evalscope 0.7.2__py3-none-any.whl → 0.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of evalscope might be problematic. Click here for more details.

Files changed (233) hide show
  1. evalscope/__init__.py +1 -1
  2. evalscope/arguments.py +73 -0
  3. evalscope/backend/base.py +5 -1
  4. evalscope/backend/opencompass/api_meta_template.py +8 -14
  5. evalscope/backend/opencompass/backend_manager.py +24 -15
  6. evalscope/backend/opencompass/tasks/eval_api.py +1 -6
  7. evalscope/backend/opencompass/tasks/eval_datasets.py +26 -28
  8. evalscope/backend/rag_eval/__init__.py +3 -3
  9. evalscope/backend/rag_eval/backend_manager.py +21 -25
  10. evalscope/backend/rag_eval/clip_benchmark/__init__.py +1 -1
  11. evalscope/backend/rag_eval/clip_benchmark/arguments.py +6 -6
  12. evalscope/backend/rag_eval/clip_benchmark/dataset_builder.py +62 -79
  13. evalscope/backend/rag_eval/clip_benchmark/task_template.py +29 -43
  14. evalscope/backend/rag_eval/clip_benchmark/tasks/image_caption.py +20 -22
  15. evalscope/backend/rag_eval/clip_benchmark/tasks/zeroshot_classification.py +16 -23
  16. evalscope/backend/rag_eval/clip_benchmark/tasks/zeroshot_retrieval.py +14 -35
  17. evalscope/backend/rag_eval/clip_benchmark/utils/webdataset_convert.py +69 -90
  18. evalscope/backend/rag_eval/cmteb/__init__.py +3 -3
  19. evalscope/backend/rag_eval/cmteb/arguments.py +25 -27
  20. evalscope/backend/rag_eval/cmteb/base.py +22 -23
  21. evalscope/backend/rag_eval/cmteb/task_template.py +15 -17
  22. evalscope/backend/rag_eval/cmteb/tasks/Classification.py +98 -79
  23. evalscope/backend/rag_eval/cmteb/tasks/Clustering.py +17 -22
  24. evalscope/backend/rag_eval/cmteb/tasks/CustomTask.py +17 -19
  25. evalscope/backend/rag_eval/cmteb/tasks/PairClassification.py +35 -29
  26. evalscope/backend/rag_eval/cmteb/tasks/Reranking.py +18 -5
  27. evalscope/backend/rag_eval/cmteb/tasks/Retrieval.py +163 -163
  28. evalscope/backend/rag_eval/cmteb/tasks/STS.py +126 -104
  29. evalscope/backend/rag_eval/cmteb/tasks/__init__.py +33 -34
  30. evalscope/backend/rag_eval/ragas/__init__.py +2 -2
  31. evalscope/backend/rag_eval/ragas/arguments.py +3 -8
  32. evalscope/backend/rag_eval/ragas/prompts/chinese/AnswerCorrectness/correctness_prompt_chinese.json +9 -9
  33. evalscope/backend/rag_eval/ragas/prompts/chinese/AnswerCorrectness/long_form_answer_prompt_chinese.json +2 -2
  34. evalscope/backend/rag_eval/ragas/prompts/chinese/AnswerRelevancy/question_generation_chinese.json +3 -3
  35. evalscope/backend/rag_eval/ragas/prompts/chinese/ContextPrecision/context_precision_prompt_chinese.json +5 -5
  36. evalscope/backend/rag_eval/ragas/prompts/chinese/CustomNodeFilter/scoring_prompt_chinese.json +7 -0
  37. evalscope/backend/rag_eval/ragas/prompts/chinese/Faithfulness/nli_statements_message_chinese.json +8 -8
  38. evalscope/backend/rag_eval/ragas/prompts/chinese/Faithfulness/statement_prompt_chinese.json +5 -5
  39. evalscope/backend/rag_eval/ragas/prompts/chinese/HeadlinesExtractor/prompt_chinese.json +7 -5
  40. evalscope/backend/rag_eval/ragas/prompts/chinese/MultiHopAbstractQuerySynthesizer/concept_combination_prompt_chinese.json +2 -2
  41. evalscope/backend/rag_eval/ragas/prompts/chinese/MultiHopAbstractQuerySynthesizer/generate_query_reference_prompt_chinese.json +27 -4
  42. evalscope/backend/rag_eval/ragas/prompts/chinese/MultiHopAbstractQuerySynthesizer/theme_persona_matching_prompt_chinese.json +2 -2
  43. evalscope/backend/rag_eval/ragas/prompts/chinese/MultiHopSpecificQuerySynthesizer/generate_query_reference_prompt_chinese.json +27 -4
  44. evalscope/backend/rag_eval/ragas/prompts/chinese/MultiHopSpecificQuerySynthesizer/theme_persona_matching_prompt_chinese.json +2 -2
  45. evalscope/backend/rag_eval/ragas/prompts/chinese/MultiModalFaithfulness/faithfulness_prompt_chinese.json +2 -2
  46. evalscope/backend/rag_eval/ragas/prompts/chinese/MultiModalRelevance/relevance_prompt_chinese.json +5 -5
  47. evalscope/backend/rag_eval/ragas/prompts/chinese/NERExtractor/prompt_chinese.json +3 -3
  48. evalscope/backend/rag_eval/ragas/prompts/chinese/SingleHopSpecificQuerySynthesizer/generate_query_reference_prompt_chinese.json +21 -4
  49. evalscope/backend/rag_eval/ragas/prompts/chinese/SingleHopSpecificQuerySynthesizer/theme_persona_matching_prompt_chinese.json +3 -3
  50. evalscope/backend/rag_eval/ragas/prompts/chinese/SummaryExtractor/prompt_chinese.json +4 -4
  51. evalscope/backend/rag_eval/ragas/prompts/chinese/ThemesExtractor/prompt_chinese.json +2 -2
  52. evalscope/backend/rag_eval/ragas/prompts/persona_prompt.py +0 -1
  53. evalscope/backend/rag_eval/ragas/task_template.py +10 -15
  54. evalscope/backend/rag_eval/ragas/tasks/__init__.py +1 -1
  55. evalscope/backend/rag_eval/ragas/tasks/build_distribution.py +45 -0
  56. evalscope/backend/rag_eval/ragas/tasks/build_transform.py +135 -0
  57. evalscope/backend/rag_eval/ragas/tasks/testset_generation.py +17 -133
  58. evalscope/backend/rag_eval/ragas/tasks/translate_prompt.py +8 -18
  59. evalscope/backend/rag_eval/utils/clip.py +46 -50
  60. evalscope/backend/rag_eval/utils/embedding.py +12 -11
  61. evalscope/backend/rag_eval/utils/llm.py +8 -6
  62. evalscope/backend/rag_eval/utils/tools.py +12 -11
  63. evalscope/backend/vlm_eval_kit/__init__.py +1 -1
  64. evalscope/backend/vlm_eval_kit/custom_dataset.py +7 -8
  65. evalscope/benchmarks/arc/__init__.py +3 -2
  66. evalscope/benchmarks/arc/ai2_arc.py +19 -16
  67. evalscope/benchmarks/arc/arc_adapter.py +32 -24
  68. evalscope/benchmarks/bbh/__init__.py +1 -2
  69. evalscope/benchmarks/bbh/bbh_adapter.py +28 -25
  70. evalscope/benchmarks/bbh/cot_prompts/boolean_expressions.txt +1 -1
  71. evalscope/benchmarks/bbh/cot_prompts/causal_judgement.txt +1 -1
  72. evalscope/benchmarks/bbh/cot_prompts/date_understanding.txt +1 -1
  73. evalscope/benchmarks/bbh/cot_prompts/disambiguation_qa.txt +1 -1
  74. evalscope/benchmarks/bbh/cot_prompts/dyck_languages.txt +1 -1
  75. evalscope/benchmarks/bbh/cot_prompts/formal_fallacies.txt +1 -1
  76. evalscope/benchmarks/bbh/cot_prompts/geometric_shapes.txt +1 -1
  77. evalscope/benchmarks/bbh/cot_prompts/hyperbaton.txt +1 -1
  78. evalscope/benchmarks/bbh/cot_prompts/logical_deduction_five_objects.txt +1 -1
  79. evalscope/benchmarks/bbh/cot_prompts/logical_deduction_seven_objects.txt +1 -1
  80. evalscope/benchmarks/bbh/cot_prompts/logical_deduction_three_objects.txt +1 -1
  81. evalscope/benchmarks/bbh/cot_prompts/movie_recommendation.txt +1 -1
  82. evalscope/benchmarks/bbh/cot_prompts/multistep_arithmetic_two.txt +1 -1
  83. evalscope/benchmarks/bbh/cot_prompts/navigate.txt +1 -1
  84. evalscope/benchmarks/bbh/cot_prompts/object_counting.txt +1 -1
  85. evalscope/benchmarks/bbh/cot_prompts/penguins_in_a_table.txt +1 -1
  86. evalscope/benchmarks/bbh/cot_prompts/reasoning_about_colored_objects.txt +1 -1
  87. evalscope/benchmarks/bbh/cot_prompts/ruin_names.txt +1 -1
  88. evalscope/benchmarks/bbh/cot_prompts/salient_translation_error_detection.txt +1 -1
  89. evalscope/benchmarks/bbh/cot_prompts/snarks.txt +1 -1
  90. evalscope/benchmarks/bbh/cot_prompts/sports_understanding.txt +1 -1
  91. evalscope/benchmarks/bbh/cot_prompts/temporal_sequences.txt +1 -1
  92. evalscope/benchmarks/bbh/cot_prompts/tracking_shuffled_objects_five_objects.txt +1 -1
  93. evalscope/benchmarks/bbh/cot_prompts/tracking_shuffled_objects_seven_objects.txt +1 -1
  94. evalscope/benchmarks/bbh/cot_prompts/tracking_shuffled_objects_three_objects.txt +1 -1
  95. evalscope/benchmarks/bbh/cot_prompts/web_of_lies.txt +1 -1
  96. evalscope/benchmarks/bbh/cot_prompts/word_sorting.txt +1 -1
  97. evalscope/benchmarks/benchmark.py +16 -16
  98. evalscope/benchmarks/ceval/__init__.py +3 -2
  99. evalscope/benchmarks/ceval/ceval_adapter.py +80 -69
  100. evalscope/benchmarks/ceval/ceval_exam.py +18 -31
  101. evalscope/benchmarks/cmmlu/__init__.py +3 -2
  102. evalscope/benchmarks/cmmlu/cmmlu.py +87 -92
  103. evalscope/benchmarks/cmmlu/cmmlu_adapter.py +109 -155
  104. evalscope/benchmarks/cmmlu/samples.jsonl +1 -1
  105. evalscope/benchmarks/competition_math/__init__.py +3 -2
  106. evalscope/benchmarks/competition_math/competition_math.py +7 -16
  107. evalscope/benchmarks/competition_math/competition_math_adapter.py +32 -34
  108. evalscope/benchmarks/data_adapter.py +24 -24
  109. evalscope/benchmarks/general_qa/__init__.py +3 -2
  110. evalscope/benchmarks/general_qa/general_qa_adapter.py +34 -38
  111. evalscope/benchmarks/gsm8k/__init__.py +1 -1
  112. evalscope/benchmarks/gsm8k/gsm8k.py +6 -12
  113. evalscope/benchmarks/gsm8k/gsm8k_adapter.py +26 -24
  114. evalscope/benchmarks/hellaswag/__init__.py +3 -2
  115. evalscope/benchmarks/hellaswag/hellaswag.py +15 -19
  116. evalscope/benchmarks/hellaswag/hellaswag_adapter.py +27 -23
  117. evalscope/benchmarks/humaneval/__init__.py +1 -1
  118. evalscope/benchmarks/humaneval/humaneval.py +15 -18
  119. evalscope/benchmarks/humaneval/humaneval_adapter.py +0 -1
  120. evalscope/benchmarks/mmlu/__init__.py +3 -2
  121. evalscope/benchmarks/mmlu/mmlu.py +15 -29
  122. evalscope/benchmarks/mmlu/mmlu_adapter.py +85 -77
  123. evalscope/benchmarks/race/__init__.py +3 -2
  124. evalscope/benchmarks/race/race.py +21 -35
  125. evalscope/benchmarks/race/race_adapter.py +32 -29
  126. evalscope/benchmarks/race/samples.jsonl +1 -1
  127. evalscope/benchmarks/trivia_qa/__init__.py +3 -2
  128. evalscope/benchmarks/trivia_qa/samples.jsonl +1 -1
  129. evalscope/benchmarks/trivia_qa/trivia_qa.py +19 -34
  130. evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +27 -22
  131. evalscope/benchmarks/truthful_qa/__init__.py +3 -2
  132. evalscope/benchmarks/truthful_qa/truthful_qa.py +25 -29
  133. evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +36 -37
  134. evalscope/cli/cli.py +6 -5
  135. evalscope/cli/start_eval.py +31 -0
  136. evalscope/cli/start_perf.py +0 -3
  137. evalscope/cli/start_server.py +27 -41
  138. evalscope/config.py +119 -95
  139. evalscope/constants.py +61 -29
  140. evalscope/evaluator/__init__.py +1 -0
  141. evalscope/evaluator/evaluator.py +96 -377
  142. evalscope/evaluator/humaneval_evaluator.py +158 -0
  143. evalscope/evaluator/rating_eval.py +12 -33
  144. evalscope/evaluator/reviewer/auto_reviewer.py +47 -76
  145. evalscope/metrics/bundled_rouge_score/rouge_scorer.py +10 -20
  146. evalscope/metrics/code_metric.py +3 -9
  147. evalscope/metrics/math_accuracy.py +3 -6
  148. evalscope/metrics/metrics.py +21 -21
  149. evalscope/metrics/rouge_metric.py +11 -25
  150. evalscope/models/__init__.py +1 -2
  151. evalscope/models/api/openai_api.py +40 -29
  152. evalscope/models/custom/__init__.py +0 -1
  153. evalscope/models/custom/custom_model.py +3 -3
  154. evalscope/models/dummy_chat_model.py +7 -8
  155. evalscope/models/model_adapter.py +89 -156
  156. evalscope/models/openai_model.py +20 -20
  157. evalscope/perf/arguments.py +15 -3
  158. evalscope/perf/benchmark.py +7 -9
  159. evalscope/perf/http_client.py +3 -8
  160. evalscope/perf/main.py +10 -0
  161. evalscope/perf/plugin/api/custom_api.py +1 -2
  162. evalscope/perf/plugin/api/dashscope_api.py +1 -2
  163. evalscope/perf/plugin/api/openai_api.py +2 -3
  164. evalscope/perf/plugin/datasets/base.py +1 -2
  165. evalscope/perf/plugin/datasets/flickr8k.py +1 -2
  166. evalscope/perf/plugin/datasets/longalpaca.py +1 -2
  167. evalscope/perf/plugin/datasets/openqa.py +1 -2
  168. evalscope/perf/utils/analysis_result.py +1 -2
  169. evalscope/perf/utils/benchmark_util.py +1 -2
  170. evalscope/perf/utils/db_util.py +11 -8
  171. evalscope/perf/utils/local_server.py +19 -13
  172. evalscope/registry/config/cfg_arena_zhihu.yaml +1 -1
  173. evalscope/registry/tasks/arc.yaml +2 -3
  174. evalscope/registry/tasks/bbh.yaml +3 -4
  175. evalscope/registry/tasks/bbh_mini.yaml +3 -4
  176. evalscope/registry/tasks/ceval.yaml +3 -3
  177. evalscope/registry/tasks/ceval_mini.yaml +3 -4
  178. evalscope/registry/tasks/cmmlu.yaml +3 -3
  179. evalscope/registry/tasks/eval_qwen-7b-chat_v100.yaml +1 -1
  180. evalscope/registry/tasks/general_qa.yaml +1 -1
  181. evalscope/registry/tasks/gsm8k.yaml +2 -2
  182. evalscope/registry/tasks/mmlu.yaml +3 -3
  183. evalscope/registry/tasks/mmlu_mini.yaml +3 -3
  184. evalscope/run.py +184 -375
  185. evalscope/run_arena.py +20 -25
  186. evalscope/summarizer.py +16 -17
  187. evalscope/third_party/longbench_write/README.md +99 -42
  188. evalscope/third_party/longbench_write/default_task.json +1 -1
  189. evalscope/third_party/longbench_write/default_task.yaml +8 -7
  190. evalscope/third_party/longbench_write/eval.py +29 -28
  191. evalscope/third_party/longbench_write/infer.py +16 -104
  192. evalscope/third_party/longbench_write/longbench_write.py +5 -5
  193. evalscope/third_party/longbench_write/resources/judge.txt +1 -1
  194. evalscope/third_party/longbench_write/tools/data_etl.py +4 -5
  195. evalscope/third_party/longbench_write/utils.py +0 -1
  196. evalscope/third_party/toolbench_static/eval.py +14 -15
  197. evalscope/third_party/toolbench_static/infer.py +48 -69
  198. evalscope/third_party/toolbench_static/llm/swift_infer.py +4 -12
  199. evalscope/third_party/toolbench_static/requirements.txt +1 -1
  200. evalscope/third_party/toolbench_static/toolbench_static.py +3 -3
  201. evalscope/tools/combine_reports.py +25 -30
  202. evalscope/tools/rewrite_eval_results.py +14 -46
  203. evalscope/utils/__init__.py +0 -1
  204. evalscope/utils/arena_utils.py +18 -48
  205. evalscope/{perf/utils → utils}/chat_service.py +3 -4
  206. evalscope/utils/completion_parsers.py +3 -8
  207. evalscope/utils/logger.py +9 -7
  208. evalscope/utils/model_utils.py +11 -0
  209. evalscope/utils/utils.py +12 -138
  210. evalscope/version.py +2 -2
  211. {evalscope-0.7.2.dist-info → evalscope-0.8.0.dist-info}/METADATA +123 -118
  212. evalscope-0.8.0.dist-info/RECORD +285 -0
  213. tests/cli/test_run.py +54 -15
  214. tests/perf/test_perf.py +4 -0
  215. tests/rag/test_clip_benchmark.py +38 -38
  216. tests/rag/test_mteb.py +3 -2
  217. tests/rag/test_ragas.py +5 -5
  218. tests/swift/test_run_swift_eval.py +2 -3
  219. tests/swift/test_run_swift_vlm_eval.py +2 -3
  220. tests/swift/test_run_swift_vlm_jugde_eval.py +2 -3
  221. evalscope/backend/rag_eval/ragas/metrics/__init__.py +0 -2
  222. evalscope/backend/rag_eval/ragas/metrics/multi_modal_faithfulness.py +0 -91
  223. evalscope/backend/rag_eval/ragas/metrics/multi_modal_relevance.py +0 -99
  224. evalscope/cache.py +0 -98
  225. evalscope/models/template.py +0 -1446
  226. evalscope/run_ms.py +0 -140
  227. evalscope/utils/task_cfg_parser.py +0 -10
  228. evalscope/utils/task_utils.py +0 -22
  229. evalscope-0.7.2.dist-info/RECORD +0 -286
  230. {evalscope-0.7.2.dist-info → evalscope-0.8.0.dist-info}/LICENSE +0 -0
  231. {evalscope-0.7.2.dist-info → evalscope-0.8.0.dist-info}/WHEEL +0 -0
  232. {evalscope-0.7.2.dist-info → evalscope-0.8.0.dist-info}/entry_points.txt +0 -0
  233. {evalscope-0.7.2.dist-info → evalscope-0.8.0.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,6 @@
1
1
  # Copyright (c) Alibaba, Inc. and its affiliates.
2
2
 
3
- from evalscope.benchmarks.mmlu.mmlu_adapter import DATASET_ID, SUBJECT_MAPPING, SUBSET_LIST, MMLUAdapter
3
+ from evalscope.benchmarks.mmlu.mmlu_adapter import DATASET_ID, SUBJECT_MAPPING, SUBSET_LIST
4
+ from evalscope.benchmarks.mmlu.mmlu_adapter import MMLUAdapter
4
5
  from evalscope.benchmarks.mmlu.mmlu_adapter import MMLUAdapter as DataAdapterClass
5
- from evalscope.models.model_adapter import MultiChoiceModelAdapter as ModelAdapterClass # noqa
6
+ from evalscope.models.model_adapter import MultiChoiceModelAdapter as ModelAdapterClass # noqa
@@ -1,3 +1,4 @@
1
+ # isort: skip_file
1
2
  # Copyright (c) Alibaba, Inc. and its affiliates.
2
3
  # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
4
  #
@@ -14,14 +15,11 @@
14
15
  # limitations under the License.
15
16
  # flake8: noqa
16
17
 
17
- import os
18
-
19
18
  import datasets
19
+ import os
20
20
  import pandas as pd
21
-
22
21
  """The MMLU dataset on ModelScope hub. READ ONLY, DO NOT MODIFY."""
23
22
 
24
-
25
23
  _CITATION = """\
26
24
  @article{hendryckstest2021,
27
25
  title={Measuring Massive Multitask Language Understanding},
@@ -105,29 +103,23 @@ task_list = [
105
103
 
106
104
 
107
105
  class MMLUConfig(datasets.BuilderConfig):
106
+
108
107
  def __init__(self, **kwargs):
109
108
  super().__init__(version=datasets.Version('1.0.0'), **kwargs)
110
109
 
111
110
 
112
111
  class MMLU(datasets.GeneratorBasedBuilder):
113
- BUILDER_CONFIGS = [
114
- MMLUConfig(
115
- name=task_name,
116
- )
117
- for task_name in task_list
118
- ]
112
+ BUILDER_CONFIGS = [MMLUConfig(name=task_name, ) for task_name in task_list]
119
113
 
120
114
  def _info(self):
121
- features = datasets.Features(
122
- {
123
- 'input': datasets.Value('string'),
124
- 'A': datasets.Value('string'),
125
- 'B': datasets.Value('string'),
126
- 'C': datasets.Value('string'),
127
- 'D': datasets.Value('string'),
128
- 'target': datasets.Value('string'),
129
- }
130
- )
115
+ features = datasets.Features({
116
+ 'input': datasets.Value('string'),
117
+ 'A': datasets.Value('string'),
118
+ 'B': datasets.Value('string'),
119
+ 'C': datasets.Value('string'),
120
+ 'D': datasets.Value('string'),
121
+ 'target': datasets.Value('string'),
122
+ })
131
123
  return datasets.DatasetInfo(
132
124
  description=_DESCRIPTION,
133
125
  features=features,
@@ -143,25 +135,19 @@ class MMLU(datasets.GeneratorBasedBuilder):
143
135
  datasets.SplitGenerator(
144
136
  name=datasets.Split.TEST,
145
137
  gen_kwargs={
146
- 'filepath': os.path.join(
147
- data_dir, 'data', 'test', f'{task_name}_test.csv'
148
- ),
138
+ 'filepath': os.path.join(data_dir, 'data', 'test', f'{task_name}_test.csv'),
149
139
  },
150
140
  ),
151
141
  datasets.SplitGenerator(
152
142
  name=datasets.Split.VALIDATION,
153
143
  gen_kwargs={
154
- 'filepath': os.path.join(
155
- data_dir, 'data', 'val', f'{task_name}_val.csv'
156
- ),
144
+ 'filepath': os.path.join(data_dir, 'data', 'val', f'{task_name}_val.csv'),
157
145
  },
158
146
  ),
159
147
  datasets.SplitGenerator(
160
148
  name=datasets.Split.TRAIN,
161
149
  gen_kwargs={
162
- 'filepath': os.path.join(
163
- data_dir, 'data', 'dev', f'{task_name}_dev.csv'
164
- ),
150
+ 'filepath': os.path.join(data_dir, 'data', 'dev', f'{task_name}_dev.csv'),
165
151
  },
166
152
  ),
167
153
  ]
@@ -4,8 +4,9 @@ import os
4
4
 
5
5
  from evalscope.benchmarks.data_adapter import DataAdapter
6
6
  from evalscope.metrics.metrics import exact_match, weighted_mean
7
- from evalscope.utils import normalize_score, ResponseParser
7
+ from evalscope.utils import ResponseParser, normalize_score
8
8
  from evalscope.utils.logger import get_logger
9
+
9
10
  # flake8: noqa
10
11
 
11
12
  logger = get_logger()
@@ -72,65 +73,65 @@ SUBSET_LIST = [
72
73
  'college_biology',
73
74
  ]
74
75
 
75
-
76
- SUBJECT_MAPPING = {'abstract_algebra': ['Abstract Algebra', 'math', 'STEM'],
77
- 'anatomy': ['Anatomy', 'health', 'Other'],
78
- 'astronomy': ['Astronomy', 'physics', 'STEM'],
79
- 'business_ethics': ['Business Ethics', 'business', 'Other'],
80
- 'clinical_knowledge': ['Clinical Knowledge', 'health', 'Other'],
81
- 'college_biology': ['College Biology', 'biology', 'STEM'],
82
- 'college_chemistry': ['College Chemistry', 'chemistry', 'STEM'],
83
- 'college_computer_science': ['College Computer Science', 'computer science', 'STEM'],
84
- 'college_mathematics': ['College Mathematics', 'math', 'STEM'],
85
- 'college_medicine': ['College Medicine', 'health', 'Other'],
86
- 'college_physics': ['College Physics', 'physics', 'STEM'],
87
- 'computer_security': ['Computer Security', 'computer science', 'STEM'],
88
- 'conceptual_physics': ['Conceptual Physics', 'physics', 'STEM'],
89
- 'econometrics': ['Econometrics', 'economics', 'Social Science'],
90
- 'electrical_engineering': ['Electrical Engineering', 'engineering', 'STEM'],
91
- 'elementary_mathematics': ['Elementary Mathematics', 'math', 'STEM'],
92
- 'formal_logic': ['Formal Logic', 'philosophy', 'Humanities'],
93
- 'global_facts': ['Global Facts', 'other', 'Other'],
94
- 'high_school_biology': ['High School Biology', 'biology', 'STEM'],
95
- 'high_school_chemistry': ['High School Chemistry', 'chemistry', 'STEM'],
96
- 'high_school_computer_science': ['High School Computer Science', 'computer science', 'STEM'],
97
- 'high_school_european_history': ['High School European History', 'history', 'Humanities'],
98
- 'high_school_geography': ['High School Geography', 'geography', 'Social Science'],
99
- 'high_school_government_and_politics': ['High School Government And Politics', 'politics', 'Social Science'],
100
- 'high_school_macroeconomics': ['High School Macroeconomics', 'economics', 'Social Science'],
101
- 'high_school_mathematics': ['High School Mathematics', 'math', 'STEM'],
102
- 'high_school_microeconomics': ['High School Microeconomics', 'economics', 'Social Science'],
103
- 'high_school_physics': ['High School Physics', 'physics', 'STEM'],
104
- 'high_school_psychology': ['High School Psychology', 'psychology', 'Social Science'],
105
- 'high_school_statistics': ['High School Statistics', 'math', 'STEM'],
106
- 'high_school_us_history': ['High School Us History', 'history', 'Humanities'],
107
- 'high_school_world_history': ['High School World History', 'history', 'Humanities'],
108
- 'human_aging': ['Human Aging', 'health', 'Other'],
109
- 'human_sexuality': ['Human Sexuality', 'culture', 'Social Science'],
110
- 'international_law': ['International Law', 'law', 'Humanities'],
111
- 'jurisprudence': ['Jurisprudence', 'law', 'Humanities'],
112
- 'logical_fallacies': ['Logical Fallacies', 'philosophy', 'Humanities'],
113
- 'machine_learning': ['Machine Learning', 'computer science', 'STEM'],
114
- 'management': ['Management', 'business', 'Other'],
115
- 'marketing': ['Marketing', 'business', 'Other'],
116
- 'medical_genetics': ['Medical Genetics', 'health', 'Other'],
117
- 'miscellaneous': ['Miscellaneous', 'other', 'Other'],
118
- 'moral_disputes': ['Moral Disputes', 'philosophy', 'Humanities'],
119
- 'moral_scenarios': ['Moral Scenarios', 'philosophy', 'Humanities'],
120
- 'nutrition': ['Nutrition', 'health', 'Other'],
121
- 'philosophy': ['Philosophy', 'philosophy', 'Humanities'],
122
- 'prehistory': ['Prehistory', 'history', 'Humanities'],
123
- 'professional_accounting': ['Professional Accounting', 'other', 'Other'],
124
- 'professional_law': ['Professional Law', 'law', 'Humanities'],
125
- 'professional_medicine': ['Professional Medicine', 'health', 'Other'],
126
- 'professional_psychology': ['Professional Psychology', 'psychology', 'Social Science'],
127
- 'public_relations': ['Public Relations', 'politics', 'Social Science'],
128
- 'security_studies': ['Security Studies', 'politics', 'Social Science'],
129
- 'sociology': ['Sociology', 'culture', 'Social Science'],
130
- 'us_foreign_policy': ['Us Foreign Policy', 'politics', 'Social Science'],
131
- 'virology': ['Virology', 'health', 'Other'],
132
- 'world_religions': ['World Religions', 'philosophy', 'Humanities'],
133
- }
76
+ SUBJECT_MAPPING = {
77
+ 'abstract_algebra': ['Abstract Algebra', 'math', 'STEM'],
78
+ 'anatomy': ['Anatomy', 'health', 'Other'],
79
+ 'astronomy': ['Astronomy', 'physics', 'STEM'],
80
+ 'business_ethics': ['Business Ethics', 'business', 'Other'],
81
+ 'clinical_knowledge': ['Clinical Knowledge', 'health', 'Other'],
82
+ 'college_biology': ['College Biology', 'biology', 'STEM'],
83
+ 'college_chemistry': ['College Chemistry', 'chemistry', 'STEM'],
84
+ 'college_computer_science': ['College Computer Science', 'computer science', 'STEM'],
85
+ 'college_mathematics': ['College Mathematics', 'math', 'STEM'],
86
+ 'college_medicine': ['College Medicine', 'health', 'Other'],
87
+ 'college_physics': ['College Physics', 'physics', 'STEM'],
88
+ 'computer_security': ['Computer Security', 'computer science', 'STEM'],
89
+ 'conceptual_physics': ['Conceptual Physics', 'physics', 'STEM'],
90
+ 'econometrics': ['Econometrics', 'economics', 'Social Science'],
91
+ 'electrical_engineering': ['Electrical Engineering', 'engineering', 'STEM'],
92
+ 'elementary_mathematics': ['Elementary Mathematics', 'math', 'STEM'],
93
+ 'formal_logic': ['Formal Logic', 'philosophy', 'Humanities'],
94
+ 'global_facts': ['Global Facts', 'other', 'Other'],
95
+ 'high_school_biology': ['High School Biology', 'biology', 'STEM'],
96
+ 'high_school_chemistry': ['High School Chemistry', 'chemistry', 'STEM'],
97
+ 'high_school_computer_science': ['High School Computer Science', 'computer science', 'STEM'],
98
+ 'high_school_european_history': ['High School European History', 'history', 'Humanities'],
99
+ 'high_school_geography': ['High School Geography', 'geography', 'Social Science'],
100
+ 'high_school_government_and_politics': ['High School Government And Politics', 'politics', 'Social Science'],
101
+ 'high_school_macroeconomics': ['High School Macroeconomics', 'economics', 'Social Science'],
102
+ 'high_school_mathematics': ['High School Mathematics', 'math', 'STEM'],
103
+ 'high_school_microeconomics': ['High School Microeconomics', 'economics', 'Social Science'],
104
+ 'high_school_physics': ['High School Physics', 'physics', 'STEM'],
105
+ 'high_school_psychology': ['High School Psychology', 'psychology', 'Social Science'],
106
+ 'high_school_statistics': ['High School Statistics', 'math', 'STEM'],
107
+ 'high_school_us_history': ['High School Us History', 'history', 'Humanities'],
108
+ 'high_school_world_history': ['High School World History', 'history', 'Humanities'],
109
+ 'human_aging': ['Human Aging', 'health', 'Other'],
110
+ 'human_sexuality': ['Human Sexuality', 'culture', 'Social Science'],
111
+ 'international_law': ['International Law', 'law', 'Humanities'],
112
+ 'jurisprudence': ['Jurisprudence', 'law', 'Humanities'],
113
+ 'logical_fallacies': ['Logical Fallacies', 'philosophy', 'Humanities'],
114
+ 'machine_learning': ['Machine Learning', 'computer science', 'STEM'],
115
+ 'management': ['Management', 'business', 'Other'],
116
+ 'marketing': ['Marketing', 'business', 'Other'],
117
+ 'medical_genetics': ['Medical Genetics', 'health', 'Other'],
118
+ 'miscellaneous': ['Miscellaneous', 'other', 'Other'],
119
+ 'moral_disputes': ['Moral Disputes', 'philosophy', 'Humanities'],
120
+ 'moral_scenarios': ['Moral Scenarios', 'philosophy', 'Humanities'],
121
+ 'nutrition': ['Nutrition', 'health', 'Other'],
122
+ 'philosophy': ['Philosophy', 'philosophy', 'Humanities'],
123
+ 'prehistory': ['Prehistory', 'history', 'Humanities'],
124
+ 'professional_accounting': ['Professional Accounting', 'other', 'Other'],
125
+ 'professional_law': ['Professional Law', 'law', 'Humanities'],
126
+ 'professional_medicine': ['Professional Medicine', 'health', 'Other'],
127
+ 'professional_psychology': ['Professional Psychology', 'psychology', 'Social Science'],
128
+ 'public_relations': ['Public Relations', 'politics', 'Social Science'],
129
+ 'security_studies': ['Security Studies', 'politics', 'Social Science'],
130
+ 'sociology': ['Sociology', 'culture', 'Social Science'],
131
+ 'us_foreign_policy': ['Us Foreign Policy', 'politics', 'Social Science'],
132
+ 'virology': ['Virology', 'health', 'Other'],
133
+ 'world_religions': ['World Religions', 'philosophy', 'Humanities'],
134
+ }
134
135
 
135
136
 
136
137
  class MMLUAdapter(DataAdapter):
@@ -160,12 +161,13 @@ class MMLUAdapter(DataAdapter):
160
161
  logger.warning(f'few_shot_num <= 5 for MMLU, but got {few_shot_num}. Use 5-shot by default.')
161
162
  few_shot_num = 5
162
163
 
163
- super().__init__(subset_list=subset_list,
164
- metric_list=metric_list,
165
- few_shot_num=few_shot_num,
166
- train_split=train_split,
167
- eval_split=eval_split,
168
- **kwargs)
164
+ super().__init__(
165
+ subset_list=subset_list,
166
+ metric_list=metric_list,
167
+ few_shot_num=few_shot_num,
168
+ train_split=train_split,
169
+ eval_split=eval_split,
170
+ **kwargs)
169
171
 
170
172
  def load_from_disk(self, dataset_name_or_path, subset_list, work_dir, **kwargs) -> dict:
171
173
  data_dict = {}
@@ -227,8 +229,7 @@ class MMLUAdapter(DataAdapter):
227
229
 
228
230
  """
229
231
  prompt = 'The following are multiple choice questions (with answers) about {}.\n\n'.format(
230
- self._format_subject(subset_name)
231
- )
232
+ self._format_subject(subset_name))
232
233
  few_shot_prompts = [self._generate_prompt(input_d=sample, include_answer=True) for sample in few_shot_list]
233
234
 
234
235
  context: str = '\n'.join(few_shot_prompts) + '\n'
@@ -335,19 +336,26 @@ class MMLUAdapter(DataAdapter):
335
336
  domain_weighted_avg_acc = sum([score * num for _, score, num in domain_res_list]) / \
336
337
  sum([num for _, _, num in domain_res_list])
337
338
  domain_weighted_avg_acc = normalize_score(score=domain_weighted_avg_acc)
338
- category_list.append({'name': domain_name,
339
- 'score': domain_weighted_avg_acc,
340
- 'subset': [{'name': subset_name, 'score': normalize_score(score=subset_score)}
341
- for subset_name, subset_score, _ in domain_res_list]})
339
+ category_list.append({
340
+ 'name':
341
+ domain_name,
342
+ 'score':
343
+ domain_weighted_avg_acc,
344
+ 'subset': [{
345
+ 'name': subset_name,
346
+ 'score': normalize_score(score=subset_score)
347
+ } for subset_name, subset_score, _ in domain_res_list]
348
+ })
342
349
 
343
350
  category_list = sorted(category_list, key=lambda x: x['name'])
344
351
 
345
352
  # Get final dict of report
346
- res_map = dict(name=report_name or 'mmlu',
347
- metric=self.metric_list[0]['name'],
348
- score=weighted_avg_acc,
349
- category=category_list,
350
- total_num=total_num)
353
+ res_map = dict(
354
+ name=report_name or 'mmlu',
355
+ metric=self.metric_list[0]['name'],
356
+ score=weighted_avg_acc,
357
+ category=category_list,
358
+ total_num=total_num)
351
359
 
352
360
  return res_map
353
361
 
@@ -1,5 +1,6 @@
1
1
  # Copyright (c) Alibaba, Inc. and its affiliates.
2
2
 
3
- from evalscope.benchmarks.race.race_adapter import DATASET_ID, SUBJECT_MAPPING, SUBSET_LIST, RACEAdapter
3
+ from evalscope.benchmarks.race.race_adapter import DATASET_ID, SUBJECT_MAPPING, SUBSET_LIST
4
+ from evalscope.benchmarks.race.race_adapter import RACEAdapter
4
5
  from evalscope.benchmarks.race.race_adapter import RACEAdapter as DataAdapterClass
5
- from evalscope.models.model_adapter import MultiChoiceModelAdapter as ModelAdapterClass # noqa
6
+ from evalscope.models.model_adapter import MultiChoiceModelAdapter as ModelAdapterClass # noqa
@@ -11,12 +11,10 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
- import os
15
-
16
14
  import datasets
15
+ import os
17
16
  import pandas as pd
18
17
 
19
-
20
18
  _CITATION = """\
21
19
  @inproceedings{lai-etal-2017-race,
22
20
  title = "{RACE}: Large-scale {R}e{A}ding Comprehension Dataset From Examinations",
@@ -40,39 +38,33 @@ _DESCRIPTION = """\
40
38
  RACE is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions.
41
39
  """
42
40
 
43
- _HOMEPAGE = "https://modelscope.cn/datasets/modelscope/race/summary"
41
+ _HOMEPAGE = 'https://modelscope.cn/datasets/modelscope/race/summary'
44
42
 
45
- _URL = "https://modelscope.cn/api/v1/datasets/modelscope/race/repo?Revision=master&FilePath=race.zip"
43
+ _URL = 'https://modelscope.cn/api/v1/datasets/modelscope/race/repo?Revision=master&FilePath=race.zip'
46
44
 
47
45
  task_list = [
48
- "high",
49
- "middle",
46
+ 'high',
47
+ 'middle',
50
48
  ]
51
49
 
52
50
 
53
51
  class RACEConfig(datasets.BuilderConfig):
52
+
54
53
  def __init__(self, **kwargs):
55
- super().__init__(version=datasets.Version("1.0.0"), **kwargs)
54
+ super().__init__(version=datasets.Version('1.0.0'), **kwargs)
56
55
 
57
56
 
58
57
  class RACE(datasets.GeneratorBasedBuilder):
59
- BUILDER_CONFIGS = [
60
- RACEConfig(
61
- name=task_name,
62
- )
63
- for task_name in task_list
64
- ]
58
+ BUILDER_CONFIGS = [RACEConfig(name=task_name, ) for task_name in task_list]
65
59
 
66
60
  def _info(self):
67
- features = datasets.Features(
68
- {
69
- "example_id": datasets.Value("string"),
70
- "article": datasets.Value("string"),
71
- "answer": datasets.Value("string"),
72
- "question": datasets.Value("string"),
73
- "options": [datasets.Value("string")],
74
- }
75
- )
61
+ features = datasets.Features({
62
+ 'example_id': datasets.Value('string'),
63
+ 'article': datasets.Value('string'),
64
+ 'answer': datasets.Value('string'),
65
+ 'question': datasets.Value('string'),
66
+ 'options': [datasets.Value('string')],
67
+ })
76
68
  return datasets.DatasetInfo(
77
69
  description=_DESCRIPTION,
78
70
  features=features,
@@ -87,32 +79,26 @@ class RACE(datasets.GeneratorBasedBuilder):
87
79
  datasets.SplitGenerator(
88
80
  name=datasets.Split.TEST,
89
81
  gen_kwargs={
90
- "filepath": os.path.join(
91
- data_dir, f"race/test/{task_name}-00000-of-00001.parquet"
92
- ),
82
+ 'filepath': os.path.join(data_dir, f'race/test/{task_name}-00000-of-00001.parquet'),
93
83
  },
94
84
  ),
95
85
  datasets.SplitGenerator(
96
86
  name=datasets.Split.VALIDATION,
97
87
  gen_kwargs={
98
- "filepath": os.path.join(
99
- data_dir, f"race/val/{task_name}-00000-of-00001.parquet"
100
- ),
88
+ 'filepath': os.path.join(data_dir, f'race/val/{task_name}-00000-of-00001.parquet'),
101
89
  },
102
90
  ),
103
91
  datasets.SplitGenerator(
104
92
  name=datasets.Split.TRAIN,
105
93
  gen_kwargs={
106
- "filepath": os.path.join(
107
- data_dir, f"race/train/{task_name}-00000-of-00001.parquet"
108
- ),
94
+ 'filepath': os.path.join(data_dir, f'race/train/{task_name}-00000-of-00001.parquet'),
109
95
  },
110
96
  ),
111
97
  ]
112
98
 
113
99
  def _generate_examples(self, filepath):
114
100
  df = pd.read_parquet(filepath)
115
- df.columns = ["example_id", "article", "answer", "question", "options"]
101
+ df.columns = ['example_id', 'article', 'answer', 'question', 'options']
116
102
 
117
- for i, instance in enumerate(df.to_dict(orient="records")):
118
- yield i, instance
103
+ for i, instance in enumerate(df.to_dict(orient='records')):
104
+ yield i, instance
@@ -1,26 +1,22 @@
1
1
  # Copyright (c) Alibaba, Inc. and its affiliates.
2
2
 
3
- import os
4
3
  import json
4
+ import os
5
+
5
6
  from evalscope.benchmarks.data_adapter import DataAdapter
6
7
  from evalscope.metrics.metrics import exact_match, weighted_mean
7
- from evalscope.utils import normalize_score, jsonl_to_list
8
+ from evalscope.utils import jsonl_to_list, normalize_score
8
9
  from evalscope.utils.logger import get_logger
10
+
9
11
  # flake8: noqa
10
12
 
11
13
  logger = get_logger()
12
14
 
13
15
  DATASET_ID = 'modelscope/race'
14
16
 
15
- SUBSET_LIST = [
16
- "high",
17
- "middle"
18
- ]
19
-
17
+ SUBSET_LIST = ['high', 'middle']
20
18
 
21
- SUBJECT_MAPPING = {"high": "High",
22
- "middle": "Middle"
23
- }
19
+ SUBJECT_MAPPING = {'high': 'High', 'middle': 'Middle'}
24
20
 
25
21
 
26
22
  class RACEAdapter(DataAdapter):
@@ -49,12 +45,13 @@ class RACEAdapter(DataAdapter):
49
45
  logger.warning(f'few_shot_num <= 3 for RACE, but got {few_shot_num}. Use 3-shot by default.')
50
46
  few_shot_num = 3
51
47
 
52
- super().__init__(subset_list=subset_list,
53
- metric_list=metric_list,
54
- few_shot_num=few_shot_num,
55
- train_split=train_split,
56
- eval_split=eval_split,
57
- **kwargs)
48
+ super().__init__(
49
+ subset_list=subset_list,
50
+ metric_list=metric_list,
51
+ few_shot_num=few_shot_num,
52
+ train_split=train_split,
53
+ eval_split=eval_split,
54
+ **kwargs)
58
55
 
59
56
  def load_from_disk(self, dataset_name_or_path, subset_list, work_dir, **kwargs) -> dict:
60
57
  data_dict = {}
@@ -92,8 +89,7 @@ class RACEAdapter(DataAdapter):
92
89
 
93
90
  """
94
91
  prompt = 'The following are multiple choice reading comprehension questions (with answers).\n\n'.format(
95
- self._format_subject(subset_name)
96
- )
92
+ self._format_subject(subset_name))
97
93
  few_shot_prompts = [self._generate_prompt(input_d=sample, include_answer=True) for sample in few_shot_list]
98
94
 
99
95
  context: str = '\n'.join(few_shot_prompts) + '\n'
@@ -122,9 +118,9 @@ class RACEAdapter(DataAdapter):
122
118
  """
123
119
  if eval_type == 'checkpoint':
124
120
  return result
125
- elif eval_type == 'service': # TODO: to be implemented
121
+ elif eval_type == 'service': # TODO: to be implemented
126
122
  return result
127
- elif eval_type == 'custom': # TODO: to be implemented
123
+ elif eval_type == 'custom': # TODO: to be implemented
128
124
  return result
129
125
  else:
130
126
  raise ValueError(f'Unknown eval_type: {eval_type}')
@@ -191,17 +187,24 @@ class RACEAdapter(DataAdapter):
191
187
  domain_weighted_avg_acc = sum([score * num for _, score, num in domain_res_list]) / \
192
188
  sum([num for _, _, num in domain_res_list])
193
189
  domain_weighted_avg_acc = normalize_score(score=domain_weighted_avg_acc)
194
- category_list.append({'name': domain_name,
195
- 'score': normalize_score(score=domain_weighted_avg_acc),
196
- 'subset': [{'name': subset_name, 'score': subset_score}
197
- for subset_name, subset_score, _ in domain_res_list]})
190
+ category_list.append({
191
+ 'name':
192
+ domain_name,
193
+ 'score':
194
+ normalize_score(score=domain_weighted_avg_acc),
195
+ 'subset': [{
196
+ 'name': subset_name,
197
+ 'score': subset_score
198
+ } for subset_name, subset_score, _ in domain_res_list]
199
+ })
198
200
 
199
201
  # Get final dict of report
200
- res_map = dict(name=report_name or 'race',
201
- metric=self.metric_list[0]['name'],
202
- score=weighted_avg_acc,
203
- category=category_list,
204
- total_num=total_num)
202
+ res_map = dict(
203
+ name=report_name or 'race',
204
+ metric=self.metric_list[0]['name'],
205
+ score=weighted_avg_acc,
206
+ category=category_list,
207
+ total_num=total_num)
205
208
 
206
209
  return res_map
207
210
 
@@ -2,4 +2,4 @@
2
2
  {'example_id': 'middle3329.txt', 'article': 'Do you know why diff...ng at all.', 'answer': 'B', 'question': 'Those pests with dif...of danger.', 'options': ['change their colours', 'hide in the day time...r at night', 'move quietly', 'hide at night and ap...e day time']}
3
3
  {'example_id': 'middle3614.txt', 'article': 'The seahorse is a ve...o the sea.', 'answer': 'B', 'question': 'A seahorse eats _ .', 'options': ['sea weed', 'small fish', 'water', 'nothing']}
4
4
  {'example_id': 'middle6632.txt', 'article': 'Kids have unbelievab...h at her."', 'answer': 'D', 'question': 'Which is NOT mention...e passage?', 'options': ['Robots keep secrets.', 'Robots give suggestions.', 'Robots do chores.', 'Robots make movies.']}
5
- {'example_id': 'middle3503.txt', 'article': 'Have you ever heard ...eir lives.', 'answer': 'B', 'question': 'Which of the followi...lue moon"?', 'options': ['Simon often tells jo...blue moon.', 'Tom rarely remembers...blue moon.', 'Mary likes to go sho...blue moon.', 'Cindy hates to stay ...blue moon.']}
5
+ {'example_id': 'middle3503.txt', 'article': 'Have you ever heard ...eir lives.', 'answer': 'B', 'question': 'Which of the followi...lue moon"?', 'options': ['Simon often tells jo...blue moon.', 'Tom rarely remembers...blue moon.', 'Mary likes to go sho...blue moon.', 'Cindy hates to stay ...blue moon.']}
@@ -1,5 +1,6 @@
1
1
  # Copyright (c) Alibaba, Inc. and its affiliates.
2
2
 
3
- from evalscope.benchmarks.trivia_qa.trivia_qa_adapter import TriviaQaAdapter, DATASET_ID, SUBSET_LIST
3
+ from evalscope.benchmarks.trivia_qa.trivia_qa_adapter import DATASET_ID, SUBSET_LIST
4
+ from evalscope.benchmarks.trivia_qa.trivia_qa_adapter import TriviaQaAdapter
4
5
  from evalscope.benchmarks.trivia_qa.trivia_qa_adapter import TriviaQaAdapter as DataAdapterClass
5
- from evalscope.models.model_adapter import ChatGenerationModelAdapter as ModelAdapterClass # noqa
6
+ from evalscope.models.model_adapter import ChatGenerationModelAdapter as ModelAdapterClass # noqa
@@ -2,4 +2,4 @@
2
2
  {"input": [{"role": "system", "content": "Follow the given examples and answer the question."}, {"role": "user", "content": "Which Lloyd Webber musical premiered in the US on 10th December 1993?"}], "ideal": ["Sunset Blvd", "West Sunset Boulevard", "Sunset Boulevard", "Sunset Bulevard", "Sunset Blvd.", "sunset boulevard", "sunset bulevard", "west sunset boulevard", "sunset blvd"]}
3
3
  {"input": [{"role": "system", "content": "Follow the given examples and answer the question."}, {"role": "user", "content": "Who was the next British Prime Minister after Arthur Balfour?"}], "ideal": ["Sir Henry Campbell-Bannerman", "Campbell-Bannerman", "Campbell Bannerman", "Sir Henry Campbell Bannerman", "Henry Campbell Bannerman", "Henry Campbell-Bannerman", "henry campbell bannerman", "sir henry campbell bannerman", "campbell bannerman"]}
4
4
  {"input": [{"role": "system", "content": "Follow the given examples and answer the question."}, {"role": "user", "content": "Who had a 70s No 1 hit with Kiss You All Over?"}], "ideal": ["Internal exile", "Exiles", "Transported for life", "Exile (politics and government)", "Voluntary exile", "Sent into exile", "Exile and Banishment", "Self-exile", "Forced exile", "Exile", "Exile in Greek tragedy", "Banish", "Banishment", "exiles", "voluntary exile", "forced exile", "banish", "self exile", "exile politics and government", "exile in greek tragedy", "sent into exile", "banishment", "transported for life", "exile", "internal exile", "exile and banishment"]}
5
- {"input": [{"role": "system", "content": "Follow the given examples and answer the question."}, {"role": "user", "content": "What claimed the life of singer Kathleen Ferrier?"}], "ideal": ["Cancer pathology", "Deaths by cancer", "Anti-cancer", "Cancer (disease)", "Cancerophobia", "Malignant lesion", "Cancer medication", "Malignant tumors", "Cancer signs", "Malignant neoplasm", "Invasive (cancer)", "Malignant Neoplasms", "Malignant growth", "Sporadic cancer", "Malignant cancer", "Tumour virus", "Cancer en cuirasse", "Microtumor", "Malignant neoplasms", "Malignant tumour", "Carcinophobia", "Malignacy", "Cancer patient", "Epithelial cancers", "Solid cancer", "Cancers", "Tumor medication", "Malignant neoplastic disease", "AIDS-related cancer", "Invasive cancer", "Cancer therapy", "Cancerous tumor", "Cancer", "Financial toxicity", "Cancer diagnosis", "Cancer (medicine)", "Malignant tumor", "Cancerous", "Borderline (cancer)", "Signs of cancer", "Malignancies", "Cancer aromatase", "aids related cancer", "sporadic cancer", "cancer disease", "malignant tumors", "cancers", "carcinophobia", "cancer", "cancer diagnosis", "malignant neoplastic disease", "malignant neoplasm", "tumour virus", "cancer medicine", "deaths by cancer", "malignant tumour", "epithelial cancers", "solid cancer", "cancerous", "borderline cancer", "invasive cancer", "anti cancer", "cancer pathology", "cancer signs", "cancer aromatase", "cancer therapy", "financial toxicity", "cancerophobia", "cancer en cuirasse", "cancer patient", "cancerous tumor", "malignant cancer", "malignant neoplasms", "tumor medication", "signs of cancer", "malignacy", "malignant tumor", "cancer medication", "microtumor", "malignancies", "malignant lesion", "malignant growth"]}
5
+ {"input": [{"role": "system", "content": "Follow the given examples and answer the question."}, {"role": "user", "content": "What claimed the life of singer Kathleen Ferrier?"}], "ideal": ["Cancer pathology", "Deaths by cancer", "Anti-cancer", "Cancer (disease)", "Cancerophobia", "Malignant lesion", "Cancer medication", "Malignant tumors", "Cancer signs", "Malignant neoplasm", "Invasive (cancer)", "Malignant Neoplasms", "Malignant growth", "Sporadic cancer", "Malignant cancer", "Tumour virus", "Cancer en cuirasse", "Microtumor", "Malignant neoplasms", "Malignant tumour", "Carcinophobia", "Malignacy", "Cancer patient", "Epithelial cancers", "Solid cancer", "Cancers", "Tumor medication", "Malignant neoplastic disease", "AIDS-related cancer", "Invasive cancer", "Cancer therapy", "Cancerous tumor", "Cancer", "Financial toxicity", "Cancer diagnosis", "Cancer (medicine)", "Malignant tumor", "Cancerous", "Borderline (cancer)", "Signs of cancer", "Malignancies", "Cancer aromatase", "aids related cancer", "sporadic cancer", "cancer disease", "malignant tumors", "cancers", "carcinophobia", "cancer", "cancer diagnosis", "malignant neoplastic disease", "malignant neoplasm", "tumour virus", "cancer medicine", "deaths by cancer", "malignant tumour", "epithelial cancers", "solid cancer", "cancerous", "borderline cancer", "invasive cancer", "anti cancer", "cancer pathology", "cancer signs", "cancer aromatase", "cancer therapy", "financial toxicity", "cancerophobia", "cancer en cuirasse", "cancer patient", "cancerous tumor", "malignant cancer", "malignant neoplasms", "tumor medication", "signs of cancer", "malignacy", "malignant tumor", "cancer medication", "microtumor", "malignancies", "malignant lesion", "malignant growth"]}