explainiverse 0.2.2__py3-none-any.whl → 0.2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
explainiverse/__init__.py CHANGED
@@ -33,7 +33,7 @@ from explainiverse.adapters.sklearn_adapter import SklearnAdapter
33
33
  from explainiverse.adapters import TORCH_AVAILABLE
34
34
  from explainiverse.engine.suite import ExplanationSuite
35
35
 
36
- __version__ = "0.2.2"
36
+ __version__ = "0.2.3"
37
37
 
38
38
  __all__ = [
39
39
  # Core
@@ -369,6 +369,7 @@ def _create_default_registry() -> ExplainerRegistry:
369
369
  from explainiverse.explainers.global_explainers.ale import ALEExplainer
370
370
  from explainiverse.explainers.global_explainers.sage import SAGEExplainer
371
371
  from explainiverse.explainers.counterfactual.dice_wrapper import CounterfactualExplainer
372
+ from explainiverse.explainers.gradient.integrated_gradients import IntegratedGradientsExplainer
372
373
 
373
374
  registry = ExplainerRegistry()
374
375
 
@@ -461,6 +462,23 @@ def _create_default_registry() -> ExplainerRegistry:
461
462
  )
462
463
  )
463
464
 
465
+ # Register Integrated Gradients (for neural networks)
466
+ registry.register(
467
+ name="integrated_gradients",
468
+ explainer_class=IntegratedGradientsExplainer,
469
+ meta=ExplainerMeta(
470
+ scope="local",
471
+ model_types=["neural"],
472
+ data_types=["tabular", "image"],
473
+ task_types=["classification", "regression"],
474
+ description="Integrated Gradients - axiomatic attributions for neural networks (requires PyTorch)",
475
+ paper_reference="Sundararajan et al., 2017 - 'Axiomatic Attribution for Deep Networks' (ICML)",
476
+ complexity="O(n_steps * forward_pass)",
477
+ requires_training_data=False,
478
+ supports_batching=True
479
+ )
480
+ )
481
+
464
482
  # =========================================================================
465
483
  # Global Explainers (model-level)
466
484
  # =========================================================================
@@ -8,6 +8,7 @@ Local Explainers (instance-level):
8
8
  - TreeSHAP: Optimized exact SHAP for tree-based models
9
9
  - Anchors: High-precision rule-based explanations
10
10
  - Counterfactual: Diverse counterfactual explanations
11
+ - Integrated Gradients: Gradient-based attributions for neural networks
11
12
 
12
13
  Global Explainers (model-level):
13
14
  - Permutation Importance: Feature importance via permutation
@@ -25,6 +26,7 @@ from explainiverse.explainers.global_explainers.permutation_importance import Pe
25
26
  from explainiverse.explainers.global_explainers.partial_dependence import PartialDependenceExplainer
26
27
  from explainiverse.explainers.global_explainers.ale import ALEExplainer
27
28
  from explainiverse.explainers.global_explainers.sage import SAGEExplainer
29
+ from explainiverse.explainers.gradient.integrated_gradients import IntegratedGradientsExplainer
28
30
 
29
31
  __all__ = [
30
32
  # Local explainers
@@ -33,6 +35,7 @@ __all__ = [
33
35
  "TreeShapExplainer",
34
36
  "AnchorsExplainer",
35
37
  "CounterfactualExplainer",
38
+ "IntegratedGradientsExplainer",
36
39
  # Global explainers
37
40
  "PermutationImportanceExplainer",
38
41
  "PartialDependenceExplainer",
@@ -0,0 +1,11 @@
1
+ # src/explainiverse/explainers/gradient/__init__.py
2
+ """
3
+ Gradient-based explainers for neural networks.
4
+
5
+ These explainers require models that support gradient computation,
6
+ typically via the PyTorchAdapter.
7
+ """
8
+
9
+ from explainiverse.explainers.gradient.integrated_gradients import IntegratedGradientsExplainer
10
+
11
+ __all__ = ["IntegratedGradientsExplainer"]
@@ -0,0 +1,348 @@
1
+ # src/explainiverse/explainers/gradient/integrated_gradients.py
2
+ """
3
+ Integrated Gradients - Axiomatic Attribution for Deep Networks.
4
+
5
+ Integrated Gradients computes feature attributions by accumulating gradients
6
+ along a straight-line path from a baseline to the input. It satisfies two
7
+ key axioms:
8
+ - Sensitivity: If a feature differs between input and baseline and changes
9
+ the prediction, it receives non-zero attribution.
10
+ - Implementation Invariance: Attributions are identical for functionally
11
+ equivalent networks.
12
+
13
+ Reference:
14
+ Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic Attribution for
15
+ Deep Networks. ICML 2017. https://arxiv.org/abs/1703.01365
16
+
17
+ Example:
18
+ from explainiverse.explainers.gradient import IntegratedGradientsExplainer
19
+ from explainiverse.adapters import PyTorchAdapter
20
+
21
+ adapter = PyTorchAdapter(model, task="classification")
22
+
23
+ explainer = IntegratedGradientsExplainer(
24
+ model=adapter,
25
+ feature_names=feature_names,
26
+ n_steps=50
27
+ )
28
+
29
+ explanation = explainer.explain(instance)
30
+ """
31
+
32
+ import numpy as np
33
+ from typing import List, Optional, Union, Callable
34
+
35
+ from explainiverse.core.explainer import BaseExplainer
36
+ from explainiverse.core.explanation import Explanation
37
+
38
+
39
+ class IntegratedGradientsExplainer(BaseExplainer):
40
+ """
41
+ Integrated Gradients explainer for neural networks.
42
+
43
+ Computes attributions by integrating gradients along the path from
44
+ a baseline (default: zero vector) to the input. The integral is
45
+ approximated using the Riemann sum.
46
+
47
+ Attributes:
48
+ model: Model adapter with predict_with_gradients() method
49
+ feature_names: List of feature names
50
+ class_names: List of class names (for classification)
51
+ n_steps: Number of steps for integral approximation
52
+ baseline: Baseline input (default: zeros)
53
+ method: Integration method ("riemann_middle", "riemann_left", "riemann_right", "riemann_trapezoid")
54
+ """
55
+
56
+ def __init__(
57
+ self,
58
+ model,
59
+ feature_names: List[str],
60
+ class_names: Optional[List[str]] = None,
61
+ n_steps: int = 50,
62
+ baseline: Optional[np.ndarray] = None,
63
+ method: str = "riemann_middle"
64
+ ):
65
+ """
66
+ Initialize the Integrated Gradients explainer.
67
+
68
+ Args:
69
+ model: A model adapter with predict_with_gradients() method.
70
+ Use PyTorchAdapter for PyTorch models.
71
+ feature_names: List of input feature names.
72
+ class_names: List of class names (for classification tasks).
73
+ n_steps: Number of steps for approximating the integral.
74
+ More steps = more accurate but slower. Default: 50.
75
+ baseline: Baseline input for comparison. If None, uses zeros.
76
+ Can also be "random" for random baseline or a callable.
77
+ method: Integration method:
78
+ - "riemann_middle": Middle Riemann sum (default, most accurate)
79
+ - "riemann_left": Left Riemann sum
80
+ - "riemann_right": Right Riemann sum
81
+ - "riemann_trapezoid": Trapezoidal rule
82
+ """
83
+ super().__init__(model)
84
+
85
+ # Validate model has gradient capability
86
+ if not hasattr(model, 'predict_with_gradients'):
87
+ raise TypeError(
88
+ "Model adapter must have predict_with_gradients() method. "
89
+ "Use PyTorchAdapter for PyTorch models."
90
+ )
91
+
92
+ self.feature_names = list(feature_names)
93
+ self.class_names = list(class_names) if class_names else None
94
+ self.n_steps = n_steps
95
+ self.baseline = baseline
96
+ self.method = method
97
+
98
+ def _get_baseline(self, instance: np.ndarray) -> np.ndarray:
99
+ """Get the baseline for a given input shape."""
100
+ if self.baseline is None:
101
+ # Default: zero baseline
102
+ return np.zeros_like(instance)
103
+ elif isinstance(self.baseline, str) and self.baseline == "random":
104
+ # Random baseline (useful for images)
105
+ return np.random.uniform(
106
+ low=instance.min(),
107
+ high=instance.max(),
108
+ size=instance.shape
109
+ ).astype(instance.dtype)
110
+ elif callable(self.baseline):
111
+ return self.baseline(instance)
112
+ else:
113
+ return np.array(self.baseline).reshape(instance.shape)
114
+
115
+ def _get_interpolation_alphas(self) -> np.ndarray:
116
+ """Get interpolation points based on method."""
117
+ if self.method == "riemann_left":
118
+ return np.linspace(0, 1 - 1/self.n_steps, self.n_steps)
119
+ elif self.method == "riemann_right":
120
+ return np.linspace(1/self.n_steps, 1, self.n_steps)
121
+ elif self.method == "riemann_middle":
122
+ return np.linspace(0.5/self.n_steps, 1 - 0.5/self.n_steps, self.n_steps)
123
+ elif self.method == "riemann_trapezoid":
124
+ return np.linspace(0, 1, self.n_steps + 1)
125
+ else:
126
+ raise ValueError(f"Unknown method: {self.method}")
127
+
128
+ def _compute_integrated_gradients(
129
+ self,
130
+ instance: np.ndarray,
131
+ baseline: np.ndarray,
132
+ target_class: Optional[int] = None
133
+ ) -> np.ndarray:
134
+ """
135
+ Compute integrated gradients for a single instance.
136
+
137
+ The integral is approximated as:
138
+ IG_i = (x_i - x'_i) * sum_{k=1}^{m} grad_i(x' + k/m * (x - x')) / m
139
+
140
+ where x is the input, x' is the baseline, and m is n_steps.
141
+ """
142
+ # Get interpolation points
143
+ alphas = self._get_interpolation_alphas()
144
+
145
+ # Compute path from baseline to input
146
+ # Shape: (n_steps, n_features)
147
+ delta = instance - baseline
148
+ interpolated_inputs = baseline + alphas[:, np.newaxis] * delta
149
+
150
+ # Compute gradients at each interpolation point
151
+ all_gradients = []
152
+ for interp_input in interpolated_inputs:
153
+ _, gradients = self.model.predict_with_gradients(
154
+ interp_input.reshape(1, -1),
155
+ target_class=target_class
156
+ )
157
+ all_gradients.append(gradients.flatten())
158
+
159
+ all_gradients = np.array(all_gradients) # Shape: (n_steps, n_features)
160
+
161
+ # Approximate the integral
162
+ if self.method == "riemann_trapezoid":
163
+ # Trapezoidal rule: (f(0) + 2*f(1) + ... + 2*f(n-1) + f(n)) / (2n)
164
+ weights = np.ones(self.n_steps + 1)
165
+ weights[0] = 0.5
166
+ weights[-1] = 0.5
167
+ avg_gradients = np.average(all_gradients, axis=0, weights=weights)
168
+ else:
169
+ # Standard Riemann sum: average of gradients
170
+ avg_gradients = np.mean(all_gradients, axis=0)
171
+
172
+ # Scale by input - baseline difference
173
+ integrated_gradients = delta * avg_gradients
174
+
175
+ return integrated_gradients
176
+
177
+ def explain(
178
+ self,
179
+ instance: np.ndarray,
180
+ target_class: Optional[int] = None,
181
+ baseline: Optional[np.ndarray] = None,
182
+ return_convergence_delta: bool = False
183
+ ) -> Explanation:
184
+ """
185
+ Generate Integrated Gradients explanation for an instance.
186
+
187
+ Args:
188
+ instance: 1D numpy array of input features.
189
+ target_class: For classification, which class to explain.
190
+ If None, uses the predicted class.
191
+ baseline: Override the default baseline for this explanation.
192
+ return_convergence_delta: If True, include the convergence delta
193
+ (difference between sum of attributions
194
+ and prediction difference).
195
+
196
+ Returns:
197
+ Explanation object with feature attributions.
198
+ """
199
+ instance = np.array(instance).flatten().astype(np.float32)
200
+
201
+ # Get baseline
202
+ if baseline is not None:
203
+ bl = np.array(baseline).flatten().astype(np.float32)
204
+ else:
205
+ bl = self._get_baseline(instance)
206
+
207
+ # Determine target class if not specified
208
+ if target_class is None and self.class_names:
209
+ predictions = self.model.predict(instance.reshape(1, -1))
210
+ target_class = int(np.argmax(predictions))
211
+
212
+ # Compute integrated gradients
213
+ ig_attributions = self._compute_integrated_gradients(
214
+ instance, bl, target_class
215
+ )
216
+
217
+ # Build attributions dict
218
+ attributions = {
219
+ fname: float(ig_attributions[i])
220
+ for i, fname in enumerate(self.feature_names)
221
+ }
222
+
223
+ # Determine class name
224
+ if self.class_names and target_class is not None:
225
+ label_name = self.class_names[target_class]
226
+ else:
227
+ label_name = f"class_{target_class}" if target_class is not None else "output"
228
+
229
+ explanation_data = {
230
+ "feature_attributions": attributions,
231
+ "attributions_raw": ig_attributions.tolist(),
232
+ "baseline": bl.tolist(),
233
+ "n_steps": self.n_steps,
234
+ "method": self.method
235
+ }
236
+
237
+ # Optionally compute convergence delta
238
+ if return_convergence_delta:
239
+ # The sum of attributions should equal F(x) - F(baseline)
240
+ pred_input = self.model.predict(instance.reshape(1, -1))
241
+ pred_baseline = self.model.predict(bl.reshape(1, -1))
242
+
243
+ if target_class is not None:
244
+ pred_diff = pred_input[0, target_class] - pred_baseline[0, target_class]
245
+ else:
246
+ pred_diff = pred_input[0, 0] - pred_baseline[0, 0]
247
+
248
+ attribution_sum = np.sum(ig_attributions)
249
+ convergence_delta = abs(pred_diff - attribution_sum)
250
+
251
+ explanation_data["convergence_delta"] = float(convergence_delta)
252
+ explanation_data["prediction_difference"] = float(pred_diff)
253
+ explanation_data["attribution_sum"] = float(attribution_sum)
254
+
255
+ return Explanation(
256
+ explainer_name="IntegratedGradients",
257
+ target_class=label_name,
258
+ explanation_data=explanation_data
259
+ )
260
+
261
+ def explain_batch(
262
+ self,
263
+ X: np.ndarray,
264
+ target_class: Optional[int] = None
265
+ ) -> List[Explanation]:
266
+ """
267
+ Generate explanations for multiple instances.
268
+
269
+ Note: This is not optimized for batching - it processes
270
+ instances sequentially. For large batches, consider using
271
+ the batched gradient computation in a custom implementation.
272
+
273
+ Args:
274
+ X: 2D numpy array of instances (n_samples, n_features).
275
+ target_class: Target class for all instances.
276
+
277
+ Returns:
278
+ List of Explanation objects.
279
+ """
280
+ X = np.array(X)
281
+ if X.ndim == 1:
282
+ X = X.reshape(1, -1)
283
+
284
+ return [
285
+ self.explain(X[i], target_class=target_class)
286
+ for i in range(X.shape[0])
287
+ ]
288
+
289
+ def compute_attributions_with_noise(
290
+ self,
291
+ instance: np.ndarray,
292
+ target_class: Optional[int] = None,
293
+ n_samples: int = 5,
294
+ noise_scale: float = 0.1
295
+ ) -> Explanation:
296
+ """
297
+ Compute attributions averaged over noisy baselines (SmoothGrad-style).
298
+
299
+ This can help reduce noise in the attributions by averaging over
300
+ multiple baselines sampled around the zero baseline.
301
+
302
+ Args:
303
+ instance: Input instance.
304
+ target_class: Target class for attribution.
305
+ n_samples: Number of noisy baselines to average.
306
+ noise_scale: Standard deviation of Gaussian noise.
307
+
308
+ Returns:
309
+ Explanation with averaged attributions.
310
+ """
311
+ instance = np.array(instance).flatten().astype(np.float32)
312
+
313
+ all_attributions = []
314
+ for _ in range(n_samples):
315
+ # Create noisy baseline
316
+ noise = np.random.normal(0, noise_scale, instance.shape).astype(np.float32)
317
+ noisy_baseline = noise # Noise around zero
318
+
319
+ ig = self._compute_integrated_gradients(
320
+ instance, noisy_baseline, target_class
321
+ )
322
+ all_attributions.append(ig)
323
+
324
+ # Average attributions
325
+ avg_attributions = np.mean(all_attributions, axis=0)
326
+ std_attributions = np.std(all_attributions, axis=0)
327
+
328
+ attributions = {
329
+ fname: float(avg_attributions[i])
330
+ for i, fname in enumerate(self.feature_names)
331
+ }
332
+
333
+ if self.class_names and target_class is not None:
334
+ label_name = self.class_names[target_class]
335
+ else:
336
+ label_name = f"class_{target_class}" if target_class is not None else "output"
337
+
338
+ return Explanation(
339
+ explainer_name="IntegratedGradients_Smooth",
340
+ target_class=label_name,
341
+ explanation_data={
342
+ "feature_attributions": attributions,
343
+ "attributions_raw": avg_attributions.tolist(),
344
+ "attributions_std": std_attributions.tolist(),
345
+ "n_samples": n_samples,
346
+ "noise_scale": noise_scale
347
+ }
348
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: explainiverse
3
- Version: 0.2.2
3
+ Version: 0.2.3
4
4
  Summary: Unified, extensible explainability framework supporting LIME, SHAP, Anchors, Counterfactuals, PDP, ALE, SAGE, and more
5
5
  Home-page: https://github.com/jemsbhai/explainiverse
6
6
  License: MIT
@@ -31,7 +31,7 @@ Description-Content-Type: text/markdown
31
31
  # Explainiverse
32
32
 
33
33
  **Explainiverse** is a unified, extensible Python framework for Explainable AI (XAI).
34
- It provides a standardized interface for model-agnostic explainability with 9 state-of-the-art XAI methods, evaluation metrics, and a plugin registry for easy extensibility.
34
+ It provides a standardized interface for model-agnostic explainability with 10 state-of-the-art XAI methods, evaluation metrics, and a plugin registry for easy extensibility.
35
35
 
36
36
  ---
37
37
 
@@ -43,6 +43,7 @@ It provides a standardized interface for model-agnostic explainability with 9 st
43
43
  - **LIME** - Local Interpretable Model-agnostic Explanations ([Ribeiro et al., 2016](https://arxiv.org/abs/1602.04938))
44
44
  - **SHAP** - SHapley Additive exPlanations via KernelSHAP ([Lundberg & Lee, 2017](https://arxiv.org/abs/1705.07874))
45
45
  - **TreeSHAP** - Exact SHAP values for tree models, 10x+ faster ([Lundberg et al., 2018](https://arxiv.org/abs/1802.03888))
46
+ - **Integrated Gradients** - Axiomatic attributions for neural networks ([Sundararajan et al., 2017](https://arxiv.org/abs/1703.01365))
46
47
  - **Anchors** - High-precision rule-based explanations ([Ribeiro et al., 2018](https://ojs.aaai.org/index.php/AAAI/article/view/11491))
47
48
  - **Counterfactual** - DiCE-style diverse counterfactual explanations ([Mothilal et al., 2020](https://arxiv.org/abs/1905.07697))
48
49
 
@@ -109,7 +110,7 @@ adapter = SklearnAdapter(model, class_names=iris.target_names.tolist())
109
110
 
110
111
  # List available explainers
111
112
  print(default_registry.list_explainers())
112
- # ['lime', 'shap', 'treeshap', 'anchors', 'counterfactual', 'permutation_importance', 'partial_dependence', 'ale', 'sage']
113
+ # ['lime', 'shap', 'treeshap', 'integrated_gradients', 'anchors', 'counterfactual', 'permutation_importance', 'partial_dependence', 'ale', 'sage']
113
114
 
114
115
  # Create and use an explainer
115
116
  explainer = default_registry.create(
@@ -128,7 +129,7 @@ print(explanation.explanation_data["feature_attributions"])
128
129
  ```python
129
130
  # Find local explainers for tabular data
130
131
  local_tabular = default_registry.filter(scope="local", data_type="tabular")
131
- print(local_tabular) # ['lime', 'shap', 'treeshap', 'anchors', 'counterfactual']
132
+ print(local_tabular) # ['lime', 'shap', 'treeshap', 'integrated_gradients', 'anchors', 'counterfactual']
132
133
 
133
134
  # Find explainers optimized for tree models
134
135
  tree_explainers = default_registry.filter(model_type="tree")
@@ -200,6 +201,32 @@ predictions, gradients = adapter.predict_with_gradients(X)
200
201
  activations = adapter.get_layer_output(X, layer_name="0")
201
202
  ```
202
203
 
204
+ ### Integrated Gradients for Neural Networks
205
+
206
+ ```python
207
+ from explainiverse.explainers import IntegratedGradientsExplainer
208
+ from explainiverse import PyTorchAdapter
209
+
210
+ # Wrap your PyTorch model
211
+ adapter = PyTorchAdapter(model, task="classification", class_names=class_names)
212
+
213
+ # Create IG explainer
214
+ explainer = IntegratedGradientsExplainer(
215
+ model=adapter,
216
+ feature_names=feature_names,
217
+ class_names=class_names,
218
+ n_steps=50 # More steps = more accurate
219
+ )
220
+
221
+ # Explain a prediction
222
+ explanation = explainer.explain(X_test[0])
223
+ print(explanation.explanation_data["feature_attributions"])
224
+
225
+ # Check convergence (sum of attributions ≈ F(x) - F(baseline))
226
+ explanation = explainer.explain(X_test[0], return_convergence_delta=True)
227
+ print(f"Convergence delta: {explanation.explanation_data['convergence_delta']}")
228
+ ```
229
+
203
230
  ### Using Specific Explainers
204
231
 
205
232
  ```python
@@ -300,12 +327,12 @@ poetry run pytest tests/test_new_explainers.py -v
300
327
  ## Roadmap
301
328
 
302
329
  - [x] LIME, SHAP (KernelSHAP)
303
- - [x] TreeSHAP (optimized for tree models) ✅ NEW
330
+ - [x] TreeSHAP (optimized for tree models) ✅
304
331
  - [x] Anchors, Counterfactuals
305
332
  - [x] Permutation Importance, PDP, ALE, SAGE
306
333
  - [x] Explainer Registry with filtering
307
- - [x] PyTorch Adapter ✅ NEW
308
- - [ ] Integrated Gradients (gradient-based for neural nets)
334
+ - [x] PyTorch Adapter ✅
335
+ - [x] Integrated Gradients NEW
309
336
  - [ ] GradCAM for CNNs
310
337
  - [ ] TensorFlow adapter
311
338
  - [ ] Interactive visualization dashboard
@@ -1,4 +1,4 @@
1
- explainiverse/__init__.py,sha256=-4H6WbfGwpeoNpO9w0CEahKQBPsvIYe_lK5e10cZWD0,1612
1
+ explainiverse/__init__.py,sha256=NmrLPOGZZPZTq1vY0G4gid5ZJWxsVGd3CfTXVIDvjaQ,1612
2
2
  explainiverse/adapters/__init__.py,sha256=HcQGISyp-YQ4jEj2IYveX_c9X5otLcTNWRnVRRhzRik,781
3
3
  explainiverse/adapters/base_adapter.py,sha256=Nqt0GeDn_-PjTyJcZsE8dRTulavqFQsv8sMYWS_ps-M,603
4
4
  explainiverse/adapters/pytorch_adapter.py,sha256=GTilJAR1VF_OgWG88qZoqlqefHaSXB3i9iOwCJkyHTg,13318
@@ -6,12 +6,12 @@ explainiverse/adapters/sklearn_adapter.py,sha256=pzIBtMuqrG-6ZbUqUCMt7rSk3Ow0Fgr
6
6
  explainiverse/core/__init__.py,sha256=P3jHMnH5coFqTTO1w-gT-rurkCM1-9r3pF-055pbXMg,474
7
7
  explainiverse/core/explainer.py,sha256=Z9on-9VblYDlQx9oBm1BHpmAf_NsQajZ3qr-u48Aejo,784
8
8
  explainiverse/core/explanation.py,sha256=6zxFh_TH8tFHc-r_H5-WHQ05Sp1Kp2TxLz3gyFek5jo,881
9
- explainiverse/core/registry.py,sha256=_BXWi1fJY3cGjYA1Xn1DwvY91jbpJrpX6_8EVzrRT20,19876
9
+ explainiverse/core/registry.py,sha256=AC8XDIdX2IGyx0KkmDajAjdo5YsrM3dcKvYoQu1vNCk,20711
10
10
  explainiverse/engine/__init__.py,sha256=1sZO8nH1mmwK2e-KUavBQm7zYDWUe27nyWoFy9tgsiA,197
11
11
  explainiverse/engine/suite.py,sha256=sq8SK_6Pf0qRckTmVJ7Mdosu9bhkjAGPGN8ymLGFP9E,4914
12
12
  explainiverse/evaluation/__init__.py,sha256=Y50L_b4HKthg4epwcayPHXh0l4i4MUuzvaNlqPmUNZY,212
13
13
  explainiverse/evaluation/metrics.py,sha256=tSBXtyA_-0zOGCGjlPZU6LdGKRH_QpWfgKa78sdlovs,7453
14
- explainiverse/explainers/__init__.py,sha256=Op-Z_BTJ7BdqA_9gTnruomN2-rKtrkPCt1Zq1iCzxr0,1758
14
+ explainiverse/explainers/__init__.py,sha256=3yhamu1E2hpb0vE_hg3xK621YJdZYcy7gsSGgCT4Km4,1962
15
15
  explainiverse/explainers/attribution/__init__.py,sha256=YeVs9bS_IWDtqGbp6T37V6Zp5ZDWzLdAXHxxyFGpiQM,431
16
16
  explainiverse/explainers/attribution/lime_wrapper.py,sha256=OnXIV7t6yd-vt38sIi7XmHFbgzlZfCEbRlFyGGd5XiE,3245
17
17
  explainiverse/explainers/attribution/shap_wrapper.py,sha256=tKie5AvN7mb55PWOYdMvW0lUAYjfHPzYosEloEY2ZzI,3210
@@ -23,9 +23,11 @@ explainiverse/explainers/global_explainers/ale.py,sha256=tgG3XTppCf8LiD7uKzBt4DI
23
23
  explainiverse/explainers/global_explainers/partial_dependence.py,sha256=dH6yMjpwZads3pACR3rSykTbssLGHH7e6HfMlpl-S3I,6745
24
24
  explainiverse/explainers/global_explainers/permutation_importance.py,sha256=bcgKz1S_D3lrBMgpqEF_Z6qw8Knxl_cfR50hrSO2tBc,4410
25
25
  explainiverse/explainers/global_explainers/sage.py,sha256=57Xw1SK529x5JXWt0TVrcFYUUP3C65LfUwgoM-Z3gaw,5839
26
+ explainiverse/explainers/gradient/__init__.py,sha256=Z4uSZcBhnHGp7DCd7bhcIMj_3f_uuCFw5AGA1JX6myQ,350
27
+ explainiverse/explainers/gradient/integrated_gradients.py,sha256=feBgY3Vw2rDti7fxRZtLkxse75m2dbP_R05ARqo2BRM,13367
26
28
  explainiverse/explainers/rule_based/__init__.py,sha256=gKzlFCAzwurAMLJcuYgal4XhDj1thteBGcaHWmN7iWk,243
27
29
  explainiverse/explainers/rule_based/anchors_wrapper.py,sha256=ML7W6aam-eMGZHy5ilol8qupZvNBJpYAFatEEPnuMyo,13254
28
- explainiverse-0.2.2.dist-info/LICENSE,sha256=28rbHe8rJgmUlRdxJACfq1Sj-MtCEhyHxkJedQd1ZYA,1070
29
- explainiverse-0.2.2.dist-info/METADATA,sha256=kis3ejJCLRhBJWf5p13FzY2ZeSbnWfJxk6LS1hd7A1w,9497
30
- explainiverse-0.2.2.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
31
- explainiverse-0.2.2.dist-info/RECORD,,
30
+ explainiverse-0.2.3.dist-info/LICENSE,sha256=28rbHe8rJgmUlRdxJACfq1Sj-MtCEhyHxkJedQd1ZYA,1070
31
+ explainiverse-0.2.3.dist-info/METADATA,sha256=TGuHUB9HZEcTbkQ7vmXl6ygm9arV5tlzufCHMoFqmdk,10465
32
+ explainiverse-0.2.3.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
33
+ explainiverse-0.2.3.dist-info/RECORD,,