ok=True)
|
|
856
|
+
|
|
857
|
+
for class_name in self.classes:
|
|
858
|
+
os.makedirs(os.path.join(root_directory_path, class_name), exist_ok=True)
|
|
859
|
+
|
|
860
|
+
for image_save_path, image, annotation in self:
|
|
861
|
+
image_name = Path(image_save_path).name
|
|
862
|
+
class_id = (
|
|
863
|
+
annotation.class_id[0]
|
|
864
|
+
if annotation.confidence is None
|
|
865
|
+
else annotation.get_top_k(1)[0][0]
|
|
866
|
+
)
|
|
867
|
+
class_name = self.classes[class_id]
|
|
868
|
+
image_save_path = os.path.join(root_directory_path, class_name, image_name)
|
|
869
|
+
cv2.imwrite(image_save_path, image)
|
|
870
|
+
|
|
871
|
+
@classmethod
|
|
872
|
+
def from_folder_structure(cls, root_directory_path: str) -> ClassificationDataset:
|
|
873
|
+
"""
|
|
874
|
+
Load data from a multiclass folder structure into a ClassificationDataset.
|
|
875
|
+
|
|
876
|
+
Args:
|
|
877
|
+
root_directory_path (str): The path to the dataset directory.
|
|
878
|
+
|
|
879
|
+
Returns:
|
|
880
|
+
ClassificationDataset: The dataset.
|
|
881
|
+
|
|
882
|
+
Examples:
|
|
883
|
+
```python
|
|
884
|
+
import roboflow
|
|
885
|
+
from roboflow import Roboflow
|
|
886
|
+
import eye as sv
|
|
887
|
+
|
|
888
|
+
roboflow.login()
|
|
889
|
+
rf = Roboflow()
|
|
890
|
+
|
|
891
|
+
project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
|
|
892
|
+
dataset = project.version(PROJECT_VERSION).download("folder")
|
|
893
|
+
|
|
894
|
+
cd = sv.ClassificationDataset.from_folder_structure(
|
|
895
|
+
root_directory_path=f"{dataset.location}/train"
|
|
896
|
+
)
|
|
897
|
+
```
|
|
898
|
+
"""
|
|
899
|
+
classes = os.listdir(root_directory_path)
|
|
900
|
+
classes = sorted(set(classes))
|
|
901
|
+
|
|
902
|
+
image_paths = []
|
|
903
|
+
annotations = {}
|
|
904
|
+
|
|
905
|
+
for class_name in classes:
|
|
906
|
+
class_id = classes.index(class_name)
|
|
907
|
+
|
|
908
|
+
for image in os.listdir(os.path.join(root_directory_path, class_name)):
|
|
909
|
+
image_path = str(os.path.join(root_directory_path, class_name, image))
|
|
910
|
+
image_paths.append(image_path)
|
|
911
|
+
annotations[image_path] = Classifications(
|
|
912
|
+
class_id=np.array([class_id]),
|
|
913
|
+
)
|
|
914
|
+
|
|
915
|
+
return cls(
|
|
916
|
+
classes=classes,
|
|
917
|
+
images=image_paths,
|
|
918
|
+
annotations=annotations,
|
|
919
|
+
)
|