evalscope 0.5.5rc0__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of evalscope might be problematic. Click here for more details.

Files changed (49) hide show
  1. evalscope/backend/__init__.py +0 -3
  2. evalscope/backend/opencompass/tasks/eval_datasets.py +1 -1
  3. evalscope/backend/rag_eval/__init__.py +4 -0
  4. evalscope/backend/rag_eval/backend_manager.py +80 -0
  5. evalscope/backend/rag_eval/clip_benchmark/__init__.py +2 -0
  6. evalscope/backend/rag_eval/clip_benchmark/arguments.py +34 -0
  7. evalscope/backend/rag_eval/clip_benchmark/dataset_builder.py +277 -0
  8. evalscope/backend/rag_eval/clip_benchmark/task_template.py +119 -0
  9. evalscope/backend/rag_eval/clip_benchmark/tasks/__init__.py +0 -0
  10. evalscope/backend/rag_eval/clip_benchmark/tasks/image_caption.py +83 -0
  11. evalscope/backend/rag_eval/clip_benchmark/tasks/zeroshot_classification.py +247 -0
  12. evalscope/backend/rag_eval/clip_benchmark/tasks/zeroshot_retrieval.py +170 -0
  13. evalscope/backend/rag_eval/cmteb/__init__.py +4 -0
  14. evalscope/backend/rag_eval/cmteb/arguments.py +61 -0
  15. evalscope/backend/rag_eval/cmteb/base.py +91 -0
  16. evalscope/backend/rag_eval/cmteb/task_template.py +85 -0
  17. evalscope/backend/rag_eval/cmteb/tasks/Classification.py +302 -0
  18. evalscope/backend/rag_eval/cmteb/tasks/Clustering.py +252 -0
  19. evalscope/backend/rag_eval/cmteb/tasks/CustomTask.py +61 -0
  20. evalscope/backend/rag_eval/cmteb/tasks/PairClassification.py +113 -0
  21. evalscope/backend/rag_eval/cmteb/tasks/Reranking.py +151 -0
  22. evalscope/backend/rag_eval/cmteb/tasks/Retrieval.py +345 -0
  23. evalscope/backend/rag_eval/cmteb/tasks/STS.py +302 -0
  24. evalscope/backend/rag_eval/cmteb/tasks/__init__.py +70 -0
  25. evalscope/backend/rag_eval/ragas/__init__.py +2 -0
  26. evalscope/backend/rag_eval/ragas/arguments.py +47 -0
  27. evalscope/backend/rag_eval/ragas/metrics/__init__.py +2 -0
  28. evalscope/backend/rag_eval/ragas/metrics/multi_modal_faithfulness.py +91 -0
  29. evalscope/backend/rag_eval/ragas/metrics/multi_modal_relevance.py +99 -0
  30. evalscope/backend/rag_eval/ragas/task_template.py +61 -0
  31. evalscope/backend/rag_eval/ragas/tasks/__init__.py +2 -0
  32. evalscope/backend/rag_eval/ragas/tasks/testset_generation.py +263 -0
  33. evalscope/backend/rag_eval/ragas/tasks/translate_prompt.py +72 -0
  34. evalscope/backend/vlm_eval_kit/backend_manager.py +0 -1
  35. evalscope/backend/vlm_eval_kit/custom_dataset.py +1 -1
  36. evalscope/evaluator/evaluator.py +1 -0
  37. evalscope/metrics/bundled_rouge_score/rouge_scorer.py +19 -0
  38. evalscope/models/api/openai_api.py +2 -2
  39. evalscope/perf/http_client.py +1 -1
  40. evalscope/perf/openai_api.py +2 -0
  41. evalscope/run.py +4 -0
  42. evalscope/utils/logger.py +44 -14
  43. evalscope/utils/task_utils.py +3 -0
  44. evalscope/version.py +2 -2
  45. {evalscope-0.5.5rc0.dist-info → evalscope-0.6.0.dist-info}/METADATA +95 -99
  46. {evalscope-0.5.5rc0.dist-info → evalscope-0.6.0.dist-info}/RECORD +49 -18
  47. {evalscope-0.5.5rc0.dist-info → evalscope-0.6.0.dist-info}/WHEEL +1 -1
  48. {evalscope-0.5.5rc0.dist-info → evalscope-0.6.0.dist-info}/entry_points.txt +0 -0
  49. {evalscope-0.5.5rc0.dist-info → evalscope-0.6.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,302 @@
1
+ from mteb.abstasks.AbsTaskClassification import AbsTaskClassification
2
+ from mteb.abstasks.TaskMetadata import TaskMetadata
3
+
4
+
5
+ class TNews(AbsTaskClassification):
6
+ metadata = TaskMetadata(
7
+ name="TNews",
8
+ description="Short Text Classification for News",
9
+ reference="https://www.cluebenchmarks.com/introduce.html",
10
+ dataset={
11
+ "path": "C-MTEB/TNews-classification",
12
+ "revision": "317f262bf1e6126357bbe89e875451e4b0938fe4",
13
+ },
14
+ type="Classification",
15
+ category="s2s",
16
+ modalities=["text"],
17
+ eval_splits=["validation"],
18
+ eval_langs=["cmn-Hans"],
19
+ main_score="accuracy",
20
+ date=None,
21
+ domains=None,
22
+ task_subtypes=None,
23
+ license=None,
24
+ annotations_creators=None,
25
+ dialect=None,
26
+ sample_creation=None,
27
+ bibtex_citation="""@inproceedings {xu-etal-2020-clue,
28
+ title = "{CLUE}: A {C}hinese Language Understanding Evaluation Benchmark",
29
+ author = "Xu, Liang and
30
+ Hu, Hai and
31
+ Zhang, Xuanwei and
32
+ Li, Lu and
33
+ Cao, Chenjie and
34
+ Li, Yudong and
35
+ Xu, Yechen and
36
+ Sun, Kai and
37
+ Yu, Dian and
38
+ Yu, Cong and
39
+ Tian, Yin and
40
+ Dong, Qianqian and
41
+ Liu, Weitang and
42
+ Shi, Bo and
43
+ Cui, Yiming and
44
+ Li, Junyi and
45
+ Zeng, Jun and
46
+ Wang, Rongzhao and
47
+ Xie, Weijian and
48
+ Li, Yanting and
49
+ Patterson, Yina and
50
+ Tian, Zuoyu and
51
+ Zhang, Yiwen and
52
+ Zhou, He and
53
+ Liu, Shaoweihua and
54
+ Zhao, Zhe and
55
+ Zhao, Qipeng and
56
+ Yue, Cong and
57
+ Zhang, Xinrui and
58
+ Yang, Zhengliang and
59
+ Richardson, Kyle and
60
+ Lan, Zhenzhong ",
61
+ booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
62
+ month = dec,
63
+ year = "2020",
64
+ address = "Barcelona, Spain (Online)",
65
+ publisher = "International Committee on Computational Linguistics",
66
+ url = "https://aclanthology.org/2020.coling-main.419",
67
+ doi = "10.18653/v1/2020.coling-main.419",
68
+ pages = "4762--4772",
69
+ }""",
70
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
71
+ )
72
+
73
+ @property
74
+ def metadata_dict(self) -> dict[str, str]:
75
+ metadata_dict = super().metadata_dict
76
+ metadata_dict["samples_per_label"] = 32
77
+ return metadata_dict
78
+
79
+
80
+ class IFlyTek(AbsTaskClassification):
81
+ metadata = TaskMetadata(
82
+ name="IFlyTek",
83
+ description="Long Text classification for the description of Apps",
84
+ reference="https://www.cluebenchmarks.com/introduce.html",
85
+ dataset={
86
+ "path": "C-MTEB/IFlyTek-classification",
87
+ "revision": "421605374b29664c5fc098418fe20ada9bd55f8a",
88
+ },
89
+ type="Classification",
90
+ category="s2s",
91
+ modalities=["text"],
92
+ eval_splits=["validation"],
93
+ eval_langs=["cmn-Hans"],
94
+ main_score="accuracy",
95
+ date=None,
96
+ domains=None,
97
+ task_subtypes=None,
98
+ license=None,
99
+ annotations_creators=None,
100
+ dialect=None,
101
+ sample_creation=None,
102
+ bibtex_citation="""@inproceedings {xu-etal-2020-clue,
103
+ title = "{CLUE}: A {C}hinese Language Understanding Evaluation Benchmark",
104
+ author = "Xu, Liang and
105
+ Hu, Hai and
106
+ Zhang, Xuanwei and
107
+ Li, Lu and
108
+ Cao, Chenjie and
109
+ Li, Yudong and
110
+ Xu, Yechen and
111
+ Sun, Kai and
112
+ Yu, Dian and
113
+ Yu, Cong and
114
+ Tian, Yin and
115
+ Dong, Qianqian and
116
+ Liu, Weitang and
117
+ Shi, Bo and
118
+ Cui, Yiming and
119
+ Li, Junyi and
120
+ Zeng, Jun and
121
+ Wang, Rongzhao and
122
+ Xie, Weijian and
123
+ Li, Yanting and
124
+ Patterson, Yina and
125
+ Tian, Zuoyu and
126
+ Zhang, Yiwen and
127
+ Zhou, He and
128
+ Liu, Shaoweihua and
129
+ Zhao, Zhe and
130
+ Zhao, Qipeng and
131
+ Yue, Cong and
132
+ Zhang, Xinrui and
133
+ Yang, Zhengliang and
134
+ Richardson, Kyle and
135
+ Lan, Zhenzhong ",
136
+ booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
137
+ month = dec,
138
+ year = "2020",
139
+ address = "Barcelona, Spain (Online)",
140
+ publisher = "International Committee on Computational Linguistics",
141
+ url = "https://aclanthology.org/2020.coling-main.419",
142
+ doi = "10.18653/v1/2020.coling-main.419",
143
+ pages = "4762--4772",
144
+ abstract = "The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.cluebenchmarks.com",
145
+ }""",
146
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
147
+ )
148
+
149
+ @property
150
+ def metadata_dict(self) -> dict[str, str]:
151
+ metadata_dict = super().metadata_dict
152
+ metadata_dict["samples_per_label"] = 32
153
+ metadata_dict["n_experiments"] = 5
154
+ return metadata_dict
155
+
156
+
157
+ class MultilingualSentiment(AbsTaskClassification):
158
+ metadata = TaskMetadata(
159
+ name="MultilingualSentiment",
160
+ description="A collection of multilingual sentiments datasets grouped into 3 classes -- positive, neutral, negative",
161
+ reference="https://github.com/tyqiangz/multilingual-sentiment-datasets",
162
+ dataset={
163
+ "path": "C-MTEB/MultilingualSentiment-classification",
164
+ "revision": "46958b007a63fdbf239b7672c25d0bea67b5ea1a",
165
+ },
166
+ type="Classification",
167
+ category="s2s",
168
+ modalities=["text"],
169
+ eval_splits=["validation", "test"],
170
+ eval_langs=["cmn-Hans"],
171
+ main_score="accuracy",
172
+ date=None,
173
+ domains=None,
174
+ task_subtypes=None,
175
+ license=None,
176
+ annotations_creators=None,
177
+ dialect=None,
178
+ sample_creation=None,
179
+ bibtex_citation=None,
180
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
181
+ )
182
+
183
+ @property
184
+ def metadata_dict(self) -> dict[str, str]:
185
+ metadata_dict = super().metadata_dict
186
+ metadata_dict["samples_per_label"] = 32
187
+ return metadata_dict
188
+
189
+
190
+ class JDReview(AbsTaskClassification):
191
+ metadata = TaskMetadata(
192
+ name="JDReview",
193
+ description="review for iphone",
194
+ reference="https://aclanthology.org/2023.nodalida-1.20/",
195
+ dataset={
196
+ "path": "C-MTEB/JDReview-classification",
197
+ "revision": "b7c64bd89eb87f8ded463478346f76731f07bf8b",
198
+ },
199
+ type="Classification",
200
+ category="s2s",
201
+ modalities=["text"],
202
+ eval_splits=["test"],
203
+ eval_langs=["cmn-Hans"],
204
+ main_score="accuracy",
205
+ date=None,
206
+ domains=None,
207
+ task_subtypes=None,
208
+ license=None,
209
+ annotations_creators=None,
210
+ dialect=None,
211
+ sample_creation=None,
212
+ bibtex_citation="""@article{xiao2023c,
213
+ title={C-pack: Packaged resources to advance general chinese embedding},
214
+ author={Xiao, Shitao and Liu, Zheng and Zhang, Peitian and Muennighof, Niklas},
215
+ journal={arXiv preprint arXiv:2309.07597},
216
+ year={2023}
217
+ }""",
218
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
219
+ )
220
+
221
+ @property
222
+ def metadata_dict(self) -> dict[str, str]:
223
+ metadata_dict = super().metadata_dict
224
+ metadata_dict["samples_per_label"] = 32
225
+ return metadata_dict
226
+
227
+
228
+ class OnlineShopping(AbsTaskClassification):
229
+ metadata = TaskMetadata(
230
+ name="OnlineShopping",
231
+ description="Sentiment Analysis of User Reviews on Online Shopping Websites",
232
+ reference="https://aclanthology.org/2023.nodalida-1.20/",
233
+ dataset={
234
+ "path": "C-MTEB/OnlineShopping-classification",
235
+ "revision": "e610f2ebd179a8fda30ae534c3878750a96db120",
236
+ },
237
+ type="Classification",
238
+ category="s2s",
239
+ modalities=["text"],
240
+ eval_splits=["test"],
241
+ eval_langs=["cmn-Hans"],
242
+ main_score="accuracy",
243
+ date=None,
244
+ domains=None,
245
+ task_subtypes=None,
246
+ license=None,
247
+ annotations_creators=None,
248
+ dialect=None,
249
+ sample_creation=None,
250
+ bibtex_citation="""@article{xiao2023c,
251
+ title={C-pack: Packaged resources to advance general chinese embedding},
252
+ author={Xiao, Shitao and Liu, Zheng and Zhang, Peitian and Muennighof, Niklas},
253
+ journal={arXiv preprint arXiv:2309.07597},
254
+ year={2023}
255
+ }""",
256
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
257
+ )
258
+
259
+ @property
260
+ def metadata_dict(self) -> dict[str, str]:
261
+ metadata_dict = super().metadata_dict
262
+ metadata_dict["samples_per_label"] = 32
263
+ return metadata_dict
264
+
265
+
266
+ class Waimai(AbsTaskClassification):
267
+ metadata = TaskMetadata(
268
+ name="Waimai",
269
+ description="Sentiment Analysis of user reviews on takeaway platforms",
270
+ reference="https://aclanthology.org/2023.nodalida-1.20/",
271
+ dataset={
272
+ "path": "C-MTEB/waimai-classification",
273
+ "revision": "339287def212450dcaa9df8c22bf93e9980c7023",
274
+ },
275
+ type="Classification",
276
+ category="s2s",
277
+ modalities=["text"],
278
+ eval_splits=["test"],
279
+ eval_langs=["cmn-Hans"],
280
+ main_score="accuracy",
281
+ date=None,
282
+ domains=None,
283
+ task_subtypes=None,
284
+ license=None,
285
+ annotations_creators=None,
286
+ dialect=None,
287
+ sample_creation=None,
288
+ bibtex_citation="""@article{xiao2023c,
289
+ title={C-pack: Packaged resources to advance general chinese embedding},
290
+ author={Xiao, Shitao and Liu, Zheng and Zhang, Peitian and Muennighof, Niklas},
291
+ journal={arXiv preprint arXiv:2309.07597},
292
+ year={2023}
293
+ }""",
294
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
295
+ )
296
+
297
+ @property
298
+ def metadata_dict(self) -> dict[str, str]:
299
+ metadata_dict = super().metadata_dict
300
+ metadata_dict["samples_per_label"] = 32
301
+
302
+ return metadata_dict
@@ -0,0 +1,252 @@
1
+ import itertools
2
+
3
+ from datasets import Dataset, DatasetDict
4
+
5
+ from mteb.abstasks.AbsTaskClustering import AbsTaskClustering
6
+ from mteb.abstasks.AbsTaskClusteringFast import (
7
+ AbsTaskClusteringFast,
8
+ check_label_distribution,
9
+ )
10
+ from mteb.abstasks.TaskMetadata import TaskMetadata
11
+
12
+ NUM_SAMPLES = 2048
13
+
14
+
15
+ class CLSClusteringFastS2S(AbsTaskClusteringFast):
16
+ max_document_to_embed = NUM_SAMPLES
17
+ max_fraction_of_documents_to_embed = None
18
+
19
+ metadata = TaskMetadata(
20
+ name="CLSClusteringS2S",
21
+ description="Clustering of titles from CLS dataset. Clustering of 13 sets on the main category.",
22
+ reference="https://arxiv.org/abs/2209.05034",
23
+ dataset={
24
+ "path": "C-MTEB/CLSClusteringS2S",
25
+ "revision": "e458b3f5414b62b7f9f83499ac1f5497ae2e869f",
26
+ },
27
+ type="Clustering",
28
+ category="s2s",
29
+ modalities=["text"],
30
+ eval_splits=["test"],
31
+ eval_langs=["cmn-Hans"],
32
+ main_score="v_measure",
33
+ date=("2022-01-01", "2022-09-12"),
34
+ domains=["Academic", "Written"],
35
+ task_subtypes=["Thematic clustering", "Topic classification"],
36
+ license="Apache-2.0",
37
+ annotations_creators="derived",
38
+ dialect=[],
39
+ sample_creation="found",
40
+ bibtex_citation="""@misc{li2022csl,
41
+ title={CSL: A Large-scale Chinese Scientific Literature Dataset},
42
+ author={Yudong Li and Yuqing Zhang and Zhe Zhao and Linlin Shen and Weijie Liu and Weiquan Mao and Hui Zhang},
43
+ year={2022},
44
+ eprint={2209.05034},
45
+ archivePrefix={arXiv},
46
+ primaryClass={cs.CL}
47
+ }""",
48
+ descriptive_stats={
49
+ "n_samples": {"test": NUM_SAMPLES},
50
+ "avg_character_length": {},
51
+ },
52
+ )
53
+
54
+ def dataset_transform(self):
55
+ ds = {}
56
+ for split in self.metadata.eval_splits:
57
+ labels = list(itertools.chain.from_iterable(self.dataset[split]["labels"]))
58
+ sentences = list(
59
+ itertools.chain.from_iterable(self.dataset[split]["sentences"])
60
+ )
61
+
62
+ check_label_distribution(self.dataset[split])
63
+
64
+ ds[split] = Dataset.from_dict({"labels": labels, "sentences": sentences})
65
+ self.dataset = DatasetDict(ds)
66
+ self.dataset = self.stratified_subsampling(
67
+ self.dataset,
68
+ self.seed,
69
+ self.metadata.eval_splits,
70
+ label="labels",
71
+ n_samples=NUM_SAMPLES,
72
+ )
73
+
74
+
75
+ class CLSClusteringFastP2P(AbsTaskClusteringFast):
76
+ max_document_to_embed = NUM_SAMPLES
77
+ max_fraction_of_documents_to_embed = None
78
+
79
+ metadata = TaskMetadata(
80
+ name="CLSClusteringP2P",
81
+ description="Clustering of titles + abstract from CLS dataset. Clustering of 13 sets on the main category.",
82
+ reference="https://arxiv.org/abs/2209.05034",
83
+ dataset={
84
+ "path": "C-MTEB/CLSClusteringP2P",
85
+ "revision": "4b6227591c6c1a73bc76b1055f3b7f3588e72476",
86
+ },
87
+ type="Clustering",
88
+ category="p2p",
89
+ modalities=["text"],
90
+ eval_splits=["test"],
91
+ eval_langs=["cmn-Hans"],
92
+ main_score="v_measure",
93
+ date=("2022-01-01", "2022-09-12"),
94
+ domains=["Academic", "Written"],
95
+ task_subtypes=["Thematic clustering", "Topic classification"],
96
+ license="Apache-2.0",
97
+ annotations_creators="derived",
98
+ dialect=[],
99
+ sample_creation="found",
100
+ bibtex_citation="""@misc{li2022csl,
101
+ title={CSL: A Large-scale Chinese Scientific Literature Dataset},
102
+ author={Yudong Li and Yuqing Zhang and Zhe Zhao and Linlin Shen and Weijie Liu and Weiquan Mao and Hui Zhang},
103
+ year={2022},
104
+ eprint={2209.05034},
105
+ archivePrefix={arXiv},
106
+ primaryClass={cs.CL}
107
+ }""",
108
+ descriptive_stats={
109
+ "n_samples": {"test": NUM_SAMPLES},
110
+ "avg_character_length": {},
111
+ },
112
+ )
113
+
114
+ def dataset_transform(self):
115
+ ds = {}
116
+ for split in self.metadata.eval_splits:
117
+ labels = list(itertools.chain.from_iterable(self.dataset[split]["labels"]))
118
+ sentences = list(
119
+ itertools.chain.from_iterable(self.dataset[split]["sentences"])
120
+ )
121
+
122
+ check_label_distribution(self.dataset[split])
123
+
124
+ ds[split] = Dataset.from_dict({"labels": labels, "sentences": sentences})
125
+ self.dataset = DatasetDict(ds)
126
+ self.dataset = self.stratified_subsampling(
127
+ self.dataset,
128
+ self.seed,
129
+ self.metadata.eval_splits,
130
+ label="labels",
131
+ n_samples=NUM_SAMPLES,
132
+ )
133
+
134
+
135
+ class ThuNewsClusteringFastS2S(AbsTaskClusteringFast):
136
+ max_document_to_embed = NUM_SAMPLES
137
+ max_fraction_of_documents_to_embed = None
138
+
139
+ metadata = TaskMetadata(
140
+ name="ThuNewsClusteringS2S",
141
+ dataset={
142
+ "path": "C-MTEB/ThuNewsClusteringS2S",
143
+ "revision": "8a8b2caeda43f39e13c4bc5bea0f8a667896e10d",
144
+ },
145
+ description="Clustering of titles from the THUCNews dataset",
146
+ reference="http://thuctc.thunlp.org/",
147
+ type="Clustering",
148
+ category="s2s",
149
+ modalities=["text"],
150
+ eval_splits=["test"],
151
+ eval_langs=["cmn-Hans"],
152
+ main_score="v_measure",
153
+ date=("2006-01-01", "2007-01-01"),
154
+ domains=["News", "Written"],
155
+ task_subtypes=["Thematic clustering", "Topic classification"],
156
+ license="Not specified",
157
+ annotations_creators="derived",
158
+ dialect=[],
159
+ sample_creation="found",
160
+ bibtex_citation="""@software{THUCTC,
161
+ author = {Sun, M. and Li, J. and Guo, Z. and Yu, Z. and Zheng, Y. and Si, X. and Liu, Z.},
162
+ title = {THUCTC: An Efficient Chinese Text Classifier},
163
+ year = {2016},
164
+ note = {THU Chinese Text Classification Toolkit},
165
+ publisher = {THU Natural Language Processing Lab},
166
+ url = {https://github.com/thunlp/THUCTC}
167
+ }""",
168
+ descriptive_stats={
169
+ "n_samples": {"test": NUM_SAMPLES},
170
+ "avg_character_length": {},
171
+ },
172
+ )
173
+
174
+ def dataset_transform(self):
175
+ ds = {}
176
+ for split in self.metadata.eval_splits:
177
+ labels = list(itertools.chain.from_iterable(self.dataset[split]["labels"]))
178
+ sentences = list(
179
+ itertools.chain.from_iterable(self.dataset[split]["sentences"])
180
+ )
181
+
182
+ check_label_distribution(self.dataset[split])
183
+
184
+ ds[split] = Dataset.from_dict({"labels": labels, "sentences": sentences})
185
+ self.dataset = DatasetDict(ds)
186
+ self.dataset = self.stratified_subsampling(
187
+ self.dataset,
188
+ self.seed,
189
+ self.metadata.eval_splits,
190
+ label="labels",
191
+ n_samples=NUM_SAMPLES,
192
+ )
193
+
194
+
195
+ class ThuNewsClusteringFastP2P(AbsTaskClusteringFast):
196
+ max_document_to_embed = NUM_SAMPLES
197
+ max_fraction_of_documents_to_embed = None
198
+
199
+ metadata = TaskMetadata(
200
+ name="ThuNewsClusteringP2P",
201
+ dataset={
202
+ "path": "C-MTEB/ThuNewsClusteringP2P",
203
+ "revision": "5798586b105c0434e4f0fe5e767abe619442cf93",
204
+ },
205
+ description="Clustering of titles + abstracts from the THUCNews dataset",
206
+ reference="http://thuctc.thunlp.org/",
207
+ type="Clustering",
208
+ category="p2p",
209
+ modalities=["text"],
210
+ eval_splits=["test"],
211
+ eval_langs=["cmn-Hans"],
212
+ main_score="v_measure",
213
+ date=("2006-01-01", "2007-01-01"),
214
+ domains=["News", "Written"],
215
+ task_subtypes=["Thematic clustering", "Topic classification"],
216
+ license="Not specified",
217
+ annotations_creators="derived",
218
+ dialect=[],
219
+ sample_creation="found",
220
+ bibtex_citation="""@software{THUCTC,
221
+ author = {Sun, M. and Li, J. and Guo, Z. and Yu, Z. and Zheng, Y. and Si, X. and Liu, Z.},
222
+ title = {THUCTC: An Efficient Chinese Text Classifier},
223
+ year = {2016},
224
+ note = {THU Chinese Text Classification Toolkit},
225
+ publisher = {THU Natural Language Processing Lab},
226
+ url = {https://github.com/thunlp/THUCTC}
227
+ }""",
228
+ descriptive_stats={
229
+ "n_samples": {"test": NUM_SAMPLES},
230
+ "avg_character_length": {},
231
+ },
232
+ )
233
+
234
+ def dataset_transform(self):
235
+ ds = {}
236
+ for split in self.metadata.eval_splits:
237
+ labels = list(itertools.chain.from_iterable(self.dataset[split]["labels"]))
238
+ sentences = list(
239
+ itertools.chain.from_iterable(self.dataset[split]["sentences"])
240
+ )
241
+
242
+ check_label_distribution(self.dataset[split])
243
+
244
+ ds[split] = Dataset.from_dict({"labels": labels, "sentences": sentences})
245
+ self.dataset = DatasetDict(ds)
246
+ self.dataset = self.stratified_subsampling(
247
+ self.dataset,
248
+ self.seed,
249
+ self.metadata.eval_splits,
250
+ label="labels",
251
+ n_samples=NUM_SAMPLES,
252
+ )
@@ -0,0 +1,61 @@
1
+ from typing import Optional
2
+ from mteb import AbsTaskRetrieval
3
+ from mteb import HFDataLoader as CustomDataLoader
4
+ from mteb.abstasks.TaskMetadata import TaskMetadata
5
+
6
+
7
+ class CustomRetrieval(AbsTaskRetrieval):
8
+ metadata: TaskMetadata
9
+ ignore_identical_ids: bool = True
10
+
11
+ def __init__(
12
+ self, dataset_path: Optional[str] = "custom_eval/text/retrieval", **kwargs
13
+ ):
14
+ super().__init__(**kwargs)
15
+ self.metadata = TaskMetadata(
16
+ name="CustomRetrieval",
17
+ description="CustomRetrieval Task",
18
+ reference=None,
19
+ dataset={
20
+ "path": dataset_path,
21
+ "revision": "v1",
22
+ },
23
+ type="Retrieval",
24
+ category="s2p",
25
+ modalities=["text"],
26
+ eval_splits=["test"],
27
+ eval_langs=["cmn-Hans"],
28
+ main_score="recall_at_5",
29
+ date=None,
30
+ domains=None,
31
+ task_subtypes=None,
32
+ license=None,
33
+ annotations_creators=None,
34
+ dialect=None,
35
+ sample_creation=None,
36
+ bibtex_citation="",
37
+ descriptive_stats={},
38
+ )
39
+
40
+ def load_data(self, **kwargs):
41
+ if self.data_loaded:
42
+ return
43
+ self.corpus, self.queries, self.relevant_docs = {}, {}, {}
44
+ dataset_path = self.metadata_dict["dataset"]["path"]
45
+
46
+ for split in kwargs.get("eval_splits", self.metadata_dict["eval_splits"]):
47
+ corpus, queries, qrels = CustomDataLoader(
48
+ data_folder=dataset_path,
49
+ streaming=False,
50
+ keep_in_memory=False,
51
+ ).load(split=split)
52
+ # Conversion from DataSet
53
+ queries = {query["id"]: query["text"] for query in queries}
54
+ corpus = {doc["id"]: {"text": doc["text"]} for doc in corpus}
55
+ self.corpus[split], self.queries[split], self.relevant_docs[split] = (
56
+ corpus,
57
+ queries,
58
+ qrels,
59
+ )
60
+
61
+ self.data_loaded = True