evalscope 1.0.0__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (324) hide show
  1. evalscope/api/benchmark/__init__.py +9 -1
  2. evalscope/api/benchmark/adapters/__init__.py +4 -0
  3. evalscope/api/benchmark/adapters/agent_adapter.py +8 -0
  4. evalscope/api/benchmark/adapters/default_data_adapter.py +75 -4
  5. evalscope/api/benchmark/adapters/image_edit_adapter.py +82 -0
  6. evalscope/api/benchmark/adapters/multi_choice_adapter.py +5 -2
  7. evalscope/api/benchmark/adapters/ner_adapter.py +212 -0
  8. evalscope/api/benchmark/adapters/text2image_adapter.py +12 -10
  9. evalscope/api/benchmark/adapters/vision_language_adapter.py +8 -0
  10. evalscope/api/benchmark/benchmark.py +85 -2
  11. evalscope/api/benchmark/meta.py +10 -1
  12. evalscope/api/dataset/dataset.py +27 -6
  13. evalscope/api/dataset/loader.py +8 -3
  14. evalscope/api/evaluator/cache.py +31 -4
  15. evalscope/api/evaluator/evaluator.py +5 -0
  16. evalscope/api/evaluator/state.py +17 -1
  17. evalscope/api/messages/__init__.py +1 -0
  18. evalscope/api/messages/chat_message.py +52 -2
  19. evalscope/api/metric/__init__.py +1 -1
  20. evalscope/api/metric/metric.py +6 -1
  21. evalscope/api/metric/scorer.py +15 -7
  22. evalscope/api/mixin/__init__.py +1 -1
  23. evalscope/api/mixin/llm_judge_mixin.py +2 -0
  24. evalscope/api/mixin/sandbox_mixin.py +182 -0
  25. evalscope/api/model/generate_config.py +10 -6
  26. evalscope/api/model/model.py +5 -2
  27. evalscope/api/tool/tool_info.py +1 -1
  28. evalscope/app/app.py +3 -0
  29. evalscope/app/ui/multi_model.py +6 -1
  30. evalscope/app/ui/single_model.py +11 -5
  31. evalscope/app/utils/data_utils.py +8 -7
  32. evalscope/app/utils/env_utils.py +12 -0
  33. evalscope/app/utils/text_utils.py +14 -12
  34. evalscope/app/utils/visualization.py +2 -2
  35. evalscope/arguments.py +8 -4
  36. evalscope/backend/opencompass/backend_manager.py +0 -2
  37. evalscope/backend/rag_eval/utils/embedding.py +9 -1
  38. evalscope/benchmarks/aa_lcr/aa_lcr_adapter.py +205 -0
  39. evalscope/benchmarks/ai2d/ai2d_adapter.py +54 -0
  40. evalscope/benchmarks/aime/aime24_adapter.py +5 -0
  41. evalscope/benchmarks/aime/aime25_adapter.py +136 -1
  42. evalscope/benchmarks/aime/grader.py +307 -0
  43. evalscope/benchmarks/aime/math_normalize.py +189 -0
  44. evalscope/benchmarks/amc/amc_adapter.py +51 -0
  45. evalscope/benchmarks/arena_hard/arena_hard_adapter.py +1 -0
  46. evalscope/benchmarks/bbh/bbh_adapter.py +43 -17
  47. evalscope/benchmarks/bfcl/{bfcl_adapter.py → v3/bfcl_v3_adapter.py} +131 -19
  48. evalscope/benchmarks/bfcl/{generation.py → v3/generation.py} +9 -9
  49. evalscope/benchmarks/bfcl/v3/utils.py +23 -0
  50. evalscope/benchmarks/bfcl/v4/__init__.py +0 -0
  51. evalscope/benchmarks/bfcl/v4/bfcl_v4_adapter.py +229 -0
  52. evalscope/benchmarks/bfcl/v4/utils.py +410 -0
  53. evalscope/benchmarks/biomix_qa/__init__.py +0 -0
  54. evalscope/benchmarks/biomix_qa/biomix_qa_adapter.py +36 -0
  55. evalscope/benchmarks/blink/__init__.py +0 -0
  56. evalscope/benchmarks/blink/blink_adapter.py +61 -0
  57. evalscope/benchmarks/ceval/ceval_adapter.py +1 -2
  58. evalscope/benchmarks/chartqa/__init__.py +0 -0
  59. evalscope/benchmarks/chartqa/chartqa_adapter.py +80 -0
  60. evalscope/benchmarks/chartqa/utils.py +38 -0
  61. evalscope/benchmarks/coin_flip/__init__.py +0 -0
  62. evalscope/benchmarks/coin_flip/coin_flip_adapter.py +128 -0
  63. evalscope/benchmarks/commonsense_qa/__init__.py +0 -0
  64. evalscope/benchmarks/commonsense_qa/commonsense_qa_adapter.py +32 -0
  65. evalscope/benchmarks/competition_math/competition_math_adapter.py +5 -0
  66. evalscope/benchmarks/data_collection/data_collection_adapter.py +24 -19
  67. evalscope/benchmarks/docvqa/__init__.py +0 -0
  68. evalscope/benchmarks/docvqa/docvqa_adapter.py +67 -0
  69. evalscope/benchmarks/drivelology/__init__.py +0 -0
  70. evalscope/benchmarks/drivelology/drivelology_binary_adapter.py +170 -0
  71. evalscope/benchmarks/drivelology/drivelology_multilabel_adapter.py +254 -0
  72. evalscope/benchmarks/drivelology/drivelology_selection_adapter.py +49 -0
  73. evalscope/benchmarks/drivelology/drivelology_writing_adapter.py +218 -0
  74. evalscope/benchmarks/drop/drop_adapter.py +15 -44
  75. evalscope/benchmarks/drop/utils.py +97 -0
  76. evalscope/benchmarks/frames/frames_adapter.py +2 -1
  77. evalscope/benchmarks/general_arena/general_arena_adapter.py +7 -2
  78. evalscope/benchmarks/general_arena/utils.py +2 -1
  79. evalscope/benchmarks/general_mcq/general_mcq_adapter.py +1 -1
  80. evalscope/benchmarks/general_qa/general_qa_adapter.py +1 -1
  81. evalscope/benchmarks/gsm8k/gsm8k_adapter.py +25 -9
  82. evalscope/benchmarks/hallusion_bench/__init__.py +0 -0
  83. evalscope/benchmarks/hallusion_bench/hallusion_bench_adapter.py +159 -0
  84. evalscope/benchmarks/halu_eval/__init__.py +0 -0
  85. evalscope/benchmarks/halu_eval/halu_eval_adapter.py +128 -0
  86. evalscope/benchmarks/halu_eval/halu_eval_instructions.py +84 -0
  87. evalscope/benchmarks/healthbench/__init__.py +0 -0
  88. evalscope/benchmarks/healthbench/healthbench_adapter.py +282 -0
  89. evalscope/benchmarks/healthbench/utils.py +102 -0
  90. evalscope/benchmarks/hle/hle_adapter.py +3 -2
  91. evalscope/benchmarks/humaneval/humaneval_adapter.py +24 -52
  92. evalscope/benchmarks/humaneval/utils.py +235 -0
  93. evalscope/benchmarks/ifeval/instructions_util.py +2 -3
  94. evalscope/benchmarks/image_edit/__init__.py +0 -0
  95. evalscope/benchmarks/image_edit/gedit/__init__.py +0 -0
  96. evalscope/benchmarks/image_edit/gedit/gedit_adapter.py +138 -0
  97. evalscope/benchmarks/image_edit/gedit/utils.py +372 -0
  98. evalscope/benchmarks/image_edit/gedit/vie_prompts.py +406 -0
  99. evalscope/benchmarks/infovqa/__init__.py +0 -0
  100. evalscope/benchmarks/infovqa/infovqa_adapter.py +66 -0
  101. evalscope/benchmarks/live_code_bench/evaluate_utils.py +13 -6
  102. evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +66 -54
  103. evalscope/benchmarks/live_code_bench/sandbox_evaluate_utils.py +220 -0
  104. evalscope/benchmarks/logi_qa/__int__.py +0 -0
  105. evalscope/benchmarks/logi_qa/logi_qa_adapter.py +41 -0
  106. evalscope/benchmarks/math_500/math_500_adapter.py +5 -1
  107. evalscope/benchmarks/math_qa/__init__.py +0 -0
  108. evalscope/benchmarks/math_qa/math_qa_adapter.py +35 -0
  109. evalscope/benchmarks/math_verse/__init__.py +0 -0
  110. evalscope/benchmarks/math_verse/math_verse_adapter.py +105 -0
  111. evalscope/benchmarks/math_vision/__init__.py +0 -0
  112. evalscope/benchmarks/math_vision/math_vision_adapter.py +116 -0
  113. evalscope/benchmarks/math_vista/__init__.py +0 -0
  114. evalscope/benchmarks/math_vista/math_vista_adapter.py +114 -0
  115. evalscope/benchmarks/med_mcqa/__init__.py +0 -0
  116. evalscope/benchmarks/med_mcqa/med_mcqa_adapter.py +32 -0
  117. evalscope/benchmarks/minerva_math/__init__.py +0 -0
  118. evalscope/benchmarks/minerva_math/minerva_math_adapter.py +53 -0
  119. evalscope/benchmarks/mm_bench/__init__.py +0 -0
  120. evalscope/benchmarks/mm_bench/mm_bench_adapter.py +99 -0
  121. evalscope/benchmarks/mm_star/__init__.py +0 -0
  122. evalscope/benchmarks/mm_star/mm_star_adapter.py +73 -0
  123. evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +1 -1
  124. evalscope/benchmarks/mmmu/__init__.py +0 -0
  125. evalscope/benchmarks/mmmu/mmmu_adapter.py +159 -0
  126. evalscope/benchmarks/mmmu_pro/__init__.py +0 -0
  127. evalscope/benchmarks/mmmu_pro/mmmu_pro_adapter.py +124 -0
  128. evalscope/benchmarks/mri_mcqa/__init__.py +0 -0
  129. evalscope/benchmarks/mri_mcqa/mri_mcqa_adapter.py +34 -0
  130. evalscope/benchmarks/multi_if/__init__.py +0 -0
  131. evalscope/benchmarks/multi_if/ifeval.py +3354 -0
  132. evalscope/benchmarks/multi_if/metrics.py +120 -0
  133. evalscope/benchmarks/multi_if/multi_if_adapter.py +161 -0
  134. evalscope/benchmarks/music_trivia/__init__.py +0 -0
  135. evalscope/benchmarks/music_trivia/music_trivia_adapter.py +36 -0
  136. evalscope/benchmarks/needle_haystack/needle_haystack_adapter.py +7 -6
  137. evalscope/benchmarks/ner/__init__.py +0 -0
  138. evalscope/benchmarks/ner/broad_twitter_corpus_adapter.py +52 -0
  139. evalscope/benchmarks/ner/conll2003_adapter.py +48 -0
  140. evalscope/benchmarks/ner/copious_adapter.py +85 -0
  141. evalscope/benchmarks/ner/cross_ner_adapter.py +120 -0
  142. evalscope/benchmarks/ner/cross_ner_entities/__init__.py +0 -0
  143. evalscope/benchmarks/ner/cross_ner_entities/ai.py +54 -0
  144. evalscope/benchmarks/ner/cross_ner_entities/literature.py +36 -0
  145. evalscope/benchmarks/ner/cross_ner_entities/music.py +39 -0
  146. evalscope/benchmarks/ner/cross_ner_entities/politics.py +37 -0
  147. evalscope/benchmarks/ner/cross_ner_entities/science.py +58 -0
  148. evalscope/benchmarks/ner/genia_ner_adapter.py +66 -0
  149. evalscope/benchmarks/ner/harvey_ner_adapter.py +58 -0
  150. evalscope/benchmarks/ner/mit_movie_trivia_adapter.py +74 -0
  151. evalscope/benchmarks/ner/mit_restaurant_adapter.py +66 -0
  152. evalscope/benchmarks/ner/ontonotes5_adapter.py +87 -0
  153. evalscope/benchmarks/ner/wnut2017_adapter.py +61 -0
  154. evalscope/benchmarks/ocr_bench/__init__.py +0 -0
  155. evalscope/benchmarks/ocr_bench/ocr_bench/__init__.py +0 -0
  156. evalscope/benchmarks/ocr_bench/ocr_bench/ocr_bench_adapter.py +101 -0
  157. evalscope/benchmarks/ocr_bench/ocr_bench_v2/IoUscore_metric.py +87 -0
  158. evalscope/benchmarks/ocr_bench/ocr_bench_v2/TEDS_metric.py +963 -0
  159. evalscope/benchmarks/ocr_bench/ocr_bench_v2/__init__.py +0 -0
  160. evalscope/benchmarks/ocr_bench/ocr_bench_v2/ocr_bench_v2_adapter.py +161 -0
  161. evalscope/benchmarks/ocr_bench/ocr_bench_v2/page_ocr_metric.py +50 -0
  162. evalscope/benchmarks/ocr_bench/ocr_bench_v2/parallel.py +46 -0
  163. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/__init__.py +0 -0
  164. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/readme.txt +26 -0
  165. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/rrc_evaluation_funcs_1_1.py +537 -0
  166. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/script.py +481 -0
  167. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_metric.py +179 -0
  168. evalscope/benchmarks/ocr_bench/ocr_bench_v2/utils.py +433 -0
  169. evalscope/benchmarks/ocr_bench/ocr_bench_v2/vqa_metric.py +254 -0
  170. evalscope/benchmarks/olympiad_bench/__init__.py +0 -0
  171. evalscope/benchmarks/olympiad_bench/olympiad_bench_adapter.py +163 -0
  172. evalscope/benchmarks/olympiad_bench/utils.py +565 -0
  173. evalscope/benchmarks/omni_bench/__init__.py +0 -0
  174. evalscope/benchmarks/omni_bench/omni_bench_adapter.py +86 -0
  175. evalscope/benchmarks/omnidoc_bench/__init__.py +0 -0
  176. evalscope/benchmarks/omnidoc_bench/end2end_eval.py +349 -0
  177. evalscope/benchmarks/omnidoc_bench/metrics.py +547 -0
  178. evalscope/benchmarks/omnidoc_bench/omnidoc_bench_adapter.py +135 -0
  179. evalscope/benchmarks/omnidoc_bench/utils.py +1937 -0
  180. evalscope/benchmarks/piqa/__init__.py +0 -0
  181. evalscope/benchmarks/piqa/piqa_adapter.py +32 -0
  182. evalscope/benchmarks/poly_math/__init__.py +0 -0
  183. evalscope/benchmarks/poly_math/poly_math_adapter.py +132 -0
  184. evalscope/benchmarks/poly_math/utils/instruction.py +105 -0
  185. evalscope/benchmarks/pope/__init__.py +0 -0
  186. evalscope/benchmarks/pope/pope_adapter.py +112 -0
  187. evalscope/benchmarks/process_bench/process_bench_adapter.py +1 -0
  188. evalscope/benchmarks/pumed_qa/__init__.py +0 -0
  189. evalscope/benchmarks/pumed_qa/pubmed_qa_adapter.py +175 -0
  190. evalscope/benchmarks/qasc/__init__.py +0 -0
  191. evalscope/benchmarks/qasc/qasc_adapter.py +35 -0
  192. evalscope/benchmarks/real_world_qa/__init__.py +0 -0
  193. evalscope/benchmarks/real_world_qa/real_world_qa_adapter.py +64 -0
  194. evalscope/benchmarks/sciq/__init__.py +0 -0
  195. evalscope/benchmarks/sciq/sciq_adapter.py +36 -0
  196. evalscope/benchmarks/seed_bench_2_plus/__init__.py +0 -0
  197. evalscope/benchmarks/seed_bench_2_plus/seed_bench_2_plus_adapter.py +72 -0
  198. evalscope/benchmarks/simple_qa/simple_qa_adapter.py +1 -1
  199. evalscope/benchmarks/simple_vqa/__init__.py +0 -0
  200. evalscope/benchmarks/simple_vqa/simple_vqa_adapter.py +169 -0
  201. evalscope/benchmarks/siqa/__init__.py +0 -0
  202. evalscope/benchmarks/siqa/siqa_adapter.py +39 -0
  203. evalscope/benchmarks/tau_bench/tau2_bench/__init__.py +0 -0
  204. evalscope/benchmarks/tau_bench/tau2_bench/generation.py +158 -0
  205. evalscope/benchmarks/tau_bench/tau2_bench/tau2_bench_adapter.py +146 -0
  206. evalscope/benchmarks/tau_bench/tau_bench/__init__.py +0 -0
  207. evalscope/benchmarks/tau_bench/{generation.py → tau_bench/generation.py} +1 -1
  208. evalscope/benchmarks/tau_bench/{tau_bench_adapter.py → tau_bench/tau_bench_adapter.py} +29 -29
  209. evalscope/benchmarks/text2image/__init__.py +0 -0
  210. evalscope/benchmarks/{aigc/t2i → text2image}/evalmuse_adapter.py +3 -1
  211. evalscope/benchmarks/{aigc/t2i → text2image}/genai_bench_adapter.py +2 -2
  212. evalscope/benchmarks/{aigc/t2i → text2image}/general_t2i_adapter.py +1 -1
  213. evalscope/benchmarks/{aigc/t2i → text2image}/hpdv2_adapter.py +7 -2
  214. evalscope/benchmarks/{aigc/t2i → text2image}/tifa_adapter.py +1 -0
  215. evalscope/benchmarks/tool_bench/tool_bench_adapter.py +3 -3
  216. evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +1 -2
  217. evalscope/benchmarks/visu_logic/__init__.py +0 -0
  218. evalscope/benchmarks/visu_logic/visu_logic_adapter.py +75 -0
  219. evalscope/benchmarks/wmt/__init__.py +0 -0
  220. evalscope/benchmarks/wmt/wmt24_adapter.py +294 -0
  221. evalscope/benchmarks/zerobench/__init__.py +0 -0
  222. evalscope/benchmarks/zerobench/zerobench_adapter.py +64 -0
  223. evalscope/cli/start_app.py +7 -1
  224. evalscope/cli/start_perf.py +7 -1
  225. evalscope/config.py +103 -18
  226. evalscope/constants.py +18 -0
  227. evalscope/evaluator/evaluator.py +138 -82
  228. evalscope/metrics/bert_score/__init__.py +0 -0
  229. evalscope/metrics/bert_score/scorer.py +338 -0
  230. evalscope/metrics/bert_score/utils.py +697 -0
  231. evalscope/metrics/llm_judge.py +19 -7
  232. evalscope/metrics/math_parser.py +14 -0
  233. evalscope/metrics/metric.py +317 -13
  234. evalscope/metrics/metrics.py +37 -0
  235. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +0 -0
  236. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +0 -0
  237. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +0 -0
  238. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +0 -0
  239. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +0 -0
  240. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +0 -0
  241. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +0 -0
  242. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +0 -0
  243. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +0 -0
  244. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +0 -0
  245. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +2 -6
  246. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +2 -6
  247. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +2 -6
  248. evalscope/models/image_edit_model.py +125 -0
  249. evalscope/models/model_apis.py +22 -0
  250. evalscope/models/openai_compatible.py +21 -0
  251. evalscope/models/text2image_model.py +2 -2
  252. evalscope/models/utils/openai.py +16 -6
  253. evalscope/perf/arguments.py +26 -4
  254. evalscope/perf/benchmark.py +76 -89
  255. evalscope/perf/http_client.py +31 -16
  256. evalscope/perf/main.py +15 -2
  257. evalscope/perf/plugin/api/base.py +9 -7
  258. evalscope/perf/plugin/api/custom_api.py +13 -58
  259. evalscope/perf/plugin/api/default_api.py +188 -79
  260. evalscope/perf/plugin/api/openai_api.py +85 -20
  261. evalscope/perf/plugin/datasets/base.py +21 -0
  262. evalscope/perf/plugin/datasets/custom.py +2 -3
  263. evalscope/perf/plugin/datasets/flickr8k.py +2 -2
  264. evalscope/perf/plugin/datasets/kontext_bench.py +2 -2
  265. evalscope/perf/plugin/datasets/line_by_line.py +2 -3
  266. evalscope/perf/plugin/datasets/longalpaca.py +2 -3
  267. evalscope/perf/plugin/datasets/openqa.py +2 -4
  268. evalscope/perf/plugin/datasets/random_dataset.py +1 -3
  269. evalscope/perf/plugin/datasets/random_vl_dataset.py +2 -2
  270. evalscope/perf/utils/benchmark_util.py +43 -27
  271. evalscope/perf/utils/db_util.py +14 -19
  272. evalscope/perf/utils/local_server.py +3 -44
  273. evalscope/perf/utils/log_utils.py +21 -6
  274. evalscope/report/__init__.py +13 -3
  275. evalscope/report/combinator.py +91 -20
  276. evalscope/report/generator.py +8 -87
  277. evalscope/report/report.py +8 -4
  278. evalscope/run.py +13 -5
  279. evalscope/third_party/toolbench_static/llm/swift_infer.py +0 -4
  280. evalscope/utils/argument_utils.py +1 -1
  281. evalscope/utils/chat_service.py +1 -1
  282. evalscope/utils/function_utils.py +249 -12
  283. evalscope/utils/import_utils.py +73 -1
  284. evalscope/utils/io_utils.py +132 -7
  285. evalscope/utils/json_schema.py +25 -2
  286. evalscope/utils/logger.py +69 -18
  287. evalscope/utils/model_utils.py +4 -3
  288. evalscope/utils/multi_choices.py +39 -7
  289. evalscope/utils/ner.py +377 -0
  290. evalscope/version.py +2 -2
  291. {evalscope-1.0.0.dist-info → evalscope-1.2.0.dist-info}/METADATA +252 -408
  292. {evalscope-1.0.0.dist-info → evalscope-1.2.0.dist-info}/RECORD +290 -154
  293. {evalscope-1.0.0.dist-info → evalscope-1.2.0.dist-info}/WHEEL +1 -1
  294. {evalscope-1.0.0.dist-info → evalscope-1.2.0.dist-info}/top_level.txt +0 -1
  295. evalscope/api/mixin/dataset_mixin.py +0 -105
  296. evalscope/benchmarks/aigc/i2i/general_i2i_adapter.py +0 -44
  297. tests/__init__.py +0 -1
  298. tests/aigc/__init__.py +0 -1
  299. tests/aigc/test_t2i.py +0 -142
  300. tests/benchmark/__init__.py +0 -1
  301. tests/benchmark/test_eval.py +0 -386
  302. tests/cli/__init__.py +0 -1
  303. tests/cli/test_all.py +0 -229
  304. tests/cli/test_collection.py +0 -96
  305. tests/cli/test_custom.py +0 -268
  306. tests/perf/__init__.py +0 -1
  307. tests/perf/test_perf.py +0 -176
  308. tests/rag/test_clip_benchmark.py +0 -90
  309. tests/rag/test_mteb.py +0 -213
  310. tests/rag/test_ragas.py +0 -128
  311. tests/swift/__init__.py +0 -1
  312. tests/swift/test_run_swift_eval.py +0 -146
  313. tests/swift/test_run_swift_vlm_eval.py +0 -128
  314. tests/swift/test_run_swift_vlm_jugde_eval.py +0 -157
  315. tests/test_run_all.py +0 -12
  316. tests/utils.py +0 -13
  317. tests/vlm/__init__.py +0 -1
  318. tests/vlm/test_vlmeval.py +0 -102
  319. /evalscope/benchmarks/{aigc → aa_lcr}/__init__.py +0 -0
  320. /evalscope/benchmarks/{aigc/i2i → ai2d}/__init__.py +0 -0
  321. /evalscope/benchmarks/{aigc/t2i → amc}/__init__.py +0 -0
  322. {tests/rag → evalscope/benchmarks/bfcl/v3}/__init__.py +0 -0
  323. {evalscope-1.0.0.dist-info → evalscope-1.2.0.dist-info}/entry_points.txt +0 -0
  324. {evalscope-1.0.0.dist-info → evalscope-1.2.0.dist-info/licenses}/LICENSE +0 -0
@@ -0,0 +1,116 @@
1
+ # flake8: noqa: E501
2
+ import re
3
+ from typing import Any, Dict, List
4
+
5
+ from evalscope.api.benchmark import BenchmarkMeta, VisionLanguageAdapter
6
+ from evalscope.api.dataset import Sample
7
+ from evalscope.api.evaluator import TaskState
8
+ from evalscope.api.messages import ChatMessageUser, Content, ContentImage, ContentText
9
+ from evalscope.api.registry import register_benchmark
10
+ from evalscope.constants import Tags
11
+ from evalscope.utils.io_utils import bytes_to_base64
12
+ from evalscope.utils.logger import get_logger
13
+ from evalscope.utils.multi_choices import MultipleChoiceTemplate, parse_answers, prompt
14
+
15
+ logger = get_logger()
16
+
17
+ OPEN_PROMPT = '{question}\nPlease reason step by step, and put your final answer within \\boxed{{}} without units.'
18
+
19
+ MULT_CHOICE_PROMPT = MultipleChoiceTemplate.SINGLE_ANSWER_COT
20
+
21
+ SUBSET_LIST = ['level 1', 'level 2', 'level 3', 'level 4', 'level 5']
22
+
23
+
24
+ @register_benchmark(
25
+ BenchmarkMeta(
26
+ name='math_vision',
27
+ pretty_name='MathVision',
28
+ dataset_id='evalscope/MathVision',
29
+ tags=[Tags.MATH, Tags.REASONING, Tags.MULTIPLE_CHOICE, Tags.MULTI_MODAL],
30
+ description=
31
+ 'The MATH-Vision (MATH-V) dataset, a meticulously curated collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions.',
32
+ subset_list=SUBSET_LIST,
33
+ metric_list=[{
34
+ 'acc': {
35
+ 'numeric': True
36
+ }
37
+ }],
38
+ eval_split='test',
39
+ prompt_template=OPEN_PROMPT,
40
+ )
41
+ )
42
+ class MathVisionAdapter(VisionLanguageAdapter):
43
+
44
+ def __init__(self, **kwargs):
45
+ super().__init__(**kwargs)
46
+ self.reformat_subset = True
47
+
48
+ def record_to_sample(self, record: Dict[str, Any]) -> Sample:
49
+ if len(record['options']) > 0:
50
+ question_type = 'multi_choice'
51
+ else:
52
+ question_type = 'free_form'
53
+ content_list, answers_list = MathVisionAdapter.create_content_and_answers_list(record, question_type)
54
+ metadata = {
55
+ 'id': record['id'],
56
+ 'image': record['image'],
57
+ 'solution': record['solution'],
58
+ 'level': record['level'],
59
+ 'question_type': question_type,
60
+ 'subject': record['subject']
61
+ }
62
+ if question_type == 'multi_choice':
63
+ label_answer = record['answer']
64
+ return Sample(
65
+ input=[ChatMessageUser(content=content_list)],
66
+ choices=answers_list,
67
+ target=label_answer,
68
+ subset_key=f'level {record["level"]}',
69
+ metadata=metadata
70
+ )
71
+ elif question_type == 'free_form':
72
+ return Sample(
73
+ input=[ChatMessageUser(content=content_list)],
74
+ target=record['answer'],
75
+ subset_key=f'level {record["level"]}',
76
+ metadata=metadata
77
+ )
78
+ else:
79
+ raise ValueError(f'Unexpected question_type: {question_type}')
80
+
81
+ @staticmethod
82
+ def create_content_and_answers_list(record: Dict[str, Any], question_type) -> tuple[List[Content], List[str]]:
83
+ """
84
+ Create a list of content elements and a list of answers from a record.
85
+
86
+ Args:
87
+ record (dict): The record containing question, images, and options.
88
+ question_type (str): The type of this question
89
+
90
+
91
+ Returns:
92
+ tuple: A tuple containing:
93
+ - content_list (list): A list of content elements (text and images).
94
+ - answers_list (list): A list of possible answers (for multiple-choice questions).
95
+ """
96
+
97
+ # Replace <image1>, <image2> ... to [image1], [image2], ... from question text
98
+ question = re.sub(r'<image(\d+)>', r'[image\1]', record['question']).strip()
99
+
100
+ if question_type == 'multi_choice':
101
+ answers_list = record['options']
102
+ input_text = prompt(question=question, choices=answers_list, template=MULT_CHOICE_PROMPT)
103
+ content_list: List[Content] = [ContentText(text=input_text)]
104
+ else:
105
+ answers_list: List[str] = []
106
+ content_list: List[Content] = [ContentText(text=OPEN_PROMPT.format(question=question))]
107
+ image = record['decoded_image']
108
+ if image:
109
+ image_base64 = bytes_to_base64(image['bytes'], format='jpg', add_header=True)
110
+ content_list.append(ContentImage(image=image_base64))
111
+ return content_list, answers_list
112
+
113
+ def extract_answer(self, prediction: str, task_state):
114
+ from evalscope.metrics.math_parser import extract_answer
115
+
116
+ return extract_answer(prediction)
File without changes
@@ -0,0 +1,114 @@
1
+ # flake8: noqa: E501
2
+ import re
3
+ from typing import Any, Dict
4
+
5
+ from evalscope.api.benchmark import BenchmarkMeta, VisionLanguageAdapter
6
+ from evalscope.api.dataset import Sample
7
+ from evalscope.api.messages import ChatMessageUser, Content, ContentImage, ContentText
8
+ from evalscope.api.registry import register_benchmark
9
+ from evalscope.constants import Tags
10
+ from evalscope.utils.io_utils import bytes_to_base64
11
+ from evalscope.utils.logger import get_logger
12
+ from evalscope.utils.multi_choices import MultipleChoiceTemplate, parse_answers, prompt
13
+
14
+ logger = get_logger()
15
+
16
+ OPEN_PROMPT = '{question}\nPlease reason step by step, and put your final answer within \\boxed{{}} without units.'
17
+
18
+ MULT_CHOICE_PROMPT = MultipleChoiceTemplate.SINGLE_ANSWER_COT
19
+
20
+ MULTI_CHOICE_TYPE = 'multi_choice'
21
+ OPEN_TYPE = 'free_form'
22
+
23
+
24
+ @register_benchmark(
25
+ BenchmarkMeta(
26
+ name='math_vista',
27
+ pretty_name='MathVista',
28
+ dataset_id='evalscope/MathVista',
29
+ tags=[Tags.MATH, Tags.REASONING, Tags.MULTIPLE_CHOICE, Tags.MULTI_MODAL],
30
+ description=
31
+ 'MathVista is a consolidated Mathematical reasoning benchmark within Visual contexts. It consists of three newly created datasets, IQTest, FunctionQA, and PaperQA, which address the missing visual domains and are tailored to evaluate logical reasoning on puzzle test figures, algebraic reasoning over functional plots, and scientific reasoning with academic paper figures, respectively. It also incorporates 9 MathQA datasets and 19 VQA datasets from the literature, which significantly enrich the diversity and complexity of visual perception and mathematical reasoning challenges within our benchmark. In total, MathVista includes 6,141 examples collected from 31 different datasets.',
32
+ metric_list=[{
33
+ 'acc': {
34
+ 'numeric': True
35
+ }
36
+ }],
37
+ eval_split='testmini',
38
+ prompt_template=OPEN_PROMPT,
39
+ )
40
+ )
41
+ class MathVistaAdapter(VisionLanguageAdapter):
42
+
43
+ def __init__(self, **kwargs):
44
+ super().__init__(**kwargs)
45
+
46
+ def record_to_sample(self, record: Dict[str, Any]) -> Sample:
47
+ content_list, answers_list = MathVistaAdapter.create_content_and_answers_list(record)
48
+
49
+ if record['question_type'] == 'multi_choice':
50
+ label_answer = self.get_option_label(answers_list, record['answer'])
51
+ return Sample(
52
+ input=[ChatMessageUser(content=content_list)],
53
+ choices=answers_list,
54
+ target=label_answer,
55
+ metadata={
56
+ 'question_type': record['question_type'],
57
+ 'answer_type': record['answer_type'],
58
+ **record['metadata'],
59
+ }
60
+ )
61
+ elif record['question_type'] == 'free_form':
62
+ return Sample(
63
+ input=[ChatMessageUser(content=content_list)],
64
+ target=record['answer'],
65
+ metadata={
66
+ 'precision': record['precision'],
67
+ 'question_type': record['question_type'],
68
+ 'answer_type': record['answer_type'],
69
+ **record['metadata'],
70
+ }
71
+ )
72
+ else:
73
+ raise ValueError(f"Unexpected question_type: {record['question_type']}")
74
+
75
+ def get_option_label(self, options, value):
76
+ try:
77
+ index = options.index(value)
78
+ return chr(ord('A') + index)
79
+ except ValueError:
80
+ logger.warning(f"Answer '{value}' not found in options: {options}. This may cause evaluation issues.")
81
+ return value
82
+
83
+ @staticmethod
84
+ def create_content_and_answers_list(record: dict[str, Any], ) -> tuple[list[Content], list[str]]:
85
+ """
86
+ Create a list of content elements and a list of answers from a record.
87
+
88
+ Args:
89
+ record (dict): The record containing question, images, and options.
90
+
91
+
92
+ Returns:
93
+ tuple: A tuple containing:
94
+ - content_list (list): A list of content elements (text and images).
95
+ - answers_list (list): A list of possible answers (for multiple-choice questions).
96
+ """
97
+ question_type = record['question_type']
98
+ if question_type == MULTI_CHOICE_TYPE:
99
+ answers_list = record['choices']
100
+ input_text = prompt(question=record['question'], choices=answers_list, template=MULT_CHOICE_PROMPT)
101
+ content_list: list[Content] = [ContentText(text=input_text)]
102
+ else:
103
+ answers_list: list[str] = []
104
+ content_list: list[Content] = [ContentText(text=OPEN_PROMPT.format(question=record['question']))]
105
+ image = record['decoded_image']
106
+ if image:
107
+ image_base64 = bytes_to_base64(image['bytes'], format='jpg', add_header=True)
108
+ content_list.append(ContentImage(image=image_base64))
109
+ return content_list, answers_list
110
+
111
+ def extract_answer(self, prediction: str, task_state):
112
+ from evalscope.metrics.math_parser import extract_answer
113
+
114
+ return extract_answer(prediction)
File without changes
@@ -0,0 +1,32 @@
1
+ from evalscope.api.benchmark import BenchmarkMeta, MultiChoiceAdapter
2
+ from evalscope.api.dataset import Sample
3
+ from evalscope.api.registry import register_benchmark
4
+ from evalscope.constants import Tags
5
+ from evalscope.utils.multi_choices import MultipleChoiceTemplate
6
+
7
+ DESCRIPTION = 'MedMCQA is a large-scale MCQA dataset designed to address real-world medical entrance exam questions.' # noqa: E501
8
+
9
+
10
+ @register_benchmark(
11
+ BenchmarkMeta(
12
+ name='med_mcqa',
13
+ pretty_name='Med-MCQA',
14
+ tags=[Tags.KNOWLEDGE, Tags.MULTIPLE_CHOICE],
15
+ description=DESCRIPTION.strip(),
16
+ dataset_id='extraordinarylab/medmcqa',
17
+ metric_list=['acc'],
18
+ few_shot_num=0,
19
+ train_split='train',
20
+ eval_split='validation',
21
+ prompt_template=MultipleChoiceTemplate.SINGLE_ANSWER,
22
+ )
23
+ )
24
+ class MedMCQAAdapter(MultiChoiceAdapter):
25
+
26
+ def record_to_sample(self, record) -> Sample:
27
+ return Sample(
28
+ input=record['question'],
29
+ choices=record['choices'],
30
+ target=record['answer'],
31
+ metadata={},
32
+ )
File without changes
@@ -0,0 +1,53 @@
1
+ from typing import Any, Dict
2
+
3
+ from evalscope.api.benchmark import BenchmarkMeta, DefaultDataAdapter
4
+ from evalscope.api.dataset import Sample
5
+ from evalscope.api.registry import register_benchmark
6
+ from evalscope.constants import Tags
7
+ from evalscope.utils.logger import get_logger
8
+
9
+ logger = get_logger()
10
+
11
+
12
+ @register_benchmark(
13
+ BenchmarkMeta(
14
+ name='minerva_math',
15
+ pretty_name='Minerva-Math',
16
+ tags=[Tags.MATH, Tags.REASONING],
17
+ description='Minerva-math is a benchmark designed to evaluate the mathematical and quantitative '
18
+ 'reasoning capabilities of LLMs. It consists of **272 problems** '
19
+ 'sourced primarily from **MIT OpenCourseWare** '
20
+ 'courses, covering advanced STEM subjects such as solid-state chemistry, astronomy, differential '
21
+ 'equations, and special relativity at the **university and graduate level**.',
22
+ dataset_id='knoveleng/Minerva-Math',
23
+ subset_list=['default'],
24
+ metric_list=[{
25
+ 'acc': {
26
+ 'numeric': True
27
+ }
28
+ }],
29
+ eval_split='train',
30
+ prompt_template='{question}\nPlease reason step by step, and put your final answer within \\boxed{{}}.',
31
+ )
32
+ )
33
+ class MinervaMathAdapter(DefaultDataAdapter):
34
+
35
+ def __init__(self, **kwargs):
36
+ super().__init__(**kwargs)
37
+
38
+ self._use_llm_judge = True
39
+
40
+ def record_to_sample(self, record: Dict[str, Any]) -> Sample:
41
+ return Sample(
42
+ input=record['problem'],
43
+ target=record['solution'],
44
+ metadata={
45
+ 'type': record['type'],
46
+ 'idx': record['idx'],
47
+ },
48
+ )
49
+
50
+ def extract_answer(self, prediction: str, task_state):
51
+ from evalscope.metrics.math_parser import extract_answer
52
+
53
+ return extract_answer(prediction)
File without changes
@@ -0,0 +1,99 @@
1
+ from typing import Any, Dict, List
2
+
3
+ from evalscope.api.benchmark import BenchmarkMeta, MultiChoiceAdapter, VisionLanguageAdapter
4
+ from evalscope.api.dataset import Sample
5
+ from evalscope.api.messages import ChatMessageUser, Content, ContentImage, ContentText
6
+ from evalscope.api.registry import register_benchmark
7
+ from evalscope.constants import Tags
8
+ from evalscope.utils.io_utils import bytes_to_base64
9
+ from evalscope.utils.logger import get_logger
10
+ from evalscope.utils.multi_choices import MultipleChoiceTemplate, prompt
11
+
12
+ logger = get_logger()
13
+
14
+ MULT_CHOICE_PROMPT = MultipleChoiceTemplate.SINGLE_ANSWER_COT
15
+
16
+
17
+ @register_benchmark(
18
+ BenchmarkMeta(
19
+ name='cc_bench',
20
+ pretty_name='CCBench',
21
+ tags=[Tags.MULTI_MODAL, Tags.KNOWLEDGE, Tags.MULTIPLE_CHOICE],
22
+ description=
23
+ 'CCBench is an extension of MMBench with newly design questions about Chinese traditional culture, including Calligraphy Painting, Cultural Relic, Food & Clothes, Historical Figures, Scenery & Building, Sketch Reasoning and Traditional Show.', # noqa: E501
24
+ dataset_id='lmms-lab/MMBench',
25
+ subset_list=['cc'],
26
+ metric_list=['acc'],
27
+ eval_split='test',
28
+ prompt_template=MULT_CHOICE_PROMPT,
29
+ )
30
+ )
31
+ class CCBenchAdapter(VisionLanguageAdapter, MultiChoiceAdapter):
32
+
33
+ def __init__(self, **kwargs):
34
+ super().__init__(**kwargs)
35
+
36
+ def record_to_sample(self, record: Dict[str, Any]) -> Sample:
37
+ answers_list: List[str] = [record.get('A', ''), record.get('B', ''), record.get('C', ''), record.get('D', '')]
38
+ input_text = prompt(question=record['question'], choices=answers_list, template=self.prompt_template)
39
+ content_list: List[Content] = [ContentText(text=input_text)]
40
+ image = record.get('image')
41
+ if image:
42
+ image_base64 = bytes_to_base64(image['bytes'], format='jpeg', add_header=True)
43
+ content_list.append(ContentImage(image=image_base64))
44
+ label_answer = record.get('answer')
45
+ return Sample(
46
+ input=[ChatMessageUser(content=content_list)],
47
+ choices=answers_list,
48
+ target=label_answer,
49
+ metadata={
50
+ 'index': record.get('index'),
51
+ 'category': record.get('category'),
52
+ 'source': record.get('source')
53
+ }
54
+ )
55
+
56
+
57
+ @register_benchmark(
58
+ BenchmarkMeta(
59
+ name='mm_bench',
60
+ pretty_name='MMBench',
61
+ tags=[Tags.MULTI_MODAL, Tags.KNOWLEDGE, Tags.QA],
62
+ description=
63
+ 'MMBench is a comprehensive evaluation pipeline comprised of meticulously curated multimodal dataset and a novel circulareval strategy using ChatGPT. It is comprised of 20 ability dimensions defined by MMBench. It also contains chinese version with translated question.', # noqa: E501
64
+ dataset_id='lmms-lab/MMBench',
65
+ subset_list=['cn', 'en'],
66
+ metric_list=['acc'],
67
+ eval_split='dev',
68
+ prompt_template=MULT_CHOICE_PROMPT,
69
+ )
70
+ )
71
+ class MMBenchAdapter(VisionLanguageAdapter, MultiChoiceAdapter):
72
+
73
+ def __init__(self, **kwargs):
74
+ super().__init__(**kwargs)
75
+
76
+ def record_to_sample(self, record: Dict[str, Any]) -> Sample:
77
+ answers_list: List[str] = [record.get('A', ''), record.get('B', ''), record.get('C', ''), record.get('D', '')]
78
+ answers_list = [ans for ans in answers_list if (ans.strip() and ans != 'nan')]
79
+ question_hint = record['hint'] + record['question']
80
+ input_text = prompt(question=question_hint, choices=answers_list, template=self.prompt_template)
81
+ content_list: List[Content] = [ContentText(text=input_text)]
82
+ image = record.get('image')
83
+ if image:
84
+ image_base64 = bytes_to_base64(image['bytes'], format='jpeg', add_header=True)
85
+ content_list.append(ContentImage(image=image_base64))
86
+ label_answer = record.get('answer')
87
+ return Sample(
88
+ input=[ChatMessageUser(content=content_list)],
89
+ choices=answers_list,
90
+ target=label_answer,
91
+ metadata={
92
+ 'index': record.get('index'),
93
+ 'category': record.get('category'),
94
+ 'source': record.get('source'),
95
+ 'L2-category': record.get('L2-category'),
96
+ 'comment': record.get('comment'),
97
+ 'split': record.get('split')
98
+ }
99
+ )
File without changes
@@ -0,0 +1,73 @@
1
+ import re
2
+ from typing import Any, Dict, List
3
+
4
+ from evalscope.api.benchmark import BenchmarkMeta, MultiChoiceAdapter, VisionLanguageAdapter
5
+ from evalscope.api.dataset import Sample
6
+ from evalscope.api.evaluator import TaskState
7
+ from evalscope.api.messages import ChatMessageUser, Content, ContentImage, ContentText
8
+ from evalscope.api.registry import register_benchmark
9
+ from evalscope.constants import Tags
10
+ from evalscope.utils.io_utils import bytes_to_base64
11
+ from evalscope.utils.logger import get_logger
12
+
13
+ logger = get_logger()
14
+
15
+ MULT_CHOICE_PROMPT = r"""
16
+ Answer the following multiple choice question.
17
+ The last line of your response should be of the following format:
18
+ 'ANSWER: $LETTER' (without quotes)
19
+ where LETTER is one of A,B,C,D. Think step by step before answering.
20
+
21
+ {question}
22
+ """.strip()
23
+
24
+ SUBSET_LIST = [
25
+ 'coarse perception', 'fine-grained perception', 'instance reasoning', 'logical reasoning', 'math',
26
+ 'science & technology'
27
+ ]
28
+
29
+
30
+ @register_benchmark(
31
+ BenchmarkMeta(
32
+ name='mm_star',
33
+ pretty_name='MMStar',
34
+ tags=[Tags.MULTI_MODAL, Tags.KNOWLEDGE, Tags.MULTIPLE_CHOICE],
35
+ description=
36
+ 'MMStar: an elite vision-indispensible multi-modal benchmark, aiming to ensure each curated sample exhibits visual dependency, minimal data leakage, and requires advanced multi-modal capabilities.', # noqa: E501
37
+ dataset_id='evalscope/MMStar',
38
+ subset_list=SUBSET_LIST,
39
+ metric_list=['acc'],
40
+ default_subset='val',
41
+ eval_split='val',
42
+ prompt_template=MULT_CHOICE_PROMPT,
43
+ )
44
+ )
45
+ class MMStarAdapter(VisionLanguageAdapter, MultiChoiceAdapter):
46
+
47
+ def __init__(self, **kwargs):
48
+ super().__init__(**kwargs)
49
+
50
+ self.reformat_subset = True
51
+
52
+ def record_to_sample(self, record: Dict[str, Any]) -> Sample:
53
+ input_text = MULT_CHOICE_PROMPT.format(question=record['question'])
54
+ content_list: List[Content] = [ContentText(text=input_text)]
55
+ image = record.get('image')
56
+ if image:
57
+ image_base64 = bytes_to_base64(image['bytes'], format='jpeg', add_header=True)
58
+ content_list.append(ContentImage(image=image_base64))
59
+ label_answer = record.get('answer')
60
+ return Sample(
61
+ input=[ChatMessageUser(content=content_list)],
62
+ choices=['A', 'B', 'C', 'D'],
63
+ target=label_answer,
64
+ subset_key=record.get('category'),
65
+ metadata={
66
+ 'index': record.get('index'),
67
+ 'category': record.get('category'),
68
+ 'l2_category': record.get('l2_category'),
69
+ 'source': record.get('meta_info', {}).get('source'),
70
+ 'split': record.get('meta_info', {}).get('split'),
71
+ 'image_path': record.get('meta_info', {}).get('image_path')
72
+ }
73
+ )
@@ -39,7 +39,7 @@ SUBSET_LIST = [
39
39
  tags=[Tags.MULTIPLE_CHOICE, Tags.KNOWLEDGE],
40
40
  description=
41
41
  'MMLU-Pro is a benchmark for evaluating language models on multiple-choice questions across various subjects. It includes questions from different domains, where the model must select the correct answer from given options.', # noqa: E501
42
- dataset_id='modelscope/MMLU-Pro',
42
+ dataset_id='TIGER-Lab/MMLU-Pro',
43
43
  subset_list=SUBSET_LIST,
44
44
  metric_list=['acc'],
45
45
  few_shot_num=5,
File without changes
@@ -0,0 +1,159 @@
1
+ import ast
2
+ import re
3
+ from typing import Any, Dict, List
4
+
5
+ from evalscope.api.benchmark import BenchmarkMeta, VisionLanguageAdapter
6
+ from evalscope.api.dataset import Sample
7
+ from evalscope.api.evaluator import TaskState
8
+ from evalscope.api.messages import ChatMessageUser, Content, ContentImage, ContentText
9
+ from evalscope.api.registry import register_benchmark
10
+ from evalscope.constants import Tags
11
+ from evalscope.utils.io_utils import bytes_to_base64
12
+ from evalscope.utils.logger import get_logger
13
+ from evalscope.utils.multi_choices import MultipleChoiceTemplate, parse_answers, prompt
14
+
15
+ # flake8: noqa
16
+
17
+ logger = get_logger()
18
+
19
+ SUBSET_LIST = [
20
+ 'Accounting',
21
+ 'Agriculture',
22
+ 'Architecture_and_Engineering',
23
+ 'Art',
24
+ 'Art_Theory',
25
+ 'Basic_Medical_Science',
26
+ 'Biology',
27
+ 'Chemistry',
28
+ 'Clinical_Medicine',
29
+ 'Computer_Science',
30
+ 'Design',
31
+ 'Diagnostics_and_Laboratory_Medicine',
32
+ 'Economics',
33
+ 'Electronics',
34
+ 'Energy_and_Power',
35
+ 'Finance',
36
+ 'Geography',
37
+ 'History',
38
+ 'Literature',
39
+ 'Manage',
40
+ 'Marketing',
41
+ 'Materials',
42
+ 'Math',
43
+ 'Mechanical_Engineering',
44
+ 'Music',
45
+ 'Pharmacy',
46
+ 'Physics',
47
+ 'Psychology',
48
+ 'Public_Health',
49
+ 'Sociology',
50
+ ]
51
+
52
+ MULT_CHOICE_PROMPT = MultipleChoiceTemplate.SINGLE_ANSWER_COT
53
+
54
+ OPEN_PROMPT = """
55
+ Solve the following problem step by step. The last line of your response should be of the form "ANSWER: $ANSWER" (without quotes) where $ANSWER is the answer to the problem.
56
+
57
+ {question}
58
+
59
+ Remember to put your answer on its own line at the end in the form "ANSWER: $ANSWER" (without quotes) where $ANSWER is the answer to the problem, and you do not need to use a \\boxed command.
60
+ """
61
+
62
+ MULTI_CHOICE_TYPE = 'multiple-choice'
63
+ OPEN_TYPE = 'open'
64
+
65
+
66
+ @register_benchmark(
67
+ BenchmarkMeta(
68
+ name='mmmu',
69
+ pretty_name='MMMU',
70
+ tags=[Tags.MULTI_MODAL, Tags.KNOWLEDGE, Tags.QA],
71
+ description=
72
+ 'MMMU (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI) benchmark designed to evaluate multimodal models on massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning. MMMU includes 11.5K meticulously collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. These questions span 30 subjects and 183 subfields, comprising 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures.', # noqa: E501
73
+ dataset_id='AI-ModelScope/MMMU',
74
+ subset_list=SUBSET_LIST,
75
+ metric_list=['acc'],
76
+ eval_split='validation',
77
+ prompt_template=OPEN_PROMPT,
78
+ )
79
+ )
80
+ class MMMUAdapter(VisionLanguageAdapter):
81
+ MAX_IMAGES: int = 7
82
+
83
+ def __init__(self, *args, **kwargs):
84
+ super().__init__(*args, **kwargs)
85
+
86
+ def record_to_sample(self, record: Dict[str, Any]) -> Sample:
87
+ question_type = record['question_type']
88
+ content_list, answers_list = MMMUAdapter.create_content_and_answers_list(record)
89
+
90
+ metadata = {
91
+ 'id': record['id'],
92
+ 'question_type': record['question_type'],
93
+ 'subfield': record['subfield'],
94
+ 'explanation': record['explanation'],
95
+ 'img_type': record['img_type'],
96
+ 'topic_difficulty': record['topic_difficulty'],
97
+ }
98
+
99
+ if question_type == MULTI_CHOICE_TYPE:
100
+ return Sample(
101
+ input=[ChatMessageUser(content=content_list)],
102
+ choices=answers_list,
103
+ target=record['answer'],
104
+ metadata=metadata,
105
+ )
106
+ elif question_type == OPEN_TYPE:
107
+ return Sample(
108
+ input=[ChatMessageUser(content=content_list)],
109
+ target=record['answer'],
110
+ metadata=metadata,
111
+ )
112
+ else:
113
+ raise ValueError(f'Unsupported question type: {question_type}')
114
+
115
+ def extract_answer(self, prediction: str, task_state: TaskState) -> str:
116
+ question_type = task_state.metadata['question_type']
117
+ if question_type == MULTI_CHOICE_TYPE:
118
+ answers = parse_answers(task_state)
119
+ return ''.join(sorted(list(answers)))
120
+ elif question_type == OPEN_TYPE:
121
+ pattern = r'ANSWER:\s*(.*)'
122
+ match = re.search(pattern, prediction)
123
+ if match:
124
+ return match.group(1).strip()
125
+ return prediction.strip()
126
+ else:
127
+ raise ValueError(f'Unsupported question type: {question_type}')
128
+
129
+ @staticmethod
130
+ def create_content_and_answers_list(record: Dict[str, Any]) -> tuple[List[Content], List[str]]:
131
+ """
132
+ Create a list of content elements and a list of answers from a record.
133
+
134
+ Args:
135
+ record (dict): The record containing question, images, and options.
136
+
137
+
138
+ Returns:
139
+ tuple: A tuple containing:
140
+ - content_list (list): A list of content elements (text and images).
141
+ - answers_list (list): A list of possible answers (for multiple-choice questions).
142
+ """
143
+ question_type = record['question_type']
144
+
145
+ if question_type == MULTI_CHOICE_TYPE:
146
+ answers_list: List[str] = ast.literal_eval(record['options'])
147
+ input_text = prompt(question=record['question'], choices=answers_list, template=MULT_CHOICE_PROMPT)
148
+ content_list: List[Content] = [ContentText(text=input_text)]
149
+ else:
150
+ answers_list: List[str] = []
151
+ content_list: List[Content] = [ContentText(text=OPEN_PROMPT.format(question=record['question']))]
152
+
153
+ for i in range(MMMUAdapter.MAX_IMAGES):
154
+ image = record[f'image_{i+1}']
155
+ if image:
156
+ image_base64 = bytes_to_base64(image['bytes'], format='png', add_header=True)
157
+ content_list.append(ContentImage(image=image_base64))
158
+
159
+ return content_list, answers_list
File without changes