explainiverse 0.6.0__py3-none-any.whl → 0.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- explainiverse/__init__.py +1 -1
- explainiverse/adapters/pytorch_adapter.py +88 -25
- explainiverse/core/explanation.py +165 -10
- explainiverse/core/registry.py +18 -0
- explainiverse/engine/suite.py +187 -78
- explainiverse/evaluation/metrics.py +189 -108
- explainiverse/explainers/attribution/lime_wrapper.py +90 -7
- explainiverse/explainers/attribution/shap_wrapper.py +104 -8
- explainiverse/explainers/gradient/__init__.py +12 -0
- explainiverse/explainers/gradient/integrated_gradients.py +189 -76
- explainiverse/explainers/gradient/tcav.py +865 -0
- {explainiverse-0.6.0.dist-info → explainiverse-0.7.1.dist-info}/METADATA +60 -9
- {explainiverse-0.6.0.dist-info → explainiverse-0.7.1.dist-info}/RECORD +15 -14
- {explainiverse-0.6.0.dist-info → explainiverse-0.7.1.dist-info}/LICENSE +0 -0
- {explainiverse-0.6.0.dist-info → explainiverse-0.7.1.dist-info}/WHEEL +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: explainiverse
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.7.1
|
|
4
4
|
Summary: Unified, extensible explainability framework supporting LIME, SHAP, Anchors, Counterfactuals, PDP, ALE, SAGE, and more
|
|
5
5
|
Home-page: https://github.com/jemsbhai/explainiverse
|
|
6
6
|
License: MIT
|
|
@@ -35,7 +35,7 @@ Description-Content-Type: text/markdown
|
|
|
35
35
|
[](https://www.python.org/downloads/)
|
|
36
36
|
[](https://opensource.org/licenses/MIT)
|
|
37
37
|
|
|
38
|
-
**Explainiverse** is a unified, extensible Python framework for Explainable AI (XAI). It provides a standardized interface for **
|
|
38
|
+
**Explainiverse** is a unified, extensible Python framework for Explainable AI (XAI). It provides a standardized interface for **17 state-of-the-art explanation methods** across local, global, gradient-based, concept-based, and example-based paradigms, along with **comprehensive evaluation metrics** for assessing explanation quality.
|
|
39
39
|
|
|
40
40
|
---
|
|
41
41
|
|
|
@@ -43,7 +43,7 @@ Description-Content-Type: text/markdown
|
|
|
43
43
|
|
|
44
44
|
| Feature | Description |
|
|
45
45
|
|---------|-------------|
|
|
46
|
-
| **
|
|
46
|
+
| **17 Explainers** | LIME, KernelSHAP, TreeSHAP, Integrated Gradients, DeepLIFT, DeepSHAP, SmoothGrad, Saliency Maps, GradCAM/GradCAM++, TCAV, Anchors, Counterfactual, Permutation Importance, PDP, ALE, SAGE, ProtoDash |
|
|
47
47
|
| **8 Evaluation Metrics** | Faithfulness (PGI, PGU, Comprehensiveness, Sufficiency, Correlation) and Stability (RIS, ROS, Lipschitz) |
|
|
48
48
|
| **Unified API** | Consistent `BaseExplainer` interface with standardized `Explanation` output |
|
|
49
49
|
| **Plugin Registry** | Filter explainers by scope, model type, data type; automatic recommendations |
|
|
@@ -66,6 +66,7 @@ Description-Content-Type: text/markdown
|
|
|
66
66
|
| **SmoothGrad** | Gradient | [Smilkov et al., 2017](https://arxiv.org/abs/1706.03825) |
|
|
67
67
|
| **Saliency Maps** | Gradient | [Simonyan et al., 2014](https://arxiv.org/abs/1312.6034) |
|
|
68
68
|
| **GradCAM / GradCAM++** | Gradient (CNN) | [Selvaraju et al., 2017](https://arxiv.org/abs/1610.02391) |
|
|
69
|
+
| **TCAV** | Concept-Based | [Kim et al., 2018](https://arxiv.org/abs/1711.11279) |
|
|
69
70
|
| **Anchors** | Rule-Based | [Ribeiro et al., 2018](https://ojs.aaai.org/index.php/AAAI/article/view/11491) |
|
|
70
71
|
| **Counterfactual** | Contrastive | [Mothilal et al., 2020](https://arxiv.org/abs/1905.07697) |
|
|
71
72
|
| **ProtoDash** | Example-Based | [Gurumoorthy et al., 2019](https://arxiv.org/abs/1707.01212) |
|
|
@@ -142,8 +143,8 @@ adapter = SklearnAdapter(model, class_names=iris.target_names.tolist())
|
|
|
142
143
|
# List all available explainers
|
|
143
144
|
print(default_registry.list_explainers())
|
|
144
145
|
# ['lime', 'shap', 'treeshap', 'integrated_gradients', 'deeplift', 'deepshap',
|
|
145
|
-
# 'smoothgrad', 'gradcam', '
|
|
146
|
-
# 'permutation_importance', 'partial_dependence', 'ale', 'sage']
|
|
146
|
+
# 'smoothgrad', 'saliency', 'gradcam', 'tcav', 'anchors', 'counterfactual',
|
|
147
|
+
# 'protodash', 'permutation_importance', 'partial_dependence', 'ale', 'sage']
|
|
147
148
|
|
|
148
149
|
# Create an explainer via registry
|
|
149
150
|
explainer = default_registry.create(
|
|
@@ -317,6 +318,56 @@ heatmap = explanation.explanation_data["heatmap"]
|
|
|
317
318
|
overlay = explainer.get_overlay(original_image, heatmap, alpha=0.5)
|
|
318
319
|
```
|
|
319
320
|
|
|
321
|
+
### TCAV (Concept-Based Explanations)
|
|
322
|
+
|
|
323
|
+
```python
|
|
324
|
+
from explainiverse.explainers.gradient import TCAVExplainer
|
|
325
|
+
|
|
326
|
+
# For neural network models with concept examples
|
|
327
|
+
adapter = PyTorchAdapter(model, task="classification", class_names=class_names)
|
|
328
|
+
|
|
329
|
+
# Create TCAV explainer targeting a specific layer
|
|
330
|
+
explainer = TCAVExplainer(
|
|
331
|
+
model=adapter,
|
|
332
|
+
layer_name="layer3", # Target layer for concept analysis
|
|
333
|
+
class_names=class_names
|
|
334
|
+
)
|
|
335
|
+
|
|
336
|
+
# Learn a concept from examples (e.g., "striped" pattern)
|
|
337
|
+
explainer.learn_concept(
|
|
338
|
+
concept_name="striped",
|
|
339
|
+
concept_examples=striped_images, # Images with stripes
|
|
340
|
+
negative_examples=random_images, # Random images without stripes
|
|
341
|
+
min_accuracy=0.6 # Minimum CAV classifier accuracy
|
|
342
|
+
)
|
|
343
|
+
|
|
344
|
+
# Compute TCAV score: fraction of inputs where concept positively influences prediction
|
|
345
|
+
tcav_score = explainer.compute_tcav_score(
|
|
346
|
+
test_inputs=test_images,
|
|
347
|
+
target_class=0, # e.g., "zebra"
|
|
348
|
+
concept_name="striped"
|
|
349
|
+
)
|
|
350
|
+
print(f"TCAV score: {tcav_score:.3f}") # >0.5 means concept positively influences class
|
|
351
|
+
|
|
352
|
+
# Statistical significance testing against random concepts
|
|
353
|
+
result = explainer.statistical_significance_test(
|
|
354
|
+
test_inputs=test_images,
|
|
355
|
+
target_class=0,
|
|
356
|
+
concept_name="striped",
|
|
357
|
+
n_random=10,
|
|
358
|
+
negative_examples=random_images
|
|
359
|
+
)
|
|
360
|
+
print(f"p-value: {result['p_value']:.4f}, significant: {result['significant']}")
|
|
361
|
+
|
|
362
|
+
# Full explanation with multiple concepts
|
|
363
|
+
explanation = explainer.explain(
|
|
364
|
+
test_inputs=test_images,
|
|
365
|
+
target_class=0,
|
|
366
|
+
run_significance_test=True
|
|
367
|
+
)
|
|
368
|
+
print(explanation.explanation_data["tcav_scores"])
|
|
369
|
+
```
|
|
370
|
+
|
|
320
371
|
---
|
|
321
372
|
|
|
322
373
|
## Example-Based Explanations
|
|
@@ -551,7 +602,7 @@ explainiverse/
|
|
|
551
602
|
│ └── pytorch_adapter.py # With gradient support
|
|
552
603
|
├── explainers/
|
|
553
604
|
│ ├── attribution/ # LIME, SHAP, TreeSHAP
|
|
554
|
-
│ ├── gradient/ # IG, DeepLIFT, DeepSHAP, SmoothGrad, GradCAM
|
|
605
|
+
│ ├── gradient/ # IG, DeepLIFT, DeepSHAP, SmoothGrad, Saliency, GradCAM, TCAV
|
|
555
606
|
│ ├── rule_based/ # Anchors
|
|
556
607
|
│ ├── counterfactual/ # DiCE-style
|
|
557
608
|
│ ├── global_explainers/ # Permutation, PDP, ALE, SAGE
|
|
@@ -589,6 +640,7 @@ poetry run pytest tests/test_smoothgrad.py::TestSmoothGradBasic -v
|
|
|
589
640
|
- [x] Core framework (BaseExplainer, Explanation, Registry)
|
|
590
641
|
- [x] Perturbation methods: LIME, KernelSHAP, TreeSHAP
|
|
591
642
|
- [x] Gradient methods: Integrated Gradients, DeepLIFT, DeepSHAP, SmoothGrad, Saliency Maps, GradCAM/GradCAM++
|
|
643
|
+
- [x] Concept-based: TCAV (Testing with Concept Activation Vectors)
|
|
592
644
|
- [x] Rule-based: Anchors
|
|
593
645
|
- [x] Counterfactual: DiCE-style
|
|
594
646
|
- [x] Global: Permutation Importance, PDP, ALE, SAGE
|
|
@@ -598,7 +650,6 @@ poetry run pytest tests/test_smoothgrad.py::TestSmoothGradBasic -v
|
|
|
598
650
|
- [x] PyTorch adapter with gradient support
|
|
599
651
|
|
|
600
652
|
### In Progress 🚧
|
|
601
|
-
- [ ] TCAV (Testing with Concept Activation Vectors)
|
|
602
653
|
- [ ] Layer-wise Relevance Propagation (LRP)
|
|
603
654
|
|
|
604
655
|
### Planned 📋
|
|
@@ -620,7 +671,7 @@ If you use Explainiverse in your research, please cite:
|
|
|
620
671
|
author = {Syed, Muntaser},
|
|
621
672
|
year = {2025},
|
|
622
673
|
url = {https://github.com/jemsbhai/explainiverse},
|
|
623
|
-
version = {0.
|
|
674
|
+
version = {0.7.1}
|
|
624
675
|
}
|
|
625
676
|
```
|
|
626
677
|
|
|
@@ -648,5 +699,5 @@ MIT License - see [LICENSE](LICENSE) for details.
|
|
|
648
699
|
|
|
649
700
|
## Acknowledgments
|
|
650
701
|
|
|
651
|
-
Explainiverse builds upon the foundational work of many researchers in the XAI community. We thank the authors of LIME, SHAP, Integrated Gradients, DeepLIFT, GradCAM, Anchors, DiCE, ALE, SAGE, and ProtoDash for their contributions to interpretable machine learning.
|
|
702
|
+
Explainiverse builds upon the foundational work of many researchers in the XAI community. We thank the authors of LIME, SHAP, Integrated Gradients, DeepLIFT, GradCAM, TCAV, Anchors, DiCE, ALE, SAGE, and ProtoDash for their contributions to interpretable machine learning.
|
|
652
703
|
|
|
@@ -1,23 +1,23 @@
|
|
|
1
|
-
explainiverse/__init__.py,sha256=
|
|
1
|
+
explainiverse/__init__.py,sha256=hkP-f-GcO7dKhO6otGj63cuqwFRiXBYAYZr4wrim4fY,1612
|
|
2
2
|
explainiverse/adapters/__init__.py,sha256=HcQGISyp-YQ4jEj2IYveX_c9X5otLcTNWRnVRRhzRik,781
|
|
3
3
|
explainiverse/adapters/base_adapter.py,sha256=Nqt0GeDn_-PjTyJcZsE8dRTulavqFQsv8sMYWS_ps-M,603
|
|
4
|
-
explainiverse/adapters/pytorch_adapter.py,sha256=
|
|
4
|
+
explainiverse/adapters/pytorch_adapter.py,sha256=DLQKJ7gB0foPwAmcrru7QdZnPRnhqDKpFCT-EaD3420,15612
|
|
5
5
|
explainiverse/adapters/sklearn_adapter.py,sha256=pzIBtMuqrG-6ZbUqUCMt7rSk3Ow0FgrY268FSweFvw4,958
|
|
6
6
|
explainiverse/core/__init__.py,sha256=P3jHMnH5coFqTTO1w-gT-rurkCM1-9r3pF-055pbXMg,474
|
|
7
7
|
explainiverse/core/explainer.py,sha256=Z9on-9VblYDlQx9oBm1BHpmAf_NsQajZ3qr-u48Aejo,784
|
|
8
|
-
explainiverse/core/explanation.py,sha256=
|
|
9
|
-
explainiverse/core/registry.py,sha256=
|
|
8
|
+
explainiverse/core/explanation.py,sha256=498BbRYrNR-BOql78sENOsyWxgqLsBVZXn14lh-bhww,6241
|
|
9
|
+
explainiverse/core/registry.py,sha256=BAqk2FKqbrZcoLqlODXRCOolb57DBgS-Kxs_CCtngvw,26376
|
|
10
10
|
explainiverse/engine/__init__.py,sha256=1sZO8nH1mmwK2e-KUavBQm7zYDWUe27nyWoFy9tgsiA,197
|
|
11
|
-
explainiverse/engine/suite.py,sha256=
|
|
11
|
+
explainiverse/engine/suite.py,sha256=G-7OjESisSTaQ1FQrlPl4YydX13uz8Bb70hJZNlcl2M,8918
|
|
12
12
|
explainiverse/evaluation/__init__.py,sha256=ePE97KwSjg_IChZ03DeQax8GruTjx-BVrMSi_nzoyoA,1501
|
|
13
13
|
explainiverse/evaluation/_utils.py,sha256=ej7YOPZ90gVHuuIMj45EXHq9Jx3QG7lhaj5sk26hRpg,10519
|
|
14
14
|
explainiverse/evaluation/faithfulness.py,sha256=_40afOW6vJ3dQguHlJySlgWqiJF_xIvN-uVA3nPKRvI,14841
|
|
15
|
-
explainiverse/evaluation/metrics.py,sha256=
|
|
15
|
+
explainiverse/evaluation/metrics.py,sha256=snNK9Ua1VzHDT6DlrhYL4m2MmRF3X15vuuVXiHbeicU,9944
|
|
16
16
|
explainiverse/evaluation/stability.py,sha256=q2d3rpxpp0X1s6ADST1iZA4tzksLJpR0mYBnA_U5FIs,12090
|
|
17
17
|
explainiverse/explainers/__init__.py,sha256=-ncRXbFKahH3bR0oXM2UQM4LtTdTlvdeprL6cHeqNBs,2549
|
|
18
18
|
explainiverse/explainers/attribution/__init__.py,sha256=YeVs9bS_IWDtqGbp6T37V6Zp5ZDWzLdAXHxxyFGpiQM,431
|
|
19
|
-
explainiverse/explainers/attribution/lime_wrapper.py,sha256=
|
|
20
|
-
explainiverse/explainers/attribution/shap_wrapper.py,sha256=
|
|
19
|
+
explainiverse/explainers/attribution/lime_wrapper.py,sha256=yexy8m4VoVbsIGaMIcwU41ChWZvd-Y_vadtfyarwE4k,5518
|
|
20
|
+
explainiverse/explainers/attribution/shap_wrapper.py,sha256=M6t-W9S0czZsOFXDsCn9uMW1wMoVO97ISDpiNjN0TsU,5902
|
|
21
21
|
explainiverse/explainers/attribution/treeshap_wrapper.py,sha256=LcBjHzQjmeyWCwLXALJ0WFQ9ol-N_8dod577EDxFDKY,16758
|
|
22
22
|
explainiverse/explainers/counterfactual/__init__.py,sha256=gEV6P8h2fZ3-pv5rqp5sNDqrLErh5ntqpxIIBVCMFv4,247
|
|
23
23
|
explainiverse/explainers/counterfactual/dice_wrapper.py,sha256=PyJYF-z1nyyy0mFROnkJqPtcuT2PwEBARwfh37mZ5ew,11373
|
|
@@ -28,15 +28,16 @@ explainiverse/explainers/global_explainers/ale.py,sha256=tgG3XTppCf8LiD7uKzBt4DI
|
|
|
28
28
|
explainiverse/explainers/global_explainers/partial_dependence.py,sha256=dH6yMjpwZads3pACR3rSykTbssLGHH7e6HfMlpl-S3I,6745
|
|
29
29
|
explainiverse/explainers/global_explainers/permutation_importance.py,sha256=bcgKz1S_D3lrBMgpqEF_Z6qw8Knxl_cfR50hrSO2tBc,4410
|
|
30
30
|
explainiverse/explainers/global_explainers/sage.py,sha256=57Xw1SK529x5JXWt0TVrcFYUUP3C65LfUwgoM-Z3gaw,5839
|
|
31
|
-
explainiverse/explainers/gradient/__init__.py,sha256
|
|
31
|
+
explainiverse/explainers/gradient/__init__.py,sha256=Tkf9jiXVfjVVDAhBocDc2tzFJK8RZv8H1pN8J0Ha53o,1362
|
|
32
32
|
explainiverse/explainers/gradient/deeplift.py,sha256=MWOlslizUeoZs31moy2iBgp02N08nBsVU-RoEpODg3M,27775
|
|
33
33
|
explainiverse/explainers/gradient/gradcam.py,sha256=ywW_8PhALwegkpSUDQMFvvVFkA5NnMMW6BB5tb3i8bw,13721
|
|
34
|
-
explainiverse/explainers/gradient/integrated_gradients.py,sha256=
|
|
34
|
+
explainiverse/explainers/gradient/integrated_gradients.py,sha256=EfIX4TMwfSx7Tl_2efy-oLFt9Xx7byJPV8DxbtFIeKw,18098
|
|
35
35
|
explainiverse/explainers/gradient/saliency.py,sha256=pcimyuSqKzsIR1yCMNWfH2M7T_vcDKkwcVv0zQlPL3w,10305
|
|
36
36
|
explainiverse/explainers/gradient/smoothgrad.py,sha256=COIKZSFcApmMkA62M0AForHiYlQ6hSFx5hZIabRXGlM,15727
|
|
37
|
+
explainiverse/explainers/gradient/tcav.py,sha256=zc-8wMsc2ZOhUeSZNBJ6H6BPXlVMJ9DRcAMiL25wU9I,32242
|
|
37
38
|
explainiverse/explainers/rule_based/__init__.py,sha256=gKzlFCAzwurAMLJcuYgal4XhDj1thteBGcaHWmN7iWk,243
|
|
38
39
|
explainiverse/explainers/rule_based/anchors_wrapper.py,sha256=ML7W6aam-eMGZHy5ilol8qupZvNBJpYAFatEEPnuMyo,13254
|
|
39
|
-
explainiverse-0.
|
|
40
|
-
explainiverse-0.
|
|
41
|
-
explainiverse-0.
|
|
42
|
-
explainiverse-0.
|
|
40
|
+
explainiverse-0.7.1.dist-info/LICENSE,sha256=28rbHe8rJgmUlRdxJACfq1Sj-MtCEhyHxkJedQd1ZYA,1070
|
|
41
|
+
explainiverse-0.7.1.dist-info/METADATA,sha256=pWUARu9qMLDBnOTcuxumoo9KC0WaCLFh7DdJHdpcDvw,21352
|
|
42
|
+
explainiverse-0.7.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
43
|
+
explainiverse-0.7.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|