evalscope 0.5.3__py3-none-any.whl → 0.5.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of evalscope might be problematic. Click here for more details.

Files changed (48) hide show
  1. evalscope/backend/__init__.py +0 -3
  2. evalscope/backend/opencompass/backend_manager.py +2 -0
  3. evalscope/backend/opencompass/tasks/eval_datasets.py +2 -2
  4. evalscope/backend/rag_eval/__init__.py +3 -0
  5. evalscope/backend/rag_eval/backend_manager.py +68 -0
  6. evalscope/backend/rag_eval/cmteb/__init__.py +4 -0
  7. evalscope/backend/rag_eval/cmteb/arguments.py +59 -0
  8. evalscope/backend/rag_eval/cmteb/base.py +89 -0
  9. evalscope/backend/rag_eval/cmteb/task_template.py +83 -0
  10. evalscope/backend/rag_eval/cmteb/tasks/Classification.py +302 -0
  11. evalscope/backend/rag_eval/cmteb/tasks/Clustering.py +252 -0
  12. evalscope/backend/rag_eval/cmteb/tasks/PairClassification.py +113 -0
  13. evalscope/backend/rag_eval/cmteb/tasks/Reranking.py +153 -0
  14. evalscope/backend/rag_eval/cmteb/tasks/Retrieval.py +345 -0
  15. evalscope/backend/rag_eval/cmteb/tasks/STS.py +302 -0
  16. evalscope/backend/rag_eval/cmteb/tasks/__init__.py +64 -0
  17. evalscope/backend/rag_eval/ragas/__init__.py +2 -0
  18. evalscope/backend/rag_eval/ragas/arguments.py +37 -0
  19. evalscope/backend/rag_eval/ragas/task_template.py +117 -0
  20. evalscope/backend/vlm_eval_kit/backend_manager.py +1 -2
  21. evalscope/backend/vlm_eval_kit/custom_dataset.py +1 -1
  22. evalscope/benchmarks/benchmark.py +1 -1
  23. evalscope/evaluator/evaluator.py +4 -3
  24. evalscope/metrics/bundled_rouge_score/rouge_scorer.py +19 -0
  25. evalscope/models/api/__init__.py +3 -0
  26. evalscope/models/api/openai_api.py +228 -0
  27. evalscope/perf/http_client.py +5 -5
  28. evalscope/run.py +4 -0
  29. evalscope/third_party/longbench_write/__init__.py +3 -0
  30. evalscope/third_party/longbench_write/eval.py +284 -0
  31. evalscope/third_party/longbench_write/infer.py +217 -0
  32. evalscope/third_party/longbench_write/longbench_write.py +88 -0
  33. evalscope/third_party/longbench_write/resources/__init__.py +1 -0
  34. evalscope/third_party/longbench_write/resources/judge.txt +31 -0
  35. evalscope/third_party/longbench_write/resources/longbench_write.jsonl +120 -0
  36. evalscope/third_party/longbench_write/resources/longbench_write_en.jsonl +60 -0
  37. evalscope/third_party/longbench_write/resources/longwrite_ruler.jsonl +48 -0
  38. evalscope/third_party/longbench_write/tools/__init__.py +1 -0
  39. evalscope/third_party/longbench_write/tools/data_etl.py +155 -0
  40. evalscope/third_party/longbench_write/utils.py +37 -0
  41. evalscope/utils/logger.py +44 -14
  42. evalscope/utils/task_utils.py +3 -0
  43. evalscope/version.py +2 -2
  44. {evalscope-0.5.3.dist-info → evalscope-0.5.5.dist-info}/METADATA +46 -60
  45. {evalscope-0.5.3.dist-info → evalscope-0.5.5.dist-info}/RECORD +48 -18
  46. {evalscope-0.5.3.dist-info → evalscope-0.5.5.dist-info}/WHEEL +0 -0
  47. {evalscope-0.5.3.dist-info → evalscope-0.5.5.dist-info}/entry_points.txt +0 -0
  48. {evalscope-0.5.3.dist-info → evalscope-0.5.5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,345 @@
1
+ from mteb import AbsTaskRetrieval
2
+ from mteb.abstasks.TaskMetadata import TaskMetadata
3
+
4
+
5
+ class T2Retrieval(AbsTaskRetrieval):
6
+ ignore_identical_ids = True
7
+
8
+ metadata = TaskMetadata(
9
+ name="T2Retrieval",
10
+ description="T2Ranking: A large-scale Chinese Benchmark for Passage Ranking",
11
+ reference="https://arxiv.org/abs/2304.03679",
12
+ dataset={
13
+ "path": "C-MTEB/T2Retrieval",
14
+ "revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
15
+ "qrel_revision": "1c83b8d1544e529875e3f6930f3a1fcf749a8e97",
16
+ },
17
+ type="Retrieval",
18
+ category="s2p",
19
+ modalities=["text"],
20
+ eval_splits=["dev"],
21
+ eval_langs=["cmn-Hans"],
22
+ main_score="ndcg_at_10",
23
+ date=None,
24
+ domains=None,
25
+ task_subtypes=None,
26
+ license=None,
27
+ annotations_creators=None,
28
+ dialect=None,
29
+ sample_creation=None,
30
+ bibtex_citation="""@misc{xie2023t2ranking,
31
+ title={T2Ranking: A large-scale Chinese Benchmark for Passage Ranking},
32
+ author={Xiaohui Xie and Qian Dong and Bingning Wang and Feiyang Lv and Ting Yao and Weinan Gan and Zhijing Wu and Xiangsheng Li and Haitao Li and Yiqun Liu and Jin Ma},
33
+ year={2023},
34
+ eprint={2304.03679},
35
+ archivePrefix={arXiv},
36
+ primaryClass={cs.IR}
37
+ }""",
38
+ descriptive_stats={
39
+ "n_samples": None,
40
+ "avg_character_length": {
41
+ "dev": {
42
+ "average_document_length": 874.1184182791619,
43
+ "average_query_length": 10.938847974750132,
44
+ "num_documents": 118605,
45
+ "num_queries": 22812,
46
+ "average_relevant_docs_per_query": 5.213571804313519,
47
+ }
48
+ },
49
+ },
50
+ )
51
+
52
+
53
+ class MMarcoRetrieval(AbsTaskRetrieval):
54
+ ignore_identical_ids = True
55
+
56
+ metadata = TaskMetadata(
57
+ name="MMarcoRetrieval",
58
+ description="MMarcoRetrieval",
59
+ reference="https://arxiv.org/abs/2309.07597",
60
+ dataset={
61
+ "path": "C-MTEB/MMarcoRetrieval",
62
+ "revision": "539bbde593d947e2a124ba72651aafc09eb33fc2",
63
+ "qrel_revision": "bae08bb7bddbedb96c7e7db52018a55167b67f89",
64
+ },
65
+ type="Retrieval",
66
+ category="s2p",
67
+ modalities=["text"],
68
+ eval_splits=["dev"],
69
+ eval_langs=["cmn-Hans"],
70
+ main_score="ndcg_at_10",
71
+ date=None,
72
+ domains=None,
73
+ task_subtypes=None,
74
+ license=None,
75
+ annotations_creators=None,
76
+ dialect=None,
77
+ sample_creation=None,
78
+ bibtex_citation="""@misc{xiao2024cpack,
79
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
80
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff and Defu Lian and Jian-Yun Nie},
81
+ year={2024},
82
+ eprint={2309.07597},
83
+ archivePrefix={arXiv},
84
+ primaryClass={cs.CL}
85
+ }""",
86
+ descriptive_stats={
87
+ "n_samples": None,
88
+ "avg_character_length": {
89
+ "dev": {
90
+ "average_document_length": 114.41787048392986,
91
+ "average_query_length": 10.51131805157593,
92
+ "num_documents": 106813,
93
+ "num_queries": 6980,
94
+ "average_relevant_docs_per_query": 1.0654727793696275,
95
+ }
96
+ },
97
+ },
98
+ )
99
+
100
+
101
+ class DuRetrieval(AbsTaskRetrieval):
102
+ metadata = TaskMetadata(
103
+ name="DuRetrieval",
104
+ description="A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine",
105
+ reference="https://aclanthology.org/2022.emnlp-main.357.pdf",
106
+ dataset={
107
+ "path": "C-MTEB/DuRetrieval",
108
+ "revision": "a1a333e290fe30b10f3f56498e3a0d911a693ced",
109
+ "qrel_revision": "497b7bd1bbb25cb3757ff34d95a8be50a3de2279",
110
+ },
111
+ type="Retrieval",
112
+ category="s2p",
113
+ modalities=["text"],
114
+ eval_splits=["dev"],
115
+ eval_langs=["cmn-Hans"],
116
+ main_score="ndcg_at_10",
117
+ date=None,
118
+ domains=None,
119
+ task_subtypes=None,
120
+ license=None,
121
+ annotations_creators=None,
122
+ dialect=None,
123
+ sample_creation=None,
124
+ bibtex_citation="""@misc{qiu2022dureaderretrieval,
125
+ title={DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine},
126
+ author={Yifu Qiu and Hongyu Li and Yingqi Qu and Ying Chen and Qiaoqiao She and Jing Liu and Hua Wu and Haifeng Wang},
127
+ year={2022},
128
+ eprint={2203.10232},
129
+ archivePrefix={arXiv},
130
+ primaryClass={cs.CL}
131
+ }""",
132
+ descriptive_stats={
133
+ "n_samples": None,
134
+ "avg_character_length": {
135
+ "dev": {
136
+ "average_document_length": 331.3219967800322,
137
+ "average_query_length": 9.289,
138
+ "num_documents": 100001,
139
+ "num_queries": 2000,
140
+ "average_relevant_docs_per_query": 4.9195,
141
+ }
142
+ },
143
+ },
144
+ )
145
+
146
+
147
+ class CovidRetrieval(AbsTaskRetrieval):
148
+ metadata = TaskMetadata(
149
+ name="CovidRetrieval",
150
+ description="COVID-19 news articles",
151
+ reference="https://arxiv.org/abs/2203.03367",
152
+ dataset={
153
+ "path": "C-MTEB/CovidRetrieval",
154
+ "revision": "1271c7809071a13532e05f25fb53511ffce77117",
155
+ "qrel_revision": "a9f41b7cdf24785531d12417ce0d1157ed4b39ca",
156
+ },
157
+ type="Retrieval",
158
+ category="s2p",
159
+ modalities=["text"],
160
+ eval_splits=["dev"],
161
+ eval_langs=["cmn-Hans"],
162
+ main_score="ndcg_at_10",
163
+ date=None,
164
+ domains=None,
165
+ task_subtypes=None,
166
+ license=None,
167
+ annotations_creators=None,
168
+ dialect=None,
169
+ sample_creation=None,
170
+ bibtex_citation=None,
171
+ descriptive_stats={
172
+ "n_samples": None,
173
+ "avg_character_length": {
174
+ "dev": {
175
+ "average_document_length": 332.4152658473415,
176
+ "average_query_length": 25.9304531085353,
177
+ "num_documents": 100001,
178
+ "num_queries": 949,
179
+ "average_relevant_docs_per_query": 1.0105374077976819,
180
+ }
181
+ },
182
+ },
183
+ )
184
+
185
+
186
+ class CmedqaRetrieval(AbsTaskRetrieval):
187
+ metadata = TaskMetadata(
188
+ name="CmedqaRetrieval",
189
+ description="Online medical consultation text. Used the CMedQAv2 as its underlying dataset.",
190
+ reference="https://aclanthology.org/2022.emnlp-main.357.pdf",
191
+ dataset={
192
+ "path": "C-MTEB/CmedqaRetrieval",
193
+ "revision": "cd540c506dae1cf9e9a59c3e06f42030d54e7301",
194
+ "qrel_revision": "279d737f36c731c8ff6e2b055f31fe02216fa23d",
195
+ },
196
+ type="Retrieval",
197
+ category="s2p",
198
+ modalities=["text"],
199
+ eval_splits=["dev"],
200
+ eval_langs=["cmn-Hans"],
201
+ main_score="ndcg_at_10",
202
+ date=None,
203
+ domains=None,
204
+ task_subtypes=None,
205
+ license=None,
206
+ annotations_creators=None,
207
+ dialect=None,
208
+ sample_creation=None,
209
+ bibtex_citation=None,
210
+ descriptive_stats={
211
+ "n_samples": None,
212
+ "avg_character_length": {
213
+ "dev": {
214
+ "average_document_length": 307.7710222897771,
215
+ "average_query_length": 48.470367591897976,
216
+ "num_documents": 100001,
217
+ "num_queries": 3999,
218
+ "average_relevant_docs_per_query": 1.86271567891973,
219
+ }
220
+ },
221
+ },
222
+ )
223
+
224
+
225
+ class EcomRetrieval(AbsTaskRetrieval):
226
+ ignore_identical_ids = True
227
+
228
+ metadata = TaskMetadata(
229
+ name="EcomRetrieval",
230
+ description="EcomRetrieval",
231
+ reference="https://arxiv.org/abs/2203.03367",
232
+ dataset={
233
+ "path": "C-MTEB/EcomRetrieval",
234
+ "revision": "687de13dc7294d6fd9be10c6945f9e8fec8166b9",
235
+ "qrel_revision": "39c90699b034ec22ac45b3abf5b0bbb5ffd421f9",
236
+ },
237
+ type="Retrieval",
238
+ category="s2p",
239
+ modalities=["text"],
240
+ eval_splits=["dev"],
241
+ eval_langs=["cmn-Hans"],
242
+ main_score="ndcg_at_10",
243
+ date=None,
244
+ domains=None,
245
+ task_subtypes=None,
246
+ license=None,
247
+ annotations_creators=None,
248
+ dialect=None,
249
+ sample_creation=None,
250
+ bibtex_citation=None,
251
+ descriptive_stats={
252
+ "n_samples": None,
253
+ "avg_character_length": {
254
+ "dev": {
255
+ "average_document_length": 32.98041664189015,
256
+ "average_query_length": 6.798,
257
+ "num_documents": 100902,
258
+ "num_queries": 1000,
259
+ "average_relevant_docs_per_query": 1.0,
260
+ }
261
+ },
262
+ },
263
+ )
264
+
265
+
266
+ class MedicalRetrieval(AbsTaskRetrieval):
267
+ ignore_identical_ids = True
268
+
269
+ metadata = TaskMetadata(
270
+ name="MedicalRetrieval",
271
+ description="MedicalRetrieval",
272
+ reference="https://arxiv.org/abs/2203.03367",
273
+ dataset={
274
+ "path": "C-MTEB/MedicalRetrieval",
275
+ "revision": "2039188fb5800a9803ba5048df7b76e6fb151fc6",
276
+ "qrel_revision": "37b8efec53c54c3d9c6af212f6710b62ccdf895c",
277
+ },
278
+ type="Retrieval",
279
+ category="s2p",
280
+ modalities=["text"],
281
+ eval_splits=["dev"],
282
+ eval_langs=["cmn-Hans"],
283
+ main_score="ndcg_at_10",
284
+ date=None,
285
+ domains=None,
286
+ task_subtypes=None,
287
+ license=None,
288
+ annotations_creators=None,
289
+ dialect=None,
290
+ sample_creation=None,
291
+ bibtex_citation=None,
292
+ descriptive_stats={
293
+ "n_samples": None,
294
+ "avg_character_length": {
295
+ "dev": {
296
+ "average_document_length": 122.04231725066585,
297
+ "average_query_length": 17.938,
298
+ "num_documents": 100999,
299
+ "num_queries": 1000,
300
+ "average_relevant_docs_per_query": 1.0,
301
+ }
302
+ },
303
+ },
304
+ )
305
+
306
+
307
+ class VideoRetrieval(AbsTaskRetrieval):
308
+ ignore_identical_ids = True
309
+
310
+ metadata = TaskMetadata(
311
+ name="VideoRetrieval",
312
+ description="VideoRetrieval",
313
+ reference="https://arxiv.org/abs/2203.03367",
314
+ dataset={
315
+ "path": "C-MTEB/VideoRetrieval",
316
+ "revision": "58c2597a5943a2ba48f4668c3b90d796283c5639",
317
+ "qrel_revision": "faa71382b6a29cf1778d1f436b963e75cb5b927c",
318
+ },
319
+ type="Retrieval",
320
+ category="s2p",
321
+ modalities=["text"],
322
+ eval_splits=["dev"],
323
+ eval_langs=["cmn-Hans"],
324
+ main_score="ndcg_at_10",
325
+ date=None,
326
+ domains=None,
327
+ task_subtypes=None,
328
+ license=None,
329
+ annotations_creators=None,
330
+ dialect=None,
331
+ sample_creation=None,
332
+ bibtex_citation=None,
333
+ descriptive_stats={
334
+ "n_samples": None,
335
+ "avg_character_length": {
336
+ "dev": {
337
+ "average_document_length": 31.048855642524522,
338
+ "average_query_length": 7.365,
339
+ "num_documents": 100930,
340
+ "num_queries": 1000,
341
+ "average_relevant_docs_per_query": 1.0,
342
+ }
343
+ },
344
+ },
345
+ )
@@ -0,0 +1,302 @@
1
+ from mteb.abstasks.AbsTaskSTS import AbsTaskSTS
2
+ from mteb.abstasks.TaskMetadata import TaskMetadata
3
+
4
+ class ATEC(AbsTaskSTS):
5
+ metadata = TaskMetadata(
6
+ name="ATEC",
7
+ dataset={
8
+ "path": "C-MTEB/ATEC",
9
+ "revision": "0f319b1142f28d00e055a6770f3f726ae9b7d865",
10
+ },
11
+ description="A Chinese dataset for textual relatedness",
12
+ reference="https://aclanthology.org/2021.emnlp-main.357",
13
+ type="STS",
14
+ category="s2s",
15
+ modalities=["text"],
16
+ eval_splits=["validation", "test"],
17
+ eval_langs=["cmn-Hans"],
18
+ main_score="cosine_spearman",
19
+ date=None,
20
+ domains=None,
21
+ task_subtypes=None,
22
+ license=None,
23
+ annotations_creators=None,
24
+ dialect=None,
25
+ sample_creation=None,
26
+ bibtex_citation="""@inproceedings{raghu-etal-2021-end,
27
+ title = "End-to-End Learning of Flowchart Grounded Task-Oriented Dialogs",
28
+ author = "Raghu, Dinesh and
29
+ Agarwal, Shantanu and
30
+ Joshi, Sachindra and
31
+ {Mausam}",
32
+ editor = "Moens, Marie-Francine and
33
+ Huang, Xuanjing and
34
+ Specia, Lucia and
35
+ Yih, Scott Wen-tau",
36
+ booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
37
+ month = nov,
38
+ year = "2021",
39
+ address = "Online and Punta Cana, Dominican Republic",
40
+ publisher = "Association for Computational Linguistics",
41
+ url = "https://aclanthology.org/2021.emnlp-main.357",
42
+ doi = "10.18653/v1/2021.emnlp-main.357",
43
+ pages = "4348--4366",
44
+ abstract = "We propose a novel problem within end-to-end learning of task oriented dialogs (TOD), in which the dialog system mimics a troubleshooting agent who helps a user by diagnosing their problem (e.g., car not starting). Such dialogs are grounded in domain-specific flowcharts, which the agent is supposed to follow during the conversation. Our task exposes novel technical challenges for neural TOD, such as grounding an utterance to the flowchart without explicit annotation, referring to additional manual pages when user asks a clarification question, and ability to follow unseen flowcharts at test time. We release a dataset (FLODIAL) consisting of 2,738 dialogs grounded on 12 different troubleshooting flowcharts. We also design a neural model, FLONET, which uses a retrieval-augmented generation architecture to train the dialog agent. Our experiments find that FLONET can do zero-shot transfer to unseen flowcharts, and sets a strong baseline for future research.",
45
+ }""",
46
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
47
+ )
48
+
49
+ @property
50
+ def metadata_dict(self) -> dict[str, str]:
51
+ metadata_dict = super().metadata_dict
52
+ metadata_dict["min_score"] = 0
53
+ metadata_dict["max_score"] = 1
54
+ return metadata_dict
55
+
56
+
57
+ class BQ(AbsTaskSTS):
58
+ metadata = TaskMetadata(
59
+ name="BQ",
60
+ dataset={
61
+ "path": "C-MTEB/BQ",
62
+ "revision": "e3dda5e115e487b39ec7e618c0c6a29137052a55",
63
+ },
64
+ description="A Chinese dataset for textual relatedness",
65
+ reference="https://aclanthology.org/2021.emnlp-main.357",
66
+ type="STS",
67
+ category="s2s",
68
+ modalities=["text"],
69
+ eval_splits=["validation", "test"],
70
+ eval_langs=["cmn-Hans"],
71
+ main_score="cosine_spearman",
72
+ date=None,
73
+ domains=None,
74
+ task_subtypes=None,
75
+ license=None,
76
+ annotations_creators=None,
77
+ dialect=None,
78
+ sample_creation=None,
79
+ bibtex_citation="""@misc{xiao2024cpackpackagedresourcesadvance,
80
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
81
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff and Defu Lian and Jian-Yun Nie},
82
+ year={2024},
83
+ eprint={2309.07597},
84
+ archivePrefix={arXiv},
85
+ primaryClass={cs.CL},
86
+ url={https://arxiv.org/abs/2309.07597},
87
+ }""",
88
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
89
+ )
90
+
91
+ @property
92
+ def metadata_dict(self) -> dict[str, str]:
93
+ metadata_dict = super().metadata_dict
94
+ metadata_dict["min_score"] = 0
95
+ metadata_dict["max_score"] = 1
96
+ return metadata_dict
97
+
98
+
99
+ class LCQMC(AbsTaskSTS):
100
+ metadata = TaskMetadata(
101
+ name="LCQMC",
102
+ dataset={
103
+ "path": "C-MTEB/LCQMC",
104
+ "revision": "17f9b096f80380fce5ed12a9be8be7784b337daf",
105
+ },
106
+ description="A Chinese dataset for textual relatedness",
107
+ reference="https://aclanthology.org/2021.emnlp-main.357",
108
+ type="STS",
109
+ category="s2s",
110
+ modalities=["text"],
111
+ eval_splits=["test"],
112
+ eval_langs=["cmn-Hans"],
113
+ main_score="cosine_spearman",
114
+ date=None,
115
+ domains=None,
116
+ task_subtypes=None,
117
+ license=None,
118
+ annotations_creators=None,
119
+ dialect=None,
120
+ sample_creation=None,
121
+ bibtex_citation="""@misc{xiao2024cpackpackagedresourcesadvance,
122
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
123
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff and Defu Lian and Jian-Yun Nie},
124
+ year={2024},
125
+ eprint={2309.07597},
126
+ archivePrefix={arXiv},
127
+ primaryClass={cs.CL},
128
+ url={https://arxiv.org/abs/2309.07597},
129
+ }""",
130
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
131
+ )
132
+
133
+ @property
134
+ def metadata_dict(self) -> dict[str, str]:
135
+ metadata_dict = super().metadata_dict
136
+ metadata_dict["min_score"] = 0
137
+ metadata_dict["max_score"] = 1
138
+ return metadata_dict
139
+
140
+
141
+ class PAWSX(AbsTaskSTS):
142
+ metadata = TaskMetadata(
143
+ name="PAWSX",
144
+ dataset={
145
+ "path": "C-MTEB/PAWSX",
146
+ "revision": "9c6a90e430ac22b5779fb019a23e820b11a8b5e1",
147
+ },
148
+ description="A Chinese dataset for textual relatedness",
149
+ reference="https://aclanthology.org/2021.emnlp-main.357",
150
+ type="STS",
151
+ category="s2s",
152
+ modalities=["text"],
153
+ eval_splits=["test"],
154
+ eval_langs=["cmn-Hans"],
155
+ main_score="cosine_spearman",
156
+ date=None,
157
+ domains=None,
158
+ task_subtypes=None,
159
+ license=None,
160
+ annotations_creators=None,
161
+ dialect=None,
162
+ sample_creation=None,
163
+ bibtex_citation="""@misc{xiao2024cpackpackagedresourcesadvance,
164
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
165
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff and Defu Lian and Jian-Yun Nie},
166
+ year={2024},
167
+ eprint={2309.07597},
168
+ archivePrefix={arXiv},
169
+ primaryClass={cs.CL},
170
+ url={https://arxiv.org/abs/2309.07597},
171
+ }""",
172
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
173
+ )
174
+
175
+ @property
176
+ def metadata_dict(self) -> dict[str, str]:
177
+ metadata_dict = super().metadata_dict
178
+ metadata_dict["min_score"] = 0
179
+ metadata_dict["max_score"] = 1
180
+ return metadata_dict
181
+
182
+
183
+ class STSB(AbsTaskSTS):
184
+ metadata = TaskMetadata(
185
+ name="STSB",
186
+ dataset={
187
+ "path": "C-MTEB/STSB",
188
+ "revision": "0cde68302b3541bb8b3c340dc0644b0b745b3dc0",
189
+ },
190
+ description="A Chinese dataset for textual relatedness",
191
+ reference="https://aclanthology.org/2021.emnlp-main.357",
192
+ type="STS",
193
+ category="s2s",
194
+ modalities=["text"],
195
+ eval_splits=["validation", "test"],
196
+ eval_langs=["cmn-Hans"],
197
+ main_score="cosine_spearman",
198
+ date=None,
199
+ domains=None,
200
+ task_subtypes=None,
201
+ license=None,
202
+ annotations_creators=None,
203
+ dialect=None,
204
+ sample_creation=None,
205
+ bibtex_citation="""@misc{xiao2024cpackpackagedresourcesadvance,
206
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
207
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff and Defu Lian and Jian-Yun Nie},
208
+ year={2024},
209
+ eprint={2309.07597},
210
+ archivePrefix={arXiv},
211
+ primaryClass={cs.CL},
212
+ url={https://arxiv.org/abs/2309.07597},
213
+ }""",
214
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
215
+ )
216
+
217
+ @property
218
+ def metadata_dict(self) -> dict[str, str]:
219
+ metadata_dict = super().metadata_dict
220
+ metadata_dict["min_score"] = 0
221
+ metadata_dict["max_score"] = 5
222
+ return metadata_dict
223
+
224
+
225
+ class AFQMC(AbsTaskSTS):
226
+ metadata = TaskMetadata(
227
+ name="AFQMC",
228
+ dataset={
229
+ "path": "C-MTEB/AFQMC",
230
+ "revision": "b44c3b011063adb25877c13823db83bb193913c4",
231
+ },
232
+ description="A Chinese dataset for textual relatedness",
233
+ reference="https://aclanthology.org/2021.emnlp-main.357",
234
+ type="STS",
235
+ category="s2s",
236
+ modalities=["text"],
237
+ eval_splits=["validation"],
238
+ eval_langs=["cmn-Hans"],
239
+ main_score="cosine_spearman",
240
+ date=None,
241
+ domains=None,
242
+ task_subtypes=None,
243
+ license=None,
244
+ annotations_creators=None,
245
+ dialect=None,
246
+ sample_creation=None,
247
+ bibtex_citation="""@inproceedings{raghu-etal-2021-end,
248
+ title = "End-to-End Learning of Flowchart Grounded Task-Oriented Dialogs",
249
+ author = "Raghu, Dinesh and
250
+ Agarwal, Shantanu and
251
+ Joshi, Sachindra and
252
+ {Mausam}",
253
+ editor = "Moens, Marie-Francine and
254
+ Huang, Xuanjing and
255
+ Specia, Lucia and
256
+ Yih, Scott Wen-tau",
257
+ booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
258
+ month = nov,
259
+ year = "2021",
260
+ address = "Online and Punta Cana, Dominican Republic",
261
+ publisher = "Association for Computational Linguistics",
262
+ url = "https://aclanthology.org/2021.emnlp-main.357",
263
+ doi = "10.18653/v1/2021.emnlp-main.357",
264
+ pages = "4348--4366",
265
+ abstract = "We propose a novel problem within end-to-end learning of task oriented dialogs (TOD), in which the dialog system mimics a troubleshooting agent who helps a user by diagnosing their problem (e.g., car not starting). Such dialogs are grounded in domain-specific flowcharts, which the agent is supposed to follow during the conversation. Our task exposes novel technical challenges for neural TOD, such as grounding an utterance to the flowchart without explicit annotation, referring to additional manual pages when user asks a clarification question, and ability to follow unseen flowcharts at test time. We release a dataset (FLODIAL) consisting of 2,738 dialogs grounded on 12 different troubleshooting flowcharts. We also design a neural model, FLONET, which uses a retrieval-augmented generation architecture to train the dialog agent. Our experiments find that FLONET can do zero-shot transfer to unseen flowcharts, and sets a strong baseline for future research.",
266
+ }""",
267
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
268
+ )
269
+
270
+ @property
271
+ def metadata_dict(self) -> dict[str, str]:
272
+ metadata_dict = super().metadata_dict
273
+ metadata_dict["min_score"] = 0
274
+ metadata_dict["max_score"] = 1
275
+ return metadata_dict
276
+
277
+
278
+ class QBQTC(AbsTaskSTS):
279
+ metadata = TaskMetadata(
280
+ name="QBQTC",
281
+ dataset={
282
+ "path": "C-MTEB/QBQTC",
283
+ "revision": "790b0510dc52b1553e8c49f3d2afb48c0e5c48b7",
284
+ },
285
+ description="",
286
+ reference="https://github.com/CLUEbenchmark/QBQTC/tree/main/dataset",
287
+ type="STS",
288
+ category="s2s",
289
+ modalities=["text"],
290
+ eval_splits=["test"],
291
+ eval_langs=["cmn-Hans"],
292
+ main_score="cosine_spearman",
293
+ date=None,
294
+ domains=None,
295
+ task_subtypes=None,
296
+ license=None,
297
+ annotations_creators=None,
298
+ dialect=None,
299
+ sample_creation=None,
300
+ bibtex_citation=None,
301
+ descriptive_stats={"n_samples": None, "avg_character_length": None},
302
+ )