explainiverse 0.7.0__py3-none-any.whl → 0.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
explainiverse/__init__.py CHANGED
@@ -2,9 +2,10 @@
2
2
  """
3
3
  Explainiverse - A unified, extensible explainability framework.
4
4
 
5
- Supports multiple XAI methods including LIME, SHAP, TreeSHAP, Anchors,
6
- Counterfactuals, Permutation Importance, PDP, ALE, and SAGE through a
7
- consistent interface.
5
+ Supports 18 state-of-the-art XAI methods including LIME, SHAP, TreeSHAP,
6
+ Integrated Gradients, DeepLIFT, DeepSHAP, LRP, GradCAM, TCAV, Anchors,
7
+ Counterfactuals, Permutation Importance, PDP, ALE, SAGE, and ProtoDash
8
+ through a consistent interface.
8
9
 
9
10
  Quick Start:
10
11
  from explainiverse import default_registry
@@ -33,7 +34,7 @@ from explainiverse.adapters.sklearn_adapter import SklearnAdapter
33
34
  from explainiverse.adapters import TORCH_AVAILABLE
34
35
  from explainiverse.engine.suite import ExplanationSuite
35
36
 
36
- __version__ = "0.7.0"
37
+ __version__ = "0.8.0"
37
38
 
38
39
  __all__ = [
39
40
  # Core
@@ -25,7 +25,7 @@ Example:
25
25
  """
26
26
 
27
27
  import numpy as np
28
- from typing import List, Optional, Union, Callable
28
+ from typing import List, Optional, Union, Tuple
29
29
 
30
30
  from .base_adapter import BaseModelAdapter
31
31
 
@@ -57,6 +57,11 @@ class PyTorchAdapter(BaseModelAdapter):
57
57
  explainability methods. Handles device management, tensor/numpy
58
58
  conversions, and supports both classification and regression tasks.
59
59
 
60
+ Supports:
61
+ - Multi-class classification (output shape: [batch, n_classes])
62
+ - Binary classification (output shape: [batch, 1] or [batch])
63
+ - Regression (output shape: [batch, n_outputs] or [batch])
64
+
60
65
  Attributes:
61
66
  model: The PyTorch model (nn.Module)
62
67
  task: "classification" or "regression"
@@ -150,11 +155,27 @@ class PyTorchAdapter(BaseModelAdapter):
150
155
  def _apply_activation(self, output: "torch.Tensor") -> "torch.Tensor":
151
156
  """Apply output activation function."""
152
157
  if self.output_activation == "softmax":
158
+ # Handle different output shapes
159
+ if output.dim() == 1 or (output.dim() == 2 and output.shape[1] == 1):
160
+ # Binary: apply sigmoid instead of softmax
161
+ return torch.sigmoid(output)
153
162
  return torch.softmax(output, dim=-1)
154
163
  elif self.output_activation == "sigmoid":
155
164
  return torch.sigmoid(output)
156
165
  return output
157
166
 
167
+ def _normalize_output_shape(self, output: "torch.Tensor") -> "torch.Tensor":
168
+ """
169
+ Normalize output to consistent 2D shape (batch, outputs).
170
+
171
+ Handles:
172
+ - (batch,) -> (batch, 1)
173
+ - (batch, n) -> (batch, n)
174
+ """
175
+ if output.dim() == 1:
176
+ return output.unsqueeze(-1)
177
+ return output
178
+
158
179
  def predict(self, data: np.ndarray) -> np.ndarray:
159
180
  """
160
181
  Generate predictions for input data.
@@ -183,16 +204,66 @@ class PyTorchAdapter(BaseModelAdapter):
183
204
  tensor_batch = self._to_tensor(batch)
184
205
 
185
206
  output = self.model(tensor_batch)
207
+ output = self._normalize_output_shape(output)
186
208
  output = self._apply_activation(output)
187
209
  outputs.append(self._to_numpy(output))
188
210
 
189
211
  return np.vstack(outputs)
190
212
 
213
+ def _get_target_scores(
214
+ self,
215
+ output: "torch.Tensor",
216
+ target_class: Optional[Union[int, "torch.Tensor"]] = None
217
+ ) -> "torch.Tensor":
218
+ """
219
+ Extract target scores for gradient computation.
220
+
221
+ Handles both multi-class and binary classification outputs.
222
+
223
+ Args:
224
+ output: Raw model output (logits)
225
+ target_class: Target class index or tensor of indices
226
+
227
+ Returns:
228
+ Target scores tensor for backpropagation
229
+ """
230
+ batch_size = output.shape[0]
231
+
232
+ # Normalize to 2D
233
+ if output.dim() == 1:
234
+ output = output.unsqueeze(-1)
235
+
236
+ n_outputs = output.shape[1]
237
+
238
+ if self.task == "classification":
239
+ if n_outputs == 1:
240
+ # Binary classification with single logit
241
+ # Score is the logit itself (positive class score)
242
+ return output.squeeze(-1)
243
+ else:
244
+ # Multi-class classification
245
+ if target_class is None:
246
+ target_class = output.argmax(dim=-1)
247
+ elif isinstance(target_class, int):
248
+ target_class = torch.tensor(
249
+ [target_class] * batch_size,
250
+ device=self.device
251
+ )
252
+
253
+ # Gather scores for target class
254
+ return output.gather(1, target_class.view(-1, 1)).squeeze(-1)
255
+ else:
256
+ # Regression: use first output or sum of outputs
257
+ if n_outputs == 1:
258
+ return output.squeeze(-1)
259
+ else:
260
+ return output.sum(dim=-1)
261
+
191
262
  def predict_with_gradients(
192
263
  self,
193
264
  data: np.ndarray,
194
265
  target_class: Optional[int] = None
195
- ) -> tuple:
266
+ ) -> Tuple[np.ndarray, np.ndarray]:
196
267
  """
197
268
  Generate predictions and compute gradients w.r.t. inputs.
198
269
 
@@ -203,11 +274,17 @@ class PyTorchAdapter(BaseModelAdapter):
203
274
  data: Input data as numpy array.
204
275
  target_class: Class index for gradient computation.
205
276
  If None, uses the predicted class.
277
+ For binary classification with single output,
278
+ this is ignored (gradient w.r.t. the single logit).
206
279
 
207
280
  Returns:
208
281
  Tuple of (predictions, gradients) as numpy arrays.
282
+ - predictions: (batch, n_classes) probabilities
283
+ - gradients: same shape as input data
209
284
  """
210
285
  data = np.array(data)
286
+ original_shape = data.shape
287
+
211
288
  if data.ndim == 1:
212
289
  data = data.reshape(1, -1)
213
290
 
@@ -217,20 +294,13 @@ class PyTorchAdapter(BaseModelAdapter):
217
294
 
218
295
  # Forward pass
219
296
  output = self.model(tensor_data)
220
- activated_output = self._apply_activation(output)
221
297
 
222
- # Determine target for gradient
223
- if self.task == "classification":
224
- if target_class is None:
225
- target_class = output.argmax(dim=-1)
226
- elif isinstance(target_class, int):
227
- target_class = torch.tensor([target_class] * data.shape[0], device=self.device)
228
-
229
- # Select target class scores for gradient
230
- target_scores = output.gather(1, target_class.view(-1, 1)).squeeze()
231
- else:
232
- # Regression: gradient w.r.t. output
233
- target_scores = output.squeeze()
298
+ # Get activated output for return
299
+ output_normalized = self._normalize_output_shape(output)
300
+ activated_output = self._apply_activation(output_normalized)
301
+
302
+ # Get target scores for gradient computation
303
+ target_scores = self._get_target_scores(output, target_class)
234
304
 
235
305
  # Backward pass
236
306
  if target_scores.dim() == 0:
@@ -295,7 +365,7 @@ class PyTorchAdapter(BaseModelAdapter):
295
365
  data: np.ndarray,
296
366
  layer_name: str,
297
367
  target_class: Optional[int] = None
298
- ) -> tuple:
368
+ ) -> Tuple[np.ndarray, np.ndarray]:
299
369
  """
300
370
  Get gradients of output w.r.t. a specific layer's activations.
301
371
 
@@ -339,15 +409,8 @@ class PyTorchAdapter(BaseModelAdapter):
339
409
 
340
410
  output = self.model(tensor_data)
341
411
 
342
- if self.task == "classification":
343
- if target_class is None:
344
- target_class = output.argmax(dim=-1)
345
- elif isinstance(target_class, int):
346
- target_class = torch.tensor([target_class] * data.shape[0], device=self.device)
347
-
348
- target_scores = output.gather(1, target_class.view(-1, 1)).squeeze()
349
- else:
350
- target_scores = output.squeeze()
412
+ # Get target scores using the new method
413
+ target_scores = self._get_target_scores(output, target_class)
351
414
 
352
415
  if target_scores.dim() == 0:
353
416
  target_scores.backward()
@@ -1,24 +1,179 @@
1
1
  # src/explainiverse/core/explanation.py
2
+ """
3
+ Unified container for explanation results.
4
+
5
+ The Explanation class provides a standardized format for all explainer outputs,
6
+ enabling consistent handling across different explanation methods.
7
+ """
8
+
9
+ from typing import Dict, List, Optional, Any
10
+
2
11
 
3
12
  class Explanation:
4
13
  """
5
14
  Unified container for explanation results.
15
+
16
+ Attributes:
17
+ explainer_name: Name of the explainer that generated this explanation
18
+ target_class: The class/output being explained
19
+ explanation_data: Dictionary containing explanation details
20
+ (e.g., feature_attributions, heatmaps, rules)
21
+ feature_names: Optional list of feature names for index resolution
22
+ metadata: Optional additional metadata about the explanation
23
+
24
+ Example:
25
+ >>> explanation = Explanation(
26
+ ... explainer_name="LIME",
27
+ ... target_class="cat",
28
+ ... explanation_data={"feature_attributions": {"fur": 0.8, "whiskers": 0.6}},
29
+ ... feature_names=["fur", "whiskers", "tail", "ears"]
30
+ ... )
31
+ >>> print(explanation.get_top_features(k=2))
32
+ [('fur', 0.8), ('whiskers', 0.6)]
6
33
  """
7
34
 
8
- def __init__(self, explainer_name: str, target_class: str, explanation_data: dict):
35
+ def __init__(
36
+ self,
37
+ explainer_name: str,
38
+ target_class: str,
39
+ explanation_data: Dict[str, Any],
40
+ feature_names: Optional[List[str]] = None,
41
+ metadata: Optional[Dict[str, Any]] = None
42
+ ):
43
+ """
44
+ Initialize an Explanation object.
45
+
46
+ Args:
47
+ explainer_name: Name of the explainer (e.g., "LIME", "SHAP")
48
+ target_class: The target class or output being explained
49
+ explanation_data: Dictionary containing the explanation details.
50
+ Common keys include:
51
+ - "feature_attributions": Dict[str, float] mapping feature names to importance
52
+ - "attributions_raw": List[float] of raw attribution values
53
+ - "heatmap": np.ndarray for image explanations
54
+ - "rules": List of rule strings for rule-based explanations
55
+ feature_names: Optional list of feature names. If provided, enables
56
+ index-based lookup in evaluation metrics.
57
+ metadata: Optional additional metadata (e.g., computation time, parameters)
58
+ """
9
59
  self.explainer_name = explainer_name
10
60
  self.target_class = target_class
11
- self.explanation_data = explanation_data # e.g., {'feature_attributions': {...}}
61
+ self.explanation_data = explanation_data
62
+ self.feature_names = list(feature_names) if feature_names is not None else None
63
+ self.metadata = metadata or {}
12
64
 
13
65
  def __repr__(self):
14
- return (f"Explanation(explainer='{self.explainer_name}', "
15
- f"target='{self.target_class}', "
16
- f"keys={list(self.explanation_data.keys())})")
66
+ n_features = len(self.feature_names) if self.feature_names else "N/A"
67
+ return (
68
+ f"Explanation(explainer='{self.explainer_name}', "
69
+ f"target='{self.target_class}', "
70
+ f"keys={list(self.explanation_data.keys())}, "
71
+ f"n_features={n_features})"
72
+ )
73
+
74
+ def get_attributions(self) -> Optional[Dict[str, float]]:
75
+ """
76
+ Get feature attributions if available.
77
+
78
+ Returns:
79
+ Dictionary mapping feature names to attribution values,
80
+ or None if not available.
81
+ """
82
+ return self.explanation_data.get("feature_attributions")
83
+
84
+ def get_top_features(self, k: int = 5, absolute: bool = True) -> List[tuple]:
85
+ """
86
+ Get the top-k most important features.
87
+
88
+ Args:
89
+ k: Number of top features to return
90
+ absolute: If True, rank by absolute value of attribution
91
+
92
+ Returns:
93
+ List of (feature_name, attribution_value) tuples sorted by importance
94
+ """
95
+ attributions = self.get_attributions()
96
+ if not attributions:
97
+ return []
98
+
99
+ if absolute:
100
+ sorted_items = sorted(
101
+ attributions.items(),
102
+ key=lambda x: abs(x[1]),
103
+ reverse=True
104
+ )
105
+ else:
106
+ sorted_items = sorted(
107
+ attributions.items(),
108
+ key=lambda x: x[1],
109
+ reverse=True
110
+ )
111
+
112
+ return sorted_items[:k]
113
+
114
+ def get_feature_index(self, feature_name: str) -> Optional[int]:
115
+ """
116
+ Get the index of a feature by name.
117
+
118
+ Args:
119
+ feature_name: Name of the feature
120
+
121
+ Returns:
122
+ Index of the feature, or None if not found or feature_names not set
123
+ """
124
+ if self.feature_names is None:
125
+ return None
126
+ try:
127
+ return self.feature_names.index(feature_name)
128
+ except ValueError:
129
+ return None
17
130
 
18
- def plot(self, type='bar'):
131
+ def plot(self, plot_type: str = 'bar', **kwargs):
132
+ """
133
+ Visualize the explanation.
134
+
135
+ Args:
136
+ plot_type: Type of plot ('bar', 'waterfall', 'heatmap')
137
+ **kwargs: Additional arguments passed to the plotting function
138
+
139
+ Note:
140
+ This is a placeholder for future visualization integration.
141
+ """
142
+ print(
143
+ f"[plot: {plot_type}] Plotting explanation for {self.target_class} "
144
+ f"from {self.explainer_name}."
145
+ )
146
+
147
+ def to_dict(self) -> Dict[str, Any]:
148
+ """
149
+ Convert explanation to a dictionary for serialization.
150
+
151
+ Returns:
152
+ Dictionary representation of the explanation
153
+ """
154
+ return {
155
+ "explainer_name": self.explainer_name,
156
+ "target_class": self.target_class,
157
+ "explanation_data": self.explanation_data,
158
+ "feature_names": self.feature_names,
159
+ "metadata": self.metadata
160
+ }
161
+
162
+ @classmethod
163
+ def from_dict(cls, data: Dict[str, Any]) -> "Explanation":
19
164
  """
20
- Visualizes the explanation.
21
- This will later integrate with a proper visualization backend.
165
+ Create an Explanation from a dictionary.
166
+
167
+ Args:
168
+ data: Dictionary with explanation data
169
+
170
+ Returns:
171
+ Explanation instance
22
172
  """
23
- print(f"[plot: {type}] Plotting explanation for {self.target_class} "
24
- f"from {self.explainer_name}.")
173
+ return cls(
174
+ explainer_name=data["explainer_name"],
175
+ target_class=data["target_class"],
176
+ explanation_data=data["explanation_data"],
177
+ feature_names=data.get("feature_names"),
178
+ metadata=data.get("metadata", {})
179
+ )
@@ -375,6 +375,7 @@ def _create_default_registry() -> ExplainerRegistry:
375
375
  from explainiverse.explainers.gradient.smoothgrad import SmoothGradExplainer
376
376
  from explainiverse.explainers.gradient.saliency import SaliencyExplainer
377
377
  from explainiverse.explainers.gradient.tcav import TCAVExplainer
378
+ from explainiverse.explainers.gradient.lrp import LRPExplainer
378
379
  from explainiverse.explainers.example_based.protodash import ProtoDashExplainer
379
380
 
380
381
  registry = ExplainerRegistry()
@@ -587,6 +588,23 @@ def _create_default_registry() -> ExplainerRegistry:
587
588
  )
588
589
  )
589
590
 
591
+ # Register LRP (Layer-wise Relevance Propagation)
592
+ registry.register(
593
+ name="lrp",
594
+ explainer_class=LRPExplainer,
595
+ meta=ExplainerMeta(
596
+ scope="local",
597
+ model_types=["neural"],
598
+ data_types=["tabular", "image"],
599
+ task_types=["classification", "regression"],
600
+ description="LRP - Layer-wise Relevance Propagation for decomposition-based attributions (requires PyTorch)",
601
+ paper_reference="Bach et al., 2015 - 'On Pixel-wise Explanations for Non-Linear Classifier Decisions by Layer-wise Relevance Propagation' (PLOS ONE)",
602
+ complexity="O(n_layers * forward_pass)",
603
+ requires_training_data=False,
604
+ supports_batching=True
605
+ )
606
+ )
607
+
590
608
  # =========================================================================
591
609
  # Global Explainers (model-level)
592
610
  # =========================================================================