evalscope 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- evalscope/__init__.py +3 -0
- evalscope/backend/__init__.py +3 -0
- evalscope/backend/base.py +27 -0
- evalscope/backend/opencompass/__init__.py +3 -0
- evalscope/backend/opencompass/api_meta_template.py +64 -0
- evalscope/backend/opencompass/backend_manager.py +247 -0
- evalscope/backend/opencompass/tasks/__init__.py +1 -0
- evalscope/backend/opencompass/tasks/eval_api.py +30 -0
- evalscope/backend/opencompass/tasks/eval_datasets.py +71 -0
- evalscope/backend/vlm_eval_kit/__init__.py +1 -0
- evalscope/backend/vlm_eval_kit/backend_manager.py +153 -0
- evalscope/benchmarks/__init__.py +4 -0
- evalscope/benchmarks/arc/__init__.py +5 -0
- evalscope/benchmarks/arc/ai2_arc.py +148 -0
- evalscope/benchmarks/arc/arc_adapter.py +231 -0
- evalscope/benchmarks/bbh/__init__.py +6 -0
- evalscope/benchmarks/bbh/bbh_adapter.py +308 -0
- evalscope/benchmarks/bbh/cot_prompts/boolean_expressions.txt +23 -0
- evalscope/benchmarks/bbh/cot_prompts/causal_judgement.txt +25 -0
- evalscope/benchmarks/bbh/cot_prompts/date_understanding.txt +33 -0
- evalscope/benchmarks/bbh/cot_prompts/disambiguation_qa.txt +37 -0
- evalscope/benchmarks/bbh/cot_prompts/dyck_languages.txt +72 -0
- evalscope/benchmarks/bbh/cot_prompts/formal_fallacies.txt +44 -0
- evalscope/benchmarks/bbh/cot_prompts/geometric_shapes.txt +78 -0
- evalscope/benchmarks/bbh/cot_prompts/hyperbaton.txt +28 -0
- evalscope/benchmarks/bbh/cot_prompts/logical_deduction_five_objects.txt +37 -0
- evalscope/benchmarks/bbh/cot_prompts/logical_deduction_seven_objects.txt +37 -0
- evalscope/benchmarks/bbh/cot_prompts/logical_deduction_three_objects.txt +37 -0
- evalscope/benchmarks/bbh/cot_prompts/movie_recommendation.txt +42 -0
- evalscope/benchmarks/bbh/cot_prompts/multistep_arithmetic_two.txt +25 -0
- evalscope/benchmarks/bbh/cot_prompts/navigate.txt +43 -0
- evalscope/benchmarks/bbh/cot_prompts/object_counting.txt +37 -0
- evalscope/benchmarks/bbh/cot_prompts/penguins_in_a_table.txt +41 -0
- evalscope/benchmarks/bbh/cot_prompts/reasoning_about_colored_objects.txt +63 -0
- evalscope/benchmarks/bbh/cot_prompts/ruin_names.txt +44 -0
- evalscope/benchmarks/bbh/cot_prompts/salient_translation_error_detection.txt +40 -0
- evalscope/benchmarks/bbh/cot_prompts/snarks.txt +30 -0
- evalscope/benchmarks/bbh/cot_prompts/sports_understanding.txt +10 -0
- evalscope/benchmarks/bbh/cot_prompts/temporal_sequences.txt +77 -0
- evalscope/benchmarks/bbh/cot_prompts/tracking_shuffled_objects_five_objects.txt +40 -0
- evalscope/benchmarks/bbh/cot_prompts/tracking_shuffled_objects_seven_objects.txt +40 -0
- evalscope/benchmarks/bbh/cot_prompts/tracking_shuffled_objects_three_objects.txt +40 -0
- evalscope/benchmarks/bbh/cot_prompts/web_of_lies.txt +28 -0
- evalscope/benchmarks/bbh/cot_prompts/word_sorting.txt +17 -0
- evalscope/benchmarks/benchmark.py +65 -0
- evalscope/benchmarks/ceval/__init__.py +5 -0
- evalscope/benchmarks/ceval/ceval_adapter.py +340 -0
- evalscope/benchmarks/ceval/ceval_exam.py +159 -0
- evalscope/benchmarks/cmmlu/__init__.py +5 -0
- evalscope/benchmarks/cmmlu/cmmlu.py +166 -0
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +369 -0
- evalscope/benchmarks/competition_math/__init__.py +5 -0
- evalscope/benchmarks/competition_math/competition_math.py +88 -0
- evalscope/benchmarks/competition_math/competition_math_adapter.py +470 -0
- evalscope/benchmarks/data_adapter.py +263 -0
- evalscope/benchmarks/general_qa/__init__.py +5 -0
- evalscope/benchmarks/general_qa/general_qa_adapter.py +186 -0
- evalscope/benchmarks/gsm8k/__init__.py +5 -0
- evalscope/benchmarks/gsm8k/gsm8k.py +127 -0
- evalscope/benchmarks/gsm8k/gsm8k_adapter.py +236 -0
- evalscope/benchmarks/hellaswag/__init__.py +5 -0
- evalscope/benchmarks/hellaswag/hellaswag.py +116 -0
- evalscope/benchmarks/hellaswag/hellaswag_adapter.py +222 -0
- evalscope/benchmarks/humaneval/__init__.py +5 -0
- evalscope/benchmarks/humaneval/humaneval.py +82 -0
- evalscope/benchmarks/humaneval/humaneval_adapter.py +21 -0
- evalscope/benchmarks/mmlu/__init__.py +5 -0
- evalscope/benchmarks/mmlu/mmlu.py +174 -0
- evalscope/benchmarks/mmlu/mmlu_adapter.py +375 -0
- evalscope/benchmarks/race/__init__.py +5 -0
- evalscope/benchmarks/race/race.py +118 -0
- evalscope/benchmarks/race/race_adapter.py +229 -0
- evalscope/benchmarks/trivia_qa/__init__.py +5 -0
- evalscope/benchmarks/trivia_qa/trivia_qa.py +104 -0
- evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +207 -0
- evalscope/benchmarks/truthful_qa/__init__.py +5 -0
- evalscope/benchmarks/truthful_qa/truthful_qa.py +167 -0
- evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +351 -0
- evalscope/cache.py +98 -0
- evalscope/cli/__init__.py +1 -0
- evalscope/cli/base.py +20 -0
- evalscope/cli/cli.py +26 -0
- evalscope/cli/start_perf.py +37 -0
- evalscope/cli/start_server.py +138 -0
- evalscope/config.py +165 -0
- evalscope/constants.py +150 -0
- evalscope/evaluator/__init__.py +3 -0
- evalscope/evaluator/evaluator.py +689 -0
- evalscope/evaluator/rating_eval.py +178 -0
- evalscope/evaluator/reviewer/__init__.py +1 -0
- evalscope/evaluator/reviewer/auto_reviewer.py +411 -0
- evalscope/metrics/__init__.py +1 -0
- evalscope/metrics/bundled_rouge_score/__init__.py +14 -0
- evalscope/metrics/bundled_rouge_score/rouge_scorer.py +342 -0
- evalscope/metrics/code_metric.py +104 -0
- evalscope/metrics/math_accuracy.py +60 -0
- evalscope/metrics/metrics.py +405 -0
- evalscope/metrics/rouge_metric.py +129 -0
- evalscope/models/__init__.py +4 -0
- evalscope/models/custom/__init__.py +4 -0
- evalscope/models/custom/custom_model.py +53 -0
- evalscope/models/dummy_chat_model.py +50 -0
- evalscope/models/model.py +88 -0
- evalscope/models/model_adapter.py +586 -0
- evalscope/models/openai_model.py +103 -0
- evalscope/models/template.py +1446 -0
- evalscope/perf/__init__.py +0 -0
- evalscope/perf/_logging.py +32 -0
- evalscope/perf/api_plugin_base.py +60 -0
- evalscope/perf/custom_api.py +87 -0
- evalscope/perf/dashscope_api.py +84 -0
- evalscope/perf/dataset_plugin_base.py +64 -0
- evalscope/perf/datasets/__init__.py +0 -0
- evalscope/perf/datasets/line_by_line.py +18 -0
- evalscope/perf/datasets/longalpaca_12k.py +20 -0
- evalscope/perf/datasets/openqa.py +22 -0
- evalscope/perf/how_to_analysis_result.py +24 -0
- evalscope/perf/http_client.py +756 -0
- evalscope/perf/openai_api.py +130 -0
- evalscope/perf/plugin_registry.py +35 -0
- evalscope/perf/query_parameters.py +42 -0
- evalscope/perf/server_sent_event.py +43 -0
- evalscope/preprocess/__init__.py +1 -0
- evalscope/preprocess/tokenizers/__init__.py +0 -0
- evalscope/preprocess/tokenizers/gpt2_tokenizer.py +221 -0
- evalscope/registry/__init__.py +1 -0
- evalscope/registry/tasks/arc.yaml +29 -0
- evalscope/registry/tasks/bbh.yaml +27 -0
- evalscope/registry/tasks/bbh_mini.yaml +27 -0
- evalscope/registry/tasks/ceval.yaml +27 -0
- evalscope/registry/tasks/ceval_mini.yaml +27 -0
- evalscope/registry/tasks/cmmlu.yaml +27 -0
- evalscope/registry/tasks/eval_qwen-7b-chat_v100.yaml +28 -0
- evalscope/registry/tasks/general_qa.yaml +27 -0
- evalscope/registry/tasks/gsm8k.yaml +29 -0
- evalscope/registry/tasks/mmlu.yaml +29 -0
- evalscope/registry/tasks/mmlu_mini.yaml +27 -0
- evalscope/run.py +404 -0
- evalscope/run_arena.py +204 -0
- evalscope/run_ms.py +140 -0
- evalscope/summarizer.py +144 -0
- evalscope/third_party/__init__.py +1 -0
- evalscope/third_party/toolbench_static/__init__.py +3 -0
- evalscope/third_party/toolbench_static/eval.py +219 -0
- evalscope/third_party/toolbench_static/infer.py +278 -0
- evalscope/third_party/toolbench_static/llm/__init__.py +1 -0
- evalscope/third_party/toolbench_static/llm/swift_infer.py +45 -0
- evalscope/third_party/toolbench_static/toolbench_static.py +50 -0
- evalscope/tools/__init__.py +1 -0
- evalscope/tools/combine_reports.py +140 -0
- evalscope/tools/gen_mmlu_subject_mapping.py +90 -0
- evalscope/tools/rewrite_eval_results.py +95 -0
- evalscope/utils/__init__.py +4 -0
- evalscope/utils/arena_utils.py +247 -0
- evalscope/utils/completion_parsers.py +87 -0
- evalscope/utils/logger.py +64 -0
- evalscope/utils/task_cfg_parser.py +10 -0
- evalscope/utils/task_utils.py +19 -0
- evalscope/utils/utils.py +625 -0
- evalscope/version.py +4 -0
- evalscope-0.5.0.dist-info/METADATA +566 -0
- evalscope-0.5.0.dist-info/RECORD +165 -0
- evalscope-0.5.0.dist-info/WHEEL +5 -0
- evalscope-0.5.0.dist-info/entry_points.txt +3 -0
- evalscope-0.5.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,130 @@
|
|
|
1
|
+
from typing import Any, Dict, Iterator, List
|
|
2
|
+
import json
|
|
3
|
+
from evalscope.perf.api_plugin_base import ApiPluginBase
|
|
4
|
+
from transformers import AutoTokenizer
|
|
5
|
+
from evalscope.perf.plugin_registry import register_api
|
|
6
|
+
from evalscope.perf.query_parameters import QueryParameters
|
|
7
|
+
|
|
8
|
+
@register_api("openai")
|
|
9
|
+
class OpenaiPlugin(ApiPluginBase):
|
|
10
|
+
"""Base of openai interface.
|
|
11
|
+
"""
|
|
12
|
+
def __init__(self, mode_path: str):
|
|
13
|
+
"""Init the plugin
|
|
14
|
+
|
|
15
|
+
Args:
|
|
16
|
+
mode_path (str): The model path, we use the tokenizer
|
|
17
|
+
weight in the model to calculate the number of the
|
|
18
|
+
input and output tokens.
|
|
19
|
+
"""
|
|
20
|
+
super().__init__(model_path=mode_path)
|
|
21
|
+
if mode_path is not None:
|
|
22
|
+
self.tokenizer = AutoTokenizer.from_pretrained(mode_path)
|
|
23
|
+
else:
|
|
24
|
+
self.tokenizer = None
|
|
25
|
+
|
|
26
|
+
def build_request(self, messages: List[Dict], param: QueryParameters) -> Dict:
|
|
27
|
+
"""Build the openai format request based on prompt, dataset
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
message (Dict): The basic message to generator query.
|
|
31
|
+
param (QueryParameters): The query parameters.
|
|
32
|
+
|
|
33
|
+
Raises:
|
|
34
|
+
Exception: NotImplemented
|
|
35
|
+
|
|
36
|
+
Returns:
|
|
37
|
+
Dict: The request body. None if prompt format is error.
|
|
38
|
+
"""
|
|
39
|
+
try:
|
|
40
|
+
if param.query_template is not None:
|
|
41
|
+
query = json.loads(param.query_template)
|
|
42
|
+
query['messages'] = messages # replace template messages with input messages.
|
|
43
|
+
return self.__compose_query_from_parameter(query, param)
|
|
44
|
+
else:
|
|
45
|
+
query = {'messages': messages}
|
|
46
|
+
return self.__compose_query_from_parameter(query, param)
|
|
47
|
+
except Exception as e:
|
|
48
|
+
print(e)
|
|
49
|
+
return None
|
|
50
|
+
|
|
51
|
+
def __compose_query_from_parameter(self, payload: Dict, param: QueryParameters):
|
|
52
|
+
payload['model'] = param.model
|
|
53
|
+
if param.max_tokens is not None:
|
|
54
|
+
payload['max_tokens'] = param.max_tokens
|
|
55
|
+
if param.frequency_penalty is not None:
|
|
56
|
+
payload['frequency_penalty'] = param.frequency_penalty
|
|
57
|
+
if param.logprobs is not None:
|
|
58
|
+
payload['logprobs'] = param.logprobs
|
|
59
|
+
if param.n_choices is not None:
|
|
60
|
+
payload['n'] = param.n_choices
|
|
61
|
+
if param.seed is not None:
|
|
62
|
+
payload['seed'] = param.seed
|
|
63
|
+
if param.stop is not None:
|
|
64
|
+
payload['stop'] = param.stop
|
|
65
|
+
if param.stream is not None and param.stream:
|
|
66
|
+
payload['stream'] = param.stream
|
|
67
|
+
payload['stream_options'] = {"include_usage": True}
|
|
68
|
+
if param.stop_token_ids is not None:
|
|
69
|
+
payload['stop_token_ids'] = param.stop_token_ids
|
|
70
|
+
if param.temperature is not None:
|
|
71
|
+
payload['temperature'] = param.temperature
|
|
72
|
+
if param.top_p is not None:
|
|
73
|
+
payload['top_p'] = param.top_p
|
|
74
|
+
return payload
|
|
75
|
+
|
|
76
|
+
def parse_responses(self, responses, request: Any = None, **kwargs) -> Dict:
|
|
77
|
+
"""Parser responses and return number of request and response tokens.
|
|
78
|
+
sample of the output delta:
|
|
79
|
+
{"id":"4","object":"chat.completion.chunk","created":1714030870,"model":"llama3","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
Args:
|
|
83
|
+
responses (List[bytes]): List of http response body, for stream output,
|
|
84
|
+
there are multiple responses, for general only one.
|
|
85
|
+
kwargs: (Any): The command line --parameter content.
|
|
86
|
+
Returns:
|
|
87
|
+
Tuple: Return number of prompt token and number of completion tokens.
|
|
88
|
+
"""
|
|
89
|
+
full_response_content = ''
|
|
90
|
+
delta_contents = {}
|
|
91
|
+
input_tokens = None
|
|
92
|
+
output_tokens = None
|
|
93
|
+
for response in responses:
|
|
94
|
+
js = json.loads(response)
|
|
95
|
+
if js['object'] == 'chat.completion':
|
|
96
|
+
for choice in js['choices']:
|
|
97
|
+
delta_contents[choice['index']] = [choice['message']['content']]
|
|
98
|
+
input_tokens = js['usage']['prompt_tokens']
|
|
99
|
+
output_tokens = js['usage']['completion_tokens']
|
|
100
|
+
else: # 'object' == "chat.completion.chunk":
|
|
101
|
+
if 'choices' in js:
|
|
102
|
+
for choice in js['choices']:
|
|
103
|
+
if 'delta' in choice and 'index' in choice:
|
|
104
|
+
delta = choice['delta']
|
|
105
|
+
idx = choice['index']
|
|
106
|
+
if 'content' in delta:
|
|
107
|
+
delta_content = delta['content']
|
|
108
|
+
if idx in delta_contents:
|
|
109
|
+
delta_contents[idx].append(delta_content)
|
|
110
|
+
else:
|
|
111
|
+
delta_contents[idx] = [delta_content]
|
|
112
|
+
# usage in chunk: {"id":"","object":"chat.completion.chunk","created":1718269986,"model":"llama3",
|
|
113
|
+
# "choices":[],"usage":{"prompt_tokens":32,"total_tokens":384,"completion_tokens":352}}
|
|
114
|
+
if 'usage' in js and js['usage']:
|
|
115
|
+
input_tokens = js['usage']['prompt_tokens']
|
|
116
|
+
output_tokens = js['usage']['completion_tokens']
|
|
117
|
+
if input_tokens is None and output_tokens is None and self.tokenizer is not None:
|
|
118
|
+
input_tokens = 0
|
|
119
|
+
output_tokens = 0
|
|
120
|
+
for idx, choice_contents in delta_contents.items():
|
|
121
|
+
full_response_content = ''.join([m for m in choice_contents])
|
|
122
|
+
input_tokens += len(self.tokenizer.encode(request['messages'][0]['content']))
|
|
123
|
+
output_tokens += len(self.tokenizer.encode(full_response_content))
|
|
124
|
+
elif input_tokens is None and output_tokens is None: # no usage info get.
|
|
125
|
+
input_tokens = 0
|
|
126
|
+
output_tokens = 0
|
|
127
|
+
|
|
128
|
+
return input_tokens, output_tokens
|
|
129
|
+
|
|
130
|
+
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
|
|
2
|
+
from typing import Any
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class PluginRegistry:
|
|
6
|
+
def __init__(self):
|
|
7
|
+
self._registry = {}
|
|
8
|
+
|
|
9
|
+
def register(self, name, cls):
|
|
10
|
+
self._registry[name] = cls
|
|
11
|
+
return cls
|
|
12
|
+
|
|
13
|
+
def get_class(self, name):
|
|
14
|
+
return self._registry[name]
|
|
15
|
+
|
|
16
|
+
def all_classes(self):
|
|
17
|
+
return list(self._registry.keys())
|
|
18
|
+
|
|
19
|
+
def __call__(self, name: str) -> Any:
|
|
20
|
+
return self.get_class(name)
|
|
21
|
+
|
|
22
|
+
dataset_registry = PluginRegistry()
|
|
23
|
+
api_registry = PluginRegistry()
|
|
24
|
+
|
|
25
|
+
def register_dataset(name: str):
|
|
26
|
+
def class_decorator(cls):
|
|
27
|
+
dataset_registry.register(name, cls)
|
|
28
|
+
return cls
|
|
29
|
+
return class_decorator
|
|
30
|
+
|
|
31
|
+
def register_api(name: str):
|
|
32
|
+
def class_decorator(cls):
|
|
33
|
+
api_registry.register(name, cls)
|
|
34
|
+
return cls
|
|
35
|
+
return class_decorator
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
@dataclass
|
|
6
|
+
class QueryParameters:
|
|
7
|
+
model: str
|
|
8
|
+
prompt: Optional[str]
|
|
9
|
+
dataset: Optional[str]
|
|
10
|
+
query_template: Optional[str]
|
|
11
|
+
dataset_path: Optional[str]
|
|
12
|
+
frequency_penalty: Optional[float]
|
|
13
|
+
logprobs: Optional[bool]
|
|
14
|
+
max_tokens: Optional[int]
|
|
15
|
+
n_choices: Optional[int]
|
|
16
|
+
seed: Optional[int]
|
|
17
|
+
stop: Optional[str]
|
|
18
|
+
stream: Optional[bool]
|
|
19
|
+
temperature: Optional[float]
|
|
20
|
+
top_p: Optional[float]
|
|
21
|
+
max_prompt_length: Optional[int]
|
|
22
|
+
min_prompt_length: Optional[int]
|
|
23
|
+
include_usage: Optional[bool]
|
|
24
|
+
|
|
25
|
+
def __init__(self, args):
|
|
26
|
+
self.model = args.model
|
|
27
|
+
self.prompt = args.prompt
|
|
28
|
+
self.dataset = args.dataset
|
|
29
|
+
self.query_template = args.query_template
|
|
30
|
+
self.dataset_path = args.dataset_path
|
|
31
|
+
self.frequency_penalty = args.frequency_penalty
|
|
32
|
+
self.logprobs = args.logprobs
|
|
33
|
+
self.max_tokens = args.max_tokens
|
|
34
|
+
self.n_choices = args.n_choices
|
|
35
|
+
self.seed = args.seed
|
|
36
|
+
self.stop = args.stop
|
|
37
|
+
self.stream = args.stream
|
|
38
|
+
self.temperature = args.temperature
|
|
39
|
+
self.top_p = args.top_p
|
|
40
|
+
self.max_prompt_length = args.max_prompt_length
|
|
41
|
+
self.min_prompt_length = args.min_prompt_length
|
|
42
|
+
self.stop_token_ids = args.stop_token_ids
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
|
|
3
|
+
@dataclass
|
|
4
|
+
class ServerSentEvent(object):
|
|
5
|
+
def __init__(self, data='', event=None, id=None, retry=None):
|
|
6
|
+
self.data = data
|
|
7
|
+
self.event = event
|
|
8
|
+
self.id = id
|
|
9
|
+
self.retry = retry
|
|
10
|
+
|
|
11
|
+
@classmethod
|
|
12
|
+
def decode(cls, line):
|
|
13
|
+
""" Decode line to ServerSentEvent
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
Args:
|
|
17
|
+
line (str): The line.
|
|
18
|
+
|
|
19
|
+
Return:
|
|
20
|
+
ServerSentEvent (obj:`ServerSentEvent`): The ServerSentEvent object.
|
|
21
|
+
|
|
22
|
+
"""
|
|
23
|
+
if not line:
|
|
24
|
+
return None
|
|
25
|
+
sse_msg = cls()
|
|
26
|
+
# format data:xxx
|
|
27
|
+
field_type, _, field_value = line.partition(":")
|
|
28
|
+
if field_value.startswith(" "): # compatible with openai api
|
|
29
|
+
field_value = field_value[1:]
|
|
30
|
+
if field_type == "event":
|
|
31
|
+
sse_msg.event = field_value
|
|
32
|
+
elif field_type == "data":
|
|
33
|
+
field_value = field_value.rstrip()
|
|
34
|
+
sse_msg.data = field_value
|
|
35
|
+
elif field_type == "id":
|
|
36
|
+
sse_msg.id = field_value
|
|
37
|
+
elif field_type == "retry":
|
|
38
|
+
sse_msg.retry = field_value
|
|
39
|
+
else:
|
|
40
|
+
pass
|
|
41
|
+
|
|
42
|
+
return sse_msg
|
|
43
|
+
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
File without changes
|
|
@@ -0,0 +1,221 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import sys
|
|
3
|
+
from functools import lru_cache
|
|
4
|
+
from typing import Sequence
|
|
5
|
+
|
|
6
|
+
import json
|
|
7
|
+
import regex as re
|
|
8
|
+
|
|
9
|
+
logger = logging.getLogger(__name__)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def get_pairs(word):
|
|
13
|
+
"""Return set of symbol pairs in a word.
|
|
14
|
+
|
|
15
|
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
|
16
|
+
"""
|
|
17
|
+
pairs = set()
|
|
18
|
+
prev_char = word[0]
|
|
19
|
+
for char in word[1:]:
|
|
20
|
+
pairs.add((prev_char, char))
|
|
21
|
+
prev_char = char
|
|
22
|
+
return pairs
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@lru_cache()
|
|
26
|
+
def bytes_to_unicode():
|
|
27
|
+
"""
|
|
28
|
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
29
|
+
The reversible bpe codes work on unicode strings.
|
|
30
|
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
31
|
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
32
|
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
|
33
|
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
34
|
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
35
|
+
"""
|
|
36
|
+
bs = list(range(ord('!'),
|
|
37
|
+
ord('~') + 1)) + list(range(
|
|
38
|
+
ord('¡'),
|
|
39
|
+
ord('¬') + 1)) + list(range(ord('®'),
|
|
40
|
+
ord('ÿ') + 1))
|
|
41
|
+
cs = bs[:]
|
|
42
|
+
n = 0
|
|
43
|
+
for b in range(2**8):
|
|
44
|
+
if b not in bs:
|
|
45
|
+
bs.append(b)
|
|
46
|
+
cs.append(2**8 + n)
|
|
47
|
+
n += 1
|
|
48
|
+
cs = [chr(n) for n in cs]
|
|
49
|
+
return dict(zip(bs, cs))
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class GPT2Tokenizer(object):
|
|
53
|
+
"""
|
|
54
|
+
GPT-2 BPE tokenizer. Peculiarities:
|
|
55
|
+
- Byte-level BPE
|
|
56
|
+
|
|
57
|
+
[NOTE]: Copied from megatron.tokenizer.gpt2_tokenization.GPT2Tokenizer.
|
|
58
|
+
"""
|
|
59
|
+
|
|
60
|
+
def __init__(self,
|
|
61
|
+
vocab_file,
|
|
62
|
+
merges_file,
|
|
63
|
+
errors='replace',
|
|
64
|
+
special_tokens=None,
|
|
65
|
+
max_len=None):
|
|
66
|
+
assert sys.version_info[0] != 2
|
|
67
|
+
|
|
68
|
+
self.max_len = max_len if max_len is not None else int(1e12)
|
|
69
|
+
self.encoder = json.load(open(vocab_file))
|
|
70
|
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
|
71
|
+
self.errors = errors # how to handle errors in decoding
|
|
72
|
+
self.byte_encoder = bytes_to_unicode()
|
|
73
|
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
|
74
|
+
bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
|
|
75
|
+
bpe_merges = [tuple(merge.split()) for merge in bpe_data]
|
|
76
|
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
|
77
|
+
self.cache = {}
|
|
78
|
+
|
|
79
|
+
# Should haved added re.IGNORECASE so BPE merges can happen for
|
|
80
|
+
# capitalized versions of contractions
|
|
81
|
+
self.pat = re.compile(
|
|
82
|
+
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
self.special_tokens = {}
|
|
86
|
+
self.special_tokens_decoder = {}
|
|
87
|
+
self.set_special_tokens(special_tokens)
|
|
88
|
+
|
|
89
|
+
def __len__(self):
|
|
90
|
+
return len(self.encoder) + len(self.special_tokens)
|
|
91
|
+
|
|
92
|
+
def set_special_tokens(self, special_tokens):
|
|
93
|
+
""" Add a list of additional tokens to the encoder.
|
|
94
|
+
The additional tokens are indexed starting from the last index of the
|
|
95
|
+
current vocabulary in the order of the `special_tokens` list.
|
|
96
|
+
"""
|
|
97
|
+
if not special_tokens:
|
|
98
|
+
self.special_tokens = {}
|
|
99
|
+
self.special_tokens_decoder = {}
|
|
100
|
+
return
|
|
101
|
+
self.special_tokens = dict((tok, len(self.encoder) + i)
|
|
102
|
+
for i, tok in enumerate(special_tokens))
|
|
103
|
+
self.special_tokens_decoder = {
|
|
104
|
+
v: k
|
|
105
|
+
for k, v in self.special_tokens.items()
|
|
106
|
+
}
|
|
107
|
+
logger.info('Special tokens {}'.format(self.special_tokens))
|
|
108
|
+
|
|
109
|
+
def bpe(self, token):
|
|
110
|
+
if token in self.cache:
|
|
111
|
+
return self.cache[token]
|
|
112
|
+
word = tuple(token)
|
|
113
|
+
pairs = get_pairs(word)
|
|
114
|
+
|
|
115
|
+
if not pairs:
|
|
116
|
+
return token
|
|
117
|
+
|
|
118
|
+
while True:
|
|
119
|
+
bigram = min(
|
|
120
|
+
pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
|
121
|
+
if bigram not in self.bpe_ranks:
|
|
122
|
+
break
|
|
123
|
+
first, second = bigram
|
|
124
|
+
new_word = []
|
|
125
|
+
i = 0
|
|
126
|
+
while i < len(word):
|
|
127
|
+
try:
|
|
128
|
+
j = word.index(first, i)
|
|
129
|
+
new_word.extend(word[i:j])
|
|
130
|
+
i = j
|
|
131
|
+
except BaseException:
|
|
132
|
+
new_word.extend(word[i:])
|
|
133
|
+
break
|
|
134
|
+
|
|
135
|
+
if word[i] == first and i < len(word) - 1 and word[
|
|
136
|
+
i + 1] == second:
|
|
137
|
+
new_word.append(first + second)
|
|
138
|
+
i += 2
|
|
139
|
+
else:
|
|
140
|
+
new_word.append(word[i])
|
|
141
|
+
i += 1
|
|
142
|
+
new_word = tuple(new_word)
|
|
143
|
+
word = new_word
|
|
144
|
+
if len(word) == 1:
|
|
145
|
+
break
|
|
146
|
+
else:
|
|
147
|
+
pairs = get_pairs(word)
|
|
148
|
+
word = ' '.join(word)
|
|
149
|
+
self.cache[token] = word
|
|
150
|
+
return word
|
|
151
|
+
|
|
152
|
+
def tokenize(self, text):
|
|
153
|
+
""" Tokenize a string. """
|
|
154
|
+
bpe_tokens = []
|
|
155
|
+
for token in re.findall(self.pat, text):
|
|
156
|
+
if sys.version_info[0] == 2:
|
|
157
|
+
token = ''.join(self.byte_encoder[ord(b)] for b in token)
|
|
158
|
+
else:
|
|
159
|
+
token = ''.join(self.byte_encoder[b]
|
|
160
|
+
for b in token.encode('utf-8'))
|
|
161
|
+
bpe_tokens.extend(
|
|
162
|
+
bpe_token for bpe_token in self.bpe(token).split(' '))
|
|
163
|
+
return bpe_tokens
|
|
164
|
+
|
|
165
|
+
def convert_tokens_to_ids(self, tokens):
|
|
166
|
+
""" Converts a sequence of tokens into ids using the vocab. """
|
|
167
|
+
ids = []
|
|
168
|
+
if isinstance(tokens, str):
|
|
169
|
+
if tokens in self.special_tokens:
|
|
170
|
+
return self.special_tokens[tokens]
|
|
171
|
+
else:
|
|
172
|
+
return self.encoder.get(tokens, 0)
|
|
173
|
+
for token in tokens:
|
|
174
|
+
if token in self.special_tokens:
|
|
175
|
+
ids.append(self.special_tokens[token])
|
|
176
|
+
else:
|
|
177
|
+
ids.append(self.encoder.get(token, 0))
|
|
178
|
+
if len(ids) > self.max_len:
|
|
179
|
+
logger.warning(
|
|
180
|
+
'Token indices sequence length is longer than the specified maximum '
|
|
181
|
+
' sequence length for this OpenAI GPT model ({} > {}). Running this'
|
|
182
|
+
' sequence through the model will result in indexing errors'.
|
|
183
|
+
format(len(ids), self.max_len))
|
|
184
|
+
return ids
|
|
185
|
+
|
|
186
|
+
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
|
|
187
|
+
"""Converts a sequence of ids in BPE tokens using the vocab."""
|
|
188
|
+
tokens = []
|
|
189
|
+
for i in ids:
|
|
190
|
+
if i in self.special_tokens_decoder:
|
|
191
|
+
if not skip_special_tokens:
|
|
192
|
+
tokens.append(self.special_tokens_decoder[i])
|
|
193
|
+
else:
|
|
194
|
+
tokens.append(self.decoder[i])
|
|
195
|
+
return tokens
|
|
196
|
+
|
|
197
|
+
def encode(self, text):
|
|
198
|
+
return self.convert_tokens_to_ids(self.tokenize(text))
|
|
199
|
+
|
|
200
|
+
def decode(self, tokens):
|
|
201
|
+
text = ''.join([self.decoder[token] for token in tokens])
|
|
202
|
+
text = bytearray([self.byte_decoder[c] for c in text]).decode(
|
|
203
|
+
'utf-8', errors=self.errors)
|
|
204
|
+
return text
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
class DummyTokenizer:
|
|
208
|
+
|
|
209
|
+
def tokenize(self, text: str):
|
|
210
|
+
return text.split()
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def get_tokenized_string(tokenizer: GPT2Tokenizer, text_list: Sequence[str]):
|
|
214
|
+
token_ids_list, tokenized_string_list = [], []
|
|
215
|
+
for text in text_list:
|
|
216
|
+
assert tokenizer is not None
|
|
217
|
+
token_ids = tokenizer.encode(text)
|
|
218
|
+
tokenized_string = ' '.join(tokenizer.convert_ids_to_tokens(token_ids))
|
|
219
|
+
token_ids_list.append(token_ids)
|
|
220
|
+
tokenized_string_list.append(tokenized_string)
|
|
221
|
+
return token_ids_list, tokenized_string_list
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
model_args: # model args should be followed by benchmark requirements
|
|
2
|
+
revision: default
|
|
3
|
+
precision: torch.float16
|
|
4
|
+
device_map: auto
|
|
5
|
+
# model_name_or_path: qwen/qwen-7b-chat
|
|
6
|
+
generation_config:
|
|
7
|
+
temperature: 0.3
|
|
8
|
+
max_length: 2048
|
|
9
|
+
max_new_tokens: 512
|
|
10
|
+
top_k: 50
|
|
11
|
+
top_p: 0.85
|
|
12
|
+
do_sample: false
|
|
13
|
+
num_beams: 1
|
|
14
|
+
repetition_penalty: 1.0
|
|
15
|
+
# eos_token_id: null
|
|
16
|
+
# pad_token_id: null
|
|
17
|
+
dataset_args:
|
|
18
|
+
arc:
|
|
19
|
+
prompt_template: 'The following are multiple choice questions, please output correct answer in the form of A or B or C or D, do not output explanation:'
|
|
20
|
+
dry_run: false
|
|
21
|
+
model: null # Note: to be implemented as CustomModel
|
|
22
|
+
eval_type: custom
|
|
23
|
+
datasets:
|
|
24
|
+
- arc
|
|
25
|
+
outputs: null # structure: configs, logs, predictions, reviews, reports # TODO: need to parse
|
|
26
|
+
use_cache: false
|
|
27
|
+
stage: all
|
|
28
|
+
dataset_hub: ModelScope # `Local` or `ModelScope`
|
|
29
|
+
limit: null
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
model_args: # model args should be followed by benchmark requirements
|
|
2
|
+
revision: default
|
|
3
|
+
precision: torch.float16
|
|
4
|
+
device_map: auto
|
|
5
|
+
# model_name_or_path: qwen/qwen-7b-chat
|
|
6
|
+
generation_config:
|
|
7
|
+
temperature: 0.3
|
|
8
|
+
max_length: 2048
|
|
9
|
+
max_new_tokens: 512
|
|
10
|
+
top_k: 50
|
|
11
|
+
top_p: 0.85
|
|
12
|
+
do_sample: false
|
|
13
|
+
num_beams: 1
|
|
14
|
+
repetition_penalty: 1.0
|
|
15
|
+
# eos_token_id: null
|
|
16
|
+
# pad_token_id: null
|
|
17
|
+
dataset_args: {}
|
|
18
|
+
dry_run: false
|
|
19
|
+
model: null # Note: to be implemented as CustomModel
|
|
20
|
+
eval_type: custom
|
|
21
|
+
datasets:
|
|
22
|
+
- bbh
|
|
23
|
+
outputs: null # structure: configs, logs, predictions, reviews, reports # TODO: need to parse
|
|
24
|
+
use_cache: false
|
|
25
|
+
stage: all
|
|
26
|
+
dataset_hub: ModelScope # `Local` or `ModelScope`
|
|
27
|
+
limit: null
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
model_args: # model args should be followed by benchmark requirements
|
|
2
|
+
revision: default
|
|
3
|
+
precision: torch.float16
|
|
4
|
+
device_map: auto
|
|
5
|
+
# model_name_or_path: qwen/qwen-7b-chat
|
|
6
|
+
generation_config:
|
|
7
|
+
temperature: 0.3
|
|
8
|
+
max_length: 2048
|
|
9
|
+
max_new_tokens: 512
|
|
10
|
+
top_k: 50
|
|
11
|
+
top_p: 0.85
|
|
12
|
+
do_sample: false
|
|
13
|
+
num_beams: 1
|
|
14
|
+
repetition_penalty: 1.0
|
|
15
|
+
# eos_token_id: null
|
|
16
|
+
# pad_token_id: null
|
|
17
|
+
dataset_args: {'bbh': {'subset_list': ['temporal_sequences', 'multistep_arithmetic_two']}}
|
|
18
|
+
dry_run: false
|
|
19
|
+
model: null # Note: to be implemented as CustomModel
|
|
20
|
+
eval_type: custom
|
|
21
|
+
datasets:
|
|
22
|
+
- bbh
|
|
23
|
+
outputs: null # structure: configs, logs, predictions, reviews, reports # TODO: need to parse
|
|
24
|
+
use_cache: false
|
|
25
|
+
stage: all
|
|
26
|
+
dataset_hub: ModelScope # `Local` or `ModelScope`
|
|
27
|
+
limit: null
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
model_args: # model args should be followed by benchmark requirements
|
|
2
|
+
revision: default
|
|
3
|
+
precision: torch.float16
|
|
4
|
+
device_map: auto
|
|
5
|
+
# model_name_or_path: qwen/qwen-7b-chat
|
|
6
|
+
generation_config:
|
|
7
|
+
temperature: 0.3
|
|
8
|
+
max_length: 2048
|
|
9
|
+
max_new_tokens: 512
|
|
10
|
+
top_k: 50
|
|
11
|
+
top_p: 0.85
|
|
12
|
+
do_sample: false
|
|
13
|
+
num_beams: 1
|
|
14
|
+
repetition_penalty: 1.0
|
|
15
|
+
# eos_token_id: null
|
|
16
|
+
# pad_token_id: null
|
|
17
|
+
dataset_args: {}
|
|
18
|
+
dry_run: false
|
|
19
|
+
model: null # Note: to be implemented as CustomModel
|
|
20
|
+
eval_type: custom
|
|
21
|
+
datasets:
|
|
22
|
+
- ceval
|
|
23
|
+
outputs: null # structure: configs, logs, predictions, reviews, reports # TODO: need to parse
|
|
24
|
+
use_cache: false
|
|
25
|
+
stage: all
|
|
26
|
+
dataset_hub: ModelScope # `Local` or `ModelScope`
|
|
27
|
+
limit: null
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
model_args: # model args should be followed by benchmark requirements
|
|
2
|
+
revision: default
|
|
3
|
+
precision: torch.float16
|
|
4
|
+
device_map: auto
|
|
5
|
+
# model_name_or_path: qwen/qwen-7b-chat
|
|
6
|
+
generation_config:
|
|
7
|
+
temperature: 0.3
|
|
8
|
+
max_length: 2048
|
|
9
|
+
max_new_tokens: 512
|
|
10
|
+
top_k: 50
|
|
11
|
+
top_p: 0.85
|
|
12
|
+
do_sample: false
|
|
13
|
+
num_beams: 1
|
|
14
|
+
repetition_penalty: 1.0
|
|
15
|
+
# eos_token_id: null
|
|
16
|
+
# pad_token_id: null
|
|
17
|
+
dataset_args: {'ceval': {'subset_list': ['computer_network', 'operating_system']}}
|
|
18
|
+
dry_run: false
|
|
19
|
+
model: null # Note: to be implemented as CustomModel
|
|
20
|
+
eval_type: custom
|
|
21
|
+
datasets:
|
|
22
|
+
- ceval
|
|
23
|
+
outputs: null # structure: configs, logs, predictions, reviews, reports # TODO: need to parse
|
|
24
|
+
use_cache: false
|
|
25
|
+
stage: all
|
|
26
|
+
dataset_hub: ModelScope # `Local` or `ModelScope`
|
|
27
|
+
limit: null
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
model_args: # model args should be followed by benchmark requirements
|
|
2
|
+
revision: default
|
|
3
|
+
precision: torch.float16
|
|
4
|
+
device_map: auto
|
|
5
|
+
# model_name_or_path: qwen/qwen-7b-chat
|
|
6
|
+
generation_config:
|
|
7
|
+
temperature: 0.3
|
|
8
|
+
max_length: 2048
|
|
9
|
+
max_new_tokens: 512
|
|
10
|
+
top_k: 50
|
|
11
|
+
top_p: 0.85
|
|
12
|
+
do_sample: false
|
|
13
|
+
num_beams: 1
|
|
14
|
+
repetition_penalty: 1.0
|
|
15
|
+
# eos_token_id: null
|
|
16
|
+
# pad_token_id: null
|
|
17
|
+
dataset_args: {}
|
|
18
|
+
dry_run: false
|
|
19
|
+
model: null # Note: to be implemented as CustomModel
|
|
20
|
+
eval_type: custom
|
|
21
|
+
datasets:
|
|
22
|
+
- cmmlu
|
|
23
|
+
outputs: null # structure: configs, logs, predictions, reviews, reports # TODO: need to parse
|
|
24
|
+
use_cache: false
|
|
25
|
+
stage: all
|
|
26
|
+
dataset_hub: ModelScope # `Local` or `ModelScope`
|
|
27
|
+
limit: null
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
model_args: # model args should be followed by benchmark requirements
|
|
2
|
+
revision: v1.0.0
|
|
3
|
+
precision: torch.float16
|
|
4
|
+
device_map: auto
|
|
5
|
+
# model_name_or_path: qwen/qwen-7b-chat
|
|
6
|
+
generation_config:
|
|
7
|
+
temperature: 0.3
|
|
8
|
+
max_length: 2048
|
|
9
|
+
max_new_tokens: 512
|
|
10
|
+
top_k: 50
|
|
11
|
+
top_p: 0.85
|
|
12
|
+
do_sample: false
|
|
13
|
+
num_beams: 1
|
|
14
|
+
repetition_penalty: 1.0
|
|
15
|
+
# eos_token_id: null
|
|
16
|
+
# pad_token_id: null
|
|
17
|
+
dataset_args: {}
|
|
18
|
+
dry_run: false
|
|
19
|
+
model: null # Note: to be implemented as CustomModel
|
|
20
|
+
eval_type: custom
|
|
21
|
+
datasets:
|
|
22
|
+
- arc
|
|
23
|
+
- gsm8k
|
|
24
|
+
outputs: ./outputs/eval_qwen-7b-chat_v100 # Directory to save the outputs, structure: logs, predictions, reviews, reports
|
|
25
|
+
use_cache: false
|
|
26
|
+
stage: all
|
|
27
|
+
dataset_hub: ModelScope # `Local` or `ModelScope`
|
|
28
|
+
limit: 10
|