evalscope 0.5.0rc0__py3-none-any.whl → 0.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of evalscope might be problematic. Click here for more details.

@@ -0,0 +1,407 @@
1
+ Metadata-Version: 2.1
2
+ Name: evalscope
3
+ Version: 0.5.3
4
+ Summary: EvalScope: Lightweight LLMs Evaluation Framework
5
+ Home-page: https://github.com/modelscope/evalscope
6
+ Author: ModelScope team
7
+ Author-email: contact@modelscope.cn
8
+ Keywords: python,llm,evaluation
9
+ Classifier: Development Status :: 4 - Beta
10
+ Classifier: License :: OSI Approved :: Apache Software License
11
+ Classifier: Operating System :: OS Independent
12
+ Classifier: Programming Language :: Python :: 3
13
+ Classifier: Programming Language :: Python :: 3.8
14
+ Classifier: Programming Language :: Python :: 3.9
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Requires-Python: >=3.8
17
+ Description-Content-Type: text/markdown
18
+ Requires-Dist: torch
19
+ Requires-Dist: absl-py
20
+ Requires-Dist: accelerate
21
+ Requires-Dist: cachetools
22
+ Requires-Dist: editdistance
23
+ Requires-Dist: jsonlines
24
+ Requires-Dist: matplotlib
25
+ Requires-Dist: modelscope[framework]
26
+ Requires-Dist: nltk
27
+ Requires-Dist: openai
28
+ Requires-Dist: pandas
29
+ Requires-Dist: plotly
30
+ Requires-Dist: pyarrow
31
+ Requires-Dist: pympler
32
+ Requires-Dist: pyyaml
33
+ Requires-Dist: regex
34
+ Requires-Dist: requests
35
+ Requires-Dist: requests-toolbelt
36
+ Requires-Dist: rouge-score
37
+ Requires-Dist: sacrebleu
38
+ Requires-Dist: scikit-learn
39
+ Requires-Dist: seaborn
40
+ Requires-Dist: sentencepiece
41
+ Requires-Dist: simple-ddl-parser
42
+ Requires-Dist: tabulate
43
+ Requires-Dist: tiktoken
44
+ Requires-Dist: tqdm
45
+ Requires-Dist: transformers (<4.43,>=4.33)
46
+ Requires-Dist: transformers-stream-generator
47
+ Requires-Dist: jieba
48
+ Requires-Dist: rouge-chinese
49
+ Provides-Extra: all
50
+ Requires-Dist: torch ; extra == 'all'
51
+ Requires-Dist: absl-py ; extra == 'all'
52
+ Requires-Dist: accelerate ; extra == 'all'
53
+ Requires-Dist: cachetools ; extra == 'all'
54
+ Requires-Dist: editdistance ; extra == 'all'
55
+ Requires-Dist: jsonlines ; extra == 'all'
56
+ Requires-Dist: matplotlib ; extra == 'all'
57
+ Requires-Dist: modelscope[framework] ; extra == 'all'
58
+ Requires-Dist: nltk ; extra == 'all'
59
+ Requires-Dist: openai ; extra == 'all'
60
+ Requires-Dist: pandas ; extra == 'all'
61
+ Requires-Dist: plotly ; extra == 'all'
62
+ Requires-Dist: pyarrow ; extra == 'all'
63
+ Requires-Dist: pympler ; extra == 'all'
64
+ Requires-Dist: pyyaml ; extra == 'all'
65
+ Requires-Dist: regex ; extra == 'all'
66
+ Requires-Dist: requests ; extra == 'all'
67
+ Requires-Dist: requests-toolbelt ; extra == 'all'
68
+ Requires-Dist: rouge-score ; extra == 'all'
69
+ Requires-Dist: sacrebleu ; extra == 'all'
70
+ Requires-Dist: scikit-learn ; extra == 'all'
71
+ Requires-Dist: seaborn ; extra == 'all'
72
+ Requires-Dist: sentencepiece ; extra == 'all'
73
+ Requires-Dist: simple-ddl-parser ; extra == 'all'
74
+ Requires-Dist: tabulate ; extra == 'all'
75
+ Requires-Dist: tiktoken ; extra == 'all'
76
+ Requires-Dist: tqdm ; extra == 'all'
77
+ Requires-Dist: transformers (<4.43,>=4.33) ; extra == 'all'
78
+ Requires-Dist: transformers-stream-generator ; extra == 'all'
79
+ Requires-Dist: jieba ; extra == 'all'
80
+ Requires-Dist: rouge-chinese ; extra == 'all'
81
+ Requires-Dist: ms-opencompass (>=0.1.0) ; extra == 'all'
82
+ Requires-Dist: ms-vlmeval (>=0.0.5) ; extra == 'all'
83
+ Provides-Extra: inner
84
+ Requires-Dist: absl-py ; extra == 'inner'
85
+ Requires-Dist: accelerate ; extra == 'inner'
86
+ Requires-Dist: alibaba-itag-sdk ; extra == 'inner'
87
+ Requires-Dist: dashscope ; extra == 'inner'
88
+ Requires-Dist: editdistance ; extra == 'inner'
89
+ Requires-Dist: jsonlines ; extra == 'inner'
90
+ Requires-Dist: nltk ; extra == 'inner'
91
+ Requires-Dist: openai ; extra == 'inner'
92
+ Requires-Dist: pandas (==1.5.3) ; extra == 'inner'
93
+ Requires-Dist: plotly ; extra == 'inner'
94
+ Requires-Dist: pyarrow ; extra == 'inner'
95
+ Requires-Dist: pyodps ; extra == 'inner'
96
+ Requires-Dist: pyyaml ; extra == 'inner'
97
+ Requires-Dist: regex ; extra == 'inner'
98
+ Requires-Dist: requests (==2.28.1) ; extra == 'inner'
99
+ Requires-Dist: requests-toolbelt (==0.10.1) ; extra == 'inner'
100
+ Requires-Dist: rouge-score ; extra == 'inner'
101
+ Requires-Dist: sacrebleu ; extra == 'inner'
102
+ Requires-Dist: scikit-learn ; extra == 'inner'
103
+ Requires-Dist: seaborn ; extra == 'inner'
104
+ Requires-Dist: simple-ddl-parser ; extra == 'inner'
105
+ Requires-Dist: streamlit ; extra == 'inner'
106
+ Requires-Dist: tqdm ; extra == 'inner'
107
+ Requires-Dist: transformers (<4.43,>=4.33) ; extra == 'inner'
108
+ Requires-Dist: transformers-stream-generator ; extra == 'inner'
109
+ Provides-Extra: opencompass
110
+ Requires-Dist: ms-opencompass (>=0.1.0) ; extra == 'opencompass'
111
+ Provides-Extra: vlmeval
112
+ Requires-Dist: ms-vlmeval (>=0.0.5) ; extra == 'vlmeval'
113
+
114
+ English | [简体中文](README_zh.md)
115
+
116
+
117
+ ![](docs/en/_static/images/evalscope_logo.png)
118
+
119
+ <p align="center">
120
+ <a href="https://badge.fury.io/py/evalscope"><img src="https://badge.fury.io/py/evalscope.svg" alt="PyPI version" height="18"></a>
121
+ <a href="https://pypi.org/project/evalscope"><img alt="PyPI - Downloads" src="https://static.pepy.tech/badge/evalscope">
122
+ </a>
123
+ <a href='https://evalscope.readthedocs.io/en/latest/?badge=latest'>
124
+ <img src='https://readthedocs.org/projects/evalscope-en/badge/?version=latest' alt='Documentation Status' />
125
+ </a>
126
+ <br>
127
+ <a href="https://evalscope.readthedocs.io/en/latest/"><span style="font-size: 16px;">📖 Documents</span></a> &nbsp | &nbsp<a href="https://evalscope.readthedocs.io/zh-cn/latest/"><span style="font-size: 16px;"> 📖 中文文档</span></a>
128
+ <p>
129
+
130
+
131
+ ## 📋 Table of Contents
132
+ - [Introduction](#introduction)
133
+ - [News](#News)
134
+ - [Installation](#installation)
135
+ - [Quick Start](#quick-start)
136
+ - [Evaluation Backend](#evaluation-backend)
137
+ - [Custom Dataset Evaluation](#custom-dataset-evaluation)
138
+ - [Offline Evaluation](#offline-evaluation)
139
+ - [Arena Mode](#arena-mode)
140
+ - [Model Serving Performance Evaluation](#Model-Serving-Performance-Evaluation)
141
+ - [Leaderboard](#leaderboard)
142
+
143
+ ## 📝 Introduction
144
+
145
+ Large Model (including Large Language Models, Multi-modal Large Language Models) evaluation has become a critical process for assessing and improving LLMs. To better support the evaluation of large models, we propose the EvalScope framework.
146
+
147
+ ### Framework Features
148
+ - **Benchmark Datasets**: Preloaded with several commonly used test benchmarks, including MMLU, CMMLU, C-Eval, GSM8K, ARC, HellaSwag, TruthfulQA, MATH, HumanEval, etc.
149
+ - **Evaluation Metrics**: Implements various commonly used evaluation metrics.
150
+ - **Model Access**: A unified model access mechanism that is compatible with the Generate and Chat interfaces of multiple model families.
151
+ - **Automated Evaluation**: Includes automatic evaluation of objective questions and complex task evaluation using expert models.
152
+ - **Evaluation Reports**: Automatically generates evaluation reports.
153
+ - **Arena Mode**: Used for comparisons between models and objective evaluation of models, supporting various evaluation modes, including:
154
+ - **Single mode**: Scoring a single model.
155
+ - **Pairwise-baseline mode**: Comparing against a baseline model.
156
+ - **Pairwise (all) mode**: Pairwise comparison among all models.
157
+ - **Visualization Tools**: Provides intuitive displays of evaluation results.
158
+ - **Model Performance Evaluation**: Offers a performance testing tool for model inference services and detailed statistics, see [Model Performance Evaluation Documentation](https://evalscope.readthedocs.io/en/latest/user_guides/stress_test.html).
159
+ - **OpenCompass Integration**: Supports OpenCompass as the evaluation backend, providing advanced encapsulation and task simplification, allowing for easier task submission for evaluation.
160
+ - **VLMEvalKit Integration**: Supports VLMEvalKit as the evaluation backend, facilitating the initiation of multi-modal evaluation tasks, supporting various multi-modal models and datasets.
161
+ - **Full-Link Support**: Through seamless integration with the [ms-swift](https://github.com/modelscope/ms-swift) training framework, provides a one-stop development process for model training, model deployment, model evaluation, and report viewing, enhancing user development efficiency.
162
+
163
+ ### Overall Architecture
164
+ <p align="center">
165
+ <img src="docs/en/_static/images/evalscope_framework.png" width="70%">
166
+ <br>Fig 1. EvalScope Framework.
167
+ </p>
168
+
169
+ The architecture includes the following modules:
170
+ 1. **Model Adapter**: The model adapter is used to convert the outputs of specific models into the format required by the framework, supporting both API call models and locally run models.
171
+ 2. **Data Adapter**: The data adapter is responsible for converting and processing input data to meet various evaluation needs and formats.
172
+ 3. **Evaluation Backend**:
173
+ - **Native**: EvalScope’s own **default evaluation framework**, supporting various evaluation modes, including single model evaluation, arena mode, baseline model comparison mode, etc.
174
+ - **OpenCompass**: Supports [OpenCompass](https://github.com/open-compass/opencompass) as the evaluation backend, providing advanced encapsulation and task simplification, allowing you to submit tasks for evaluation more easily.
175
+ - **VLMEvalKit**: Supports [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) as the evaluation backend, enabling easy initiation of multi-modal evaluation tasks, supporting various multi-modal models and datasets.
176
+ - **ThirdParty**: Other third-party evaluation tasks, such as ToolBench.
177
+ 4. **Performance Evaluator**: Model performance evaluation, responsible for measuring model inference service performance, including performance testing, stress testing, performance report generation, and visualization.
178
+ 5. **Evaluation Report**: The final generated evaluation report summarizes the model's performance, which can be used for decision-making and further model optimization.
179
+ 6. **Visualization**: Visualization results help users intuitively understand evaluation results, facilitating analysis and comparison of different model performances.
180
+
181
+ ## 🎉 News
182
+ - **[2024.08.09]** Simplified installation process, supporting PyPI installation for vlmeval dependencies; Optimized multi-modal models evaluation experience with pipeline that based on OpenAI API, achieving up to 10x acceleration 🚀🚀🚀
183
+ - **[2024.07.31]** Breaking change: The sdk name has been changed from `llmuses` to `evalscope`, please update the sdk name in your code.
184
+ - **[2024.07.26]** Supports **VLMEvalKit** as a third-party evaluation framework, initiating multimodal model evaluation tasks. 🔥🔥🔥
185
+ - **[2024.06.29]** Supports **OpenCompass** as a third-party evaluation framework. We have provided a high-level wrapper, supporting installation via pip and simplifying the evaluation task configuration. 🔥🔥🔥
186
+ - **[2024.06.13]** EvalScope has been updated to version 0.3.x, which supports the ModelScope SWIFT framework for LLMs evaluation. 🚀🚀🚀
187
+ - **[2024.06.13]** We have supported the ToolBench as a third-party evaluation backend for Agents evaluation. 🚀🚀🚀
188
+
189
+
190
+
191
+ ## 🛠️ Installation
192
+ ### Method 1: Install Using pip
193
+ We recommend using conda to manage your environment and installing dependencies with pip:
194
+
195
+ 1. Create a conda environment (optional)
196
+ ```shell
197
+ # It is recommended to use Python 3.10
198
+ conda create -n evalscope python=3.10
199
+ # Activate the conda environment
200
+ conda activate evalscope
201
+ ```
202
+
203
+ 2. Install dependencies using pip
204
+ ```shell
205
+ pip install evalscope # Install Native backend (default)
206
+ # Additional options
207
+ pip install evalscope[opencompass] # Install OpenCompass backend
208
+ pip install evalscope[vlmeval] # Install VLMEvalKit backend
209
+ pip install evalscope[all] # Install all backends (Native, OpenCompass, VLMEvalKit)
210
+ ```
211
+
212
+ > [!WARNING]
213
+ > As the project has been renamed to `evalscope`, for versions `v0.4.3` or earlier, you can install using the following command:
214
+ > ```shell
215
+ > pip install llmuses<=0.4.3
216
+ > ```
217
+ > To import relevant dependencies using `llmuses`:
218
+ > ``` python
219
+ > from llmuses import ...
220
+ > ```
221
+
222
+ ### Method 2: Install from Source
223
+ 1. Download the source code
224
+ ```shell
225
+ git clone https://github.com/modelscope/evalscope.git
226
+ ```
227
+
228
+ 2. Install dependencies
229
+ ```shell
230
+ cd evalscope/
231
+ pip install -e . # Install Native backend
232
+ # Additional options
233
+ pip install -e '.[opencompass]' # Install OpenCompass backend
234
+ pip install -e '.[vlmeval]' # Install VLMEvalKit backend
235
+ pip install -e '.[all]' # Install all backends (Native, OpenCompass, VLMEvalKit)
236
+ ```
237
+
238
+
239
+ ## 🚀 Quick Start
240
+
241
+ ### 1. Simple Evaluation
242
+ To evaluate a model using default settings on specified datasets, follow the process below:
243
+
244
+ #### Install using pip
245
+ You can execute this command from any directory:
246
+ ```bash
247
+ python -m evalscope.run \
248
+ --model qwen/Qwen2-0.5B-Instruct \
249
+ --template-type qwen \
250
+ --datasets arc
251
+ ```
252
+
253
+ #### Install from source
254
+ Execute this command in the `evalscope` directory:
255
+ ```bash
256
+ python evalscope/run.py \
257
+ --model qwen/Qwen2-0.5B-Instruct \
258
+ --template-type qwen \
259
+ --datasets arc
260
+ ```
261
+
262
+ If prompted with `Do you wish to run the custom code? [y/N]`, please type `y`.
263
+
264
+
265
+ #### Basic Parameter Descriptions
266
+ - `--model`: Specifies the `model_id` of the model on [ModelScope](https://modelscope.cn/), allowing automatic download. For example, see the [Qwen2-0.5B-Instruct model link](https://modelscope.cn/models/qwen/Qwen2-0.5B-Instruct/summary); you can also use a local path, such as `/path/to/model`.
267
+ - `--template-type`: Specifies the template type corresponding to the model. Refer to the `Default Template` field in the [template table](https://swift.readthedocs.io/en/latest/LLM/Supported-models-datasets.html) for filling in this field.
268
+ - `--datasets`: The dataset name, allowing multiple datasets to be specified, separated by spaces; these datasets will be automatically downloaded. Refer to the [supported datasets list](#supported-datasets-list) for available options.
269
+
270
+ ### 2. Parameterized Evaluation
271
+ If you wish to conduct a more customized evaluation, such as modifying model parameters or dataset parameters, you can use the following commands:
272
+
273
+ **Example 1:**
274
+ ```shell
275
+ python evalscope/run.py \
276
+ --model qwen/Qwen2-0.5B-Instruct \
277
+ --template-type qwen \
278
+ --model-args revision=v1.0.2,precision=torch.float16,device_map=auto \
279
+ --datasets mmlu ceval \
280
+ --use-cache true \
281
+ --limit 10
282
+ ```
283
+
284
+ **Example 2:**
285
+ ```shell
286
+ python evalscope/run.py \
287
+ --model qwen/Qwen2-0.5B-Instruct \
288
+ --template-type qwen \
289
+ --generation-config do_sample=false,temperature=0.0 \
290
+ --datasets ceval \
291
+ --dataset-args '{"ceval": {"few_shot_num": 0, "few_shot_random": false}}' \
292
+ --limit 10
293
+ ```
294
+
295
+ #### Parameter Descriptions
296
+ In addition to the three [basic parameters](#basic-parameter-descriptions), the other parameters are as follows:
297
+ - `--model-args`: Model loading parameters, separated by commas, in `key=value` format.
298
+ - `--generation-config`: Generation parameters, separated by commas, in `key=value` format.
299
+ - `do_sample`: Whether to use sampling, default is `false`.
300
+ - `max_new_tokens`: Maximum generation length, default is 1024.
301
+ - `temperature`: Sampling temperature.
302
+ - `top_p`: Sampling threshold.
303
+ - `top_k`: Sampling threshold.
304
+ - `--use-cache`: Whether to use local cache, default is `false`. If set to `true`, previously evaluated model and dataset combinations will not be evaluated again, and will be read directly from the local cache.
305
+ - `--dataset-args`: Evaluation dataset configuration parameters, provided in JSON format, where the key is the dataset name and the value is the parameter; note that these must correspond one-to-one with the values in `--datasets`.
306
+ - `--few_shot_num`: Number of few-shot examples.
307
+ - `--few_shot_random`: Whether to randomly sample few-shot data; if not specified, defaults to `true`.
308
+ - `--limit`: Maximum number of evaluation samples per dataset; if not specified, all will be evaluated, which is useful for quick validation.
309
+
310
+ ### 3. Use the run_task Function to Submit an Evaluation Task
311
+ Using the `run_task` function to submit an evaluation task requires the same parameters as the command line. You need to pass a dictionary as the parameter, which includes the following fields:
312
+
313
+ #### 1. Configuration Task Dictionary Parameters
314
+ ```python
315
+ import torch
316
+ from evalscope.constants import DEFAULT_ROOT_CACHE_DIR
317
+
318
+ # Example
319
+ your_task_cfg = {
320
+ 'model_args': {'revision': None, 'precision': torch.float16, 'device_map': 'auto'},
321
+ 'generation_config': {'do_sample': False, 'repetition_penalty': 1.0, 'max_new_tokens': 512},
322
+ 'dataset_args': {},
323
+ 'dry_run': False,
324
+ 'model': 'qwen/Qwen2-0.5B-Instruct',
325
+ 'template_type': 'qwen',
326
+ 'datasets': ['arc', 'hellaswag'],
327
+ 'work_dir': DEFAULT_ROOT_CACHE_DIR,
328
+ 'outputs': DEFAULT_ROOT_CACHE_DIR,
329
+ 'mem_cache': False,
330
+ 'dataset_hub': 'ModelScope',
331
+ 'dataset_dir': DEFAULT_ROOT_CACHE_DIR,
332
+ 'limit': 10,
333
+ 'debug': False
334
+ }
335
+ ```
336
+ Here, `DEFAULT_ROOT_CACHE_DIR` is set to `'~/.cache/evalscope'`.
337
+
338
+ #### 2. Execute Task with run_task
339
+ ```python
340
+ from evalscope.run import run_task
341
+ run_task(task_cfg=your_task_cfg)
342
+ ```
343
+
344
+ ### Supported Datasets List
345
+ > [!NOTE]
346
+ > The framework currently supports the following datasets. If the dataset you need is not in the list, please submit an issue, or use the [OpenCompass backend](https://evalscope.readthedocs.io/en/latest/user_guides/opencompass_backend.html) for evaluation, or use the [VLMEvalKit backend](https://evalscope.readthedocs.io/en/latest/user_guides/vlmevalkit_backend.html) for multi-modal model evaluation.
347
+
348
+ | Dataset Name | Link | Status | Note |
349
+ |--------------------|----------------------------------------------------------------------------------------|--------|------|
350
+ | `mmlu` | [mmlu](https://modelscope.cn/datasets/modelscope/mmlu/summary) | Active | |
351
+ | `ceval` | [ceval](https://modelscope.cn/datasets/modelscope/ceval-exam/summary) | Active | |
352
+ | `gsm8k` | [gsm8k](https://modelscope.cn/datasets/modelscope/gsm8k/summary) | Active | |
353
+ | `arc` | [arc](https://modelscope.cn/datasets/modelscope/ai2_arc/summary) | Active | |
354
+ | `hellaswag` | [hellaswag](https://modelscope.cn/datasets/modelscope/hellaswag/summary) | Active | |
355
+ | `truthful_qa` | [truthful_qa](https://modelscope.cn/datasets/modelscope/truthful_qa/summary) | Active | |
356
+ | `competition_math` | [competition_math](https://modelscope.cn/datasets/modelscope/competition_math/summary) | Active | |
357
+ | `humaneval` | [humaneval](https://modelscope.cn/datasets/modelscope/humaneval/summary) | Active | |
358
+ | `bbh` | [bbh](https://modelscope.cn/datasets/modelscope/bbh/summary) | Active | |
359
+ | `race` | [race](https://modelscope.cn/datasets/modelscope/race/summary) | Active | |
360
+ | `trivia_qa` | [trivia_qa](https://modelscope.cn/datasets/modelscope/trivia_qa/summary) | To be integrated | |
361
+
362
+
363
+ ## Evaluation Backend
364
+ EvalScope supports using third-party evaluation frameworks to initiate evaluation tasks, which we call Evaluation Backend. Currently supported Evaluation Backend includes:
365
+ - **Native**: EvalScope's own **default evaluation framework**, supporting various evaluation modes including single model evaluation, arena mode, and baseline model comparison mode.
366
+ - [OpenCompass](https://github.com/open-compass/opencompass): Initiate OpenCompass evaluation tasks through EvalScope. Lightweight, easy to customize, supports seamless integration with the LLM fine-tuning framework ms-swift. [📖 User Guide](https://evalscope.readthedocs.io/en/latest/user_guides/opencompass_backend.html)
367
+ - [VLMEvalKit](https://github.com/open-compass/VLMEvalKit): Initiate VLMEvalKit multimodal evaluation tasks through EvalScope. Supports various multimodal models and datasets, and offers seamless integration with the LLM fine-tuning framework ms-swift. [📖 User Guide](https://evalscope.readthedocs.io/en/latest/user_guides/vlmevalkit_backend.html)
368
+ - **ThirdParty**: The third-party task, e.g. [ToolBench](https://evalscope.readthedocs.io/en/latest/third_party/toolbench.html), you can contribute your own evaluation task to EvalScope as third-party backend.
369
+
370
+ ## Custom Dataset Evaluation
371
+ EvalScope supports custom dataset evaluation. For detailed information, please refer to the Custom Dataset Evaluation [📖User Guide](https://evalscope.readthedocs.io/en/latest/advanced_guides/custom_dataset.html)
372
+
373
+ ## Offline Evaluation
374
+ You can use local dataset to evaluate the model without internet connection.
375
+
376
+ Refer to: Offline Evaluation [📖 User Guide](https://evalscope.readthedocs.io/en/latest/user_guides/offline_evaluation.html)
377
+
378
+
379
+ ## Arena Mode
380
+ The Arena mode allows multiple candidate models to be evaluated through pairwise battles, and can choose to use the AI Enhanced Auto-Reviewer (AAR) automatic evaluation process or manual evaluation to obtain the evaluation report.
381
+
382
+ Refer to: Arena Mode [📖 User Guide](https://evalscope.readthedocs.io/en/latest/user_guides/arena.html)
383
+
384
+ ## Model Serving Performance Evaluation
385
+ A stress testing tool that focuses on large language models and can be customized to support various data set formats and different API protocol formats.
386
+
387
+ Refer to : Model Serving Performance Evaluation [📖 User Guide](https://evalscope.readthedocs.io/en/latest/user_guides/stress_test.html)
388
+
389
+
390
+ ## Leaderboard
391
+ The LLM Leaderboard aims to provide an objective and comprehensive evaluation standard and platform to help researchers and developers understand and compare the performance of models on various tasks on ModelScope.
392
+
393
+ Refer to : [Leaderboard](https://modelscope.cn/leaderboard/58/ranking?type=free)
394
+
395
+
396
+ ## TO-DO List
397
+ - [x] Agents evaluation
398
+ - [x] vLLM
399
+ - [ ] Distributed evaluating
400
+ - [x] Multi-modal evaluation
401
+ - [ ] Benchmarks
402
+ - [ ] GAIA
403
+ - [ ] GPQA
404
+ - [x] MBPP
405
+ - [ ] Auto-reviewer
406
+ - [ ] Qwen-max
407
+
@@ -1,22 +1,23 @@
1
1
  evalscope/__init__.py,sha256=3eLMMrjkAIAs3vGluXNZn5-xTSbO_vfba9yNPbkVtg8,105
2
2
  evalscope/cache.py,sha256=zpGjL9JMosqjk_dkODVwvIGiUC0WAMmMTHDNJOvBQU8,3288
3
- evalscope/config.py,sha256=LfVLET3k7UvZ5nISZJ0uigZetZlvKvaYPfj04dGDblQ,6916
3
+ evalscope/config.py,sha256=G_rpSn5Kd1aPlFJO6asnZu5FUggZmwcYdAxxpuq0yDs,6972
4
4
  evalscope/constants.py,sha256=g8lGYlpA4Wk88HwtqId1-jJX_z8Lr2k02gWLsyofyj0,2670
5
5
  evalscope/run.py,sha256=T-2zoJpBx6YxLnLJH-iFF3UxUGYTU36PMV_DQ9e8tSM,18484
6
- evalscope/run_arena.py,sha256=_LL8fqeKUEMUg985TENYzcnH5_Q8sqPxM68eZk-jhLA,8793
6
+ evalscope/run_arena.py,sha256=BCWCAiX0BQ9pLMIq08svEcd-IoFr75gFShpV88robIY,8963
7
7
  evalscope/run_ms.py,sha256=UtJoGnah64SXigTawJQWTi_TEGjr7Td0rjCTaO-htL8,6028
8
- evalscope/summarizer.py,sha256=Ie1kwPETpz3x2yROLMGqC0UwEj6OKJuKwEcUqxUx5fM,6358
9
- evalscope/version.py,sha256=PB802biAHunDq-r7NLK7FquMr8VtL-ma4R5KdCOVhcw,121
8
+ evalscope/summarizer.py,sha256=rIyML8HpjQxIpXg8KvQ0CzOS6xMS-JHZh6kUZzkaRsk,6640
9
+ evalscope/version.py,sha256=0WQd7LO3Ug6-wMC2jG2UmV0H5mWaZ-7KHtoHQB-djLc,118
10
10
  evalscope/backend/__init__.py,sha256=UP_TW5KBq6V_Nvqkeb7PGvGGX3rVYussT43npwCwDgE,135
11
11
  evalscope/backend/base.py,sha256=5BLrDNNwxsGp35zorD-kphmN15tlBbkuuqwkz8jWZq0,876
12
12
  evalscope/backend/opencompass/__init__.py,sha256=UP_TW5KBq6V_Nvqkeb7PGvGGX3rVYussT43npwCwDgE,135
13
13
  evalscope/backend/opencompass/api_meta_template.py,sha256=sBW0XbVDOKeJ7mVUDLhmcG4e0yClw3eluazdp_8wtgQ,1753
14
- evalscope/backend/opencompass/backend_manager.py,sha256=swmJELcEDNorZzyXZxOhz2q5tWAE-IkotqJVZ2rBRQ4,10366
14
+ evalscope/backend/opencompass/backend_manager.py,sha256=Rr8eFFDUXTxI8AMcrbFW9LZuSQVZ7tsgHcZ1veNhfWM,10190
15
15
  evalscope/backend/opencompass/tasks/__init__.py,sha256=I_ANdxdcIHpkIzIXc1yKOlWwzb4oY0FwTPq1kYtgzQw,50
16
- evalscope/backend/opencompass/tasks/eval_api.py,sha256=9ylEm1Xk_xft56EEpVvlzK89_R1kQh7PI6uVZiexqy8,1042
17
- evalscope/backend/opencompass/tasks/eval_datasets.py,sha256=DWwKcQGGSkkh65H1d-oKN8Jow0Q0cHJJzDC75inycFM,5186
16
+ evalscope/backend/opencompass/tasks/eval_api.py,sha256=12lrgDpMzZ1XBRboq5TEOovDPCMDwwGCJoRT78Ox_yo,1108
17
+ evalscope/backend/opencompass/tasks/eval_datasets.py,sha256=EizugDMt-ontWsTOaM61XGLUkx-S9rzdLf2Ssfmw3Yc,5263
18
18
  evalscope/backend/vlm_eval_kit/__init__.py,sha256=xTgHM95lWzh4s0W7zxLwYkgUbPAZfAb0UoGGmyyBXrs,83
19
- evalscope/backend/vlm_eval_kit/backend_manager.py,sha256=_5yZ7dUULvzLw9-LYg5Svmeia8M6-8CInmiwtGfkYF4,6213
19
+ evalscope/backend/vlm_eval_kit/backend_manager.py,sha256=ZQ1uyaHxLgjrrmbXepSCluvXudHlJycibs97Js1gg_o,6125
20
+ evalscope/backend/vlm_eval_kit/custom_dataset.py,sha256=zC40Jw9bIqcGKuWS9oKPAlQdBARc-zY3sJlSiU-u-sI,1625
20
21
  evalscope/benchmarks/__init__.py,sha256=6TKP35wfKf7R_h870fsEtcIlIAgomKOcukNL9M-5I1Y,162
21
22
  evalscope/benchmarks/benchmark.py,sha256=e7rA8Y_vo6q5BhlUbZGWfZ1-SfJnU2IFRg62pnjQtDk,2157
22
23
  evalscope/benchmarks/data_adapter.py,sha256=eVQvOQYQOQbIl8UlvOEUqRThL3FP3aUD6DSlqF1bqO0,10395
@@ -104,7 +105,7 @@ evalscope/metrics/bundled_rouge_score/rouge_scorer.py,sha256=xSLis-zx1hnHuj_9JI7
104
105
  evalscope/models/__init__.py,sha256=zG27J2HSeKPGiAIUE7QLPHEPLyXLsfaDwYI_TDXjpCg,145
105
106
  evalscope/models/dummy_chat_model.py,sha256=xE8wcFVSCkvizEJ-B8ojX0Ir01Q5KrN5mapjMQaQtbg,1325
106
107
  evalscope/models/model.py,sha256=ZzzVzZHVzuzdt5F1r-rEBT44ZfW9B7R1spsrV-T8nSw,3020
107
- evalscope/models/model_adapter.py,sha256=_Q3_0d1dMBnS1HxaAjpz-Q7gnzSRQH1hklB608DNct8,22488
108
+ evalscope/models/model_adapter.py,sha256=Cgs68ajRwTETEo1eU-OhFiFGuSx4eS1p7-JT3jOpcOk,22740
108
109
  evalscope/models/openai_model.py,sha256=PoQS1FIiWIxp1xBJPV7Bq81LFD9FIT3vAHUvNa22DCc,3452
109
110
  evalscope/models/template.py,sha256=Yk7-QnvjiLD0zchSZcaDSLmpW8onIeFpngSwtUOYVPk,56035
110
111
  evalscope/models/custom/__init__.py,sha256=K4Ewo7Qrs73-jBuPq4ffxd8hMnttKhic-Zj0amH3wiU,103
@@ -156,10 +157,10 @@ evalscope/utils/arena_utils.py,sha256=RMkymUv9Cxs37arUntzgDY5P0Dand2jGpsb7uy6wZm
156
157
  evalscope/utils/completion_parsers.py,sha256=61l8CTh1VxHgRoMDhtznpAhuJp47MssGgS-LdEe_h80,2997
157
158
  evalscope/utils/logger.py,sha256=Ycd0W17Z_oiByPuPX3_umNrOCHjT9O_e_Kws7ZWUSvU,1855
158
159
  evalscope/utils/task_cfg_parser.py,sha256=LiNQ2X8lbZU0cODpaY_PbKyUhNoxZIC495UsLJigX64,138
159
- evalscope/utils/task_utils.py,sha256=9izZ6H7nso1OJmdoduDpaFN2KA3DmZ91dkKXA8GTIUc,460
160
+ evalscope/utils/task_utils.py,sha256=Mv_u_f4Z91zcUeko6acZCmnOAPRfk61kf_dliLzG5Yk,459
160
161
  evalscope/utils/utils.py,sha256=zHo9hfxGBUVKE2xNMR7lDoEvfRnk4V4946DEfXQhlq4,20509
161
- evalscope-0.5.0rc0.dist-info/METADATA,sha256=8V06z1lV7C-eyepDuwy3kAGN8d4VJ26rF3Rrd8DTnCY,27370
162
- evalscope-0.5.0rc0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
163
- evalscope-0.5.0rc0.dist-info/entry_points.txt,sha256=eAQqqT7PlGix33BDKmS7wsaIJ_6-vvGrq79Szb6uVxg,57
164
- evalscope-0.5.0rc0.dist-info/top_level.txt,sha256=jNR-HMn3TR8Atolq7_4rW8IWVX6GhvYV5_1Y_KbJKlY,10
165
- evalscope-0.5.0rc0.dist-info/RECORD,,
162
+ evalscope-0.5.3.dist-info/METADATA,sha256=19GatH8y-jNjQbVX-IGuRb1g2VTjPBOs2dh9RVqrCCQ,21835
163
+ evalscope-0.5.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
164
+ evalscope-0.5.3.dist-info/entry_points.txt,sha256=Qr4oTgGhg_K-iUtKwVH6lWUhFHDUiH9trIqydHGTEug,56
165
+ evalscope-0.5.3.dist-info/top_level.txt,sha256=jNR-HMn3TR8Atolq7_4rW8IWVX6GhvYV5_1Y_KbJKlY,10
166
+ evalscope-0.5.3.dist-info/RECORD,,
@@ -1,3 +1,2 @@
1
1
  [console_scripts]
2
2
  evalscope = evalscope.cli.cli:run_cmd
3
-