evalscope 0.11.0__py3-none-any.whl → 0.12.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of evalscope might be problematic. Click here for more details.

Files changed (89) hide show
  1. evalscope/arguments.py +3 -1
  2. evalscope/benchmarks/{aime24 → aime}/aime24_adapter.py +3 -3
  3. evalscope/benchmarks/aime/aime25_adapter.py +49 -0
  4. evalscope/benchmarks/arc/arc_adapter.py +14 -17
  5. evalscope/benchmarks/bbh/bbh_adapter.py +6 -11
  6. evalscope/benchmarks/benchmark.py +12 -10
  7. evalscope/benchmarks/ceval/ceval_adapter.py +10 -15
  8. evalscope/benchmarks/cmmlu/cmmlu_adapter.py +11 -16
  9. evalscope/benchmarks/competition_math/competition_math_adapter.py +6 -20
  10. evalscope/benchmarks/data_adapter.py +82 -19
  11. evalscope/benchmarks/data_collection/data_collection_adapter.py +0 -1
  12. evalscope/benchmarks/general_mcq/general_mcq_adapter.py +15 -22
  13. evalscope/benchmarks/general_qa/general_qa_adapter.py +29 -16
  14. evalscope/benchmarks/gpqa/gpqa_adapter.py +13 -8
  15. evalscope/benchmarks/gsm8k/gsm8k_adapter.py +3 -4
  16. evalscope/benchmarks/hellaswag/hellaswag_adapter.py +8 -12
  17. evalscope/benchmarks/humaneval/humaneval_adapter.py +2 -2
  18. evalscope/benchmarks/ifeval/ifeval_adapter.py +3 -4
  19. evalscope/benchmarks/iquiz/iquiz_adapter.py +9 -5
  20. evalscope/benchmarks/math_500/math_500_adapter.py +9 -4
  21. evalscope/benchmarks/mmlu/mmlu_adapter.py +11 -16
  22. evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +24 -36
  23. evalscope/benchmarks/musr/__init__.py +0 -0
  24. evalscope/benchmarks/musr/musr_adapter.py +71 -0
  25. evalscope/benchmarks/process_bench/__init__.py +0 -0
  26. evalscope/benchmarks/process_bench/critique_template.txt +13 -0
  27. evalscope/benchmarks/process_bench/process_bench_adapter.py +99 -0
  28. evalscope/benchmarks/race/race_adapter.py +12 -16
  29. evalscope/benchmarks/simple_qa/__init__.py +0 -0
  30. evalscope/benchmarks/simple_qa/simple_qa_adapter.py +20 -0
  31. evalscope/benchmarks/super_gpqa/__init__.py +0 -0
  32. evalscope/benchmarks/super_gpqa/five_shot_prompt.txt +89 -0
  33. evalscope/benchmarks/super_gpqa/super_gpqa_adapter.py +191 -0
  34. evalscope/benchmarks/super_gpqa/utils.py +90 -0
  35. evalscope/benchmarks/super_gpqa/zero_shot_prompt.txt +3 -0
  36. evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +3 -4
  37. evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +7 -14
  38. evalscope/benchmarks/utils.py +43 -0
  39. evalscope/cli/start_app.py +4 -1
  40. evalscope/cli/start_eval.py +4 -3
  41. evalscope/cli/start_perf.py +4 -2
  42. evalscope/collections/evaluator.py +16 -1
  43. evalscope/config.py +13 -3
  44. evalscope/constants.py +7 -0
  45. evalscope/evaluator/evaluator.py +3 -1
  46. evalscope/metrics/__init__.py +2 -1
  47. evalscope/metrics/metrics.py +23 -2
  48. evalscope/metrics/named_metrics.py +1 -0
  49. evalscope/models/__init__.py +2 -1
  50. evalscope/models/base_adapter.py +32 -6
  51. evalscope/models/chat_adapter.py +4 -1
  52. evalscope/models/choice_adapter.py +4 -0
  53. evalscope/models/custom_adapter.py +2 -0
  54. evalscope/models/local_model.py +3 -2
  55. evalscope/models/register.py +28 -0
  56. evalscope/models/server_adapter.py +107 -29
  57. evalscope/perf/__init__.py +0 -1
  58. evalscope/perf/arguments.py +18 -8
  59. evalscope/perf/http_client.py +8 -6
  60. evalscope/perf/plugin/api/openai_api.py +11 -1
  61. evalscope/perf/utils/analysis_result.py +1 -1
  62. evalscope/perf/utils/benchmark_util.py +6 -2
  63. evalscope/report/app.py +15 -8
  64. evalscope/report/combinator.py +2 -2
  65. evalscope/run.py +6 -5
  66. evalscope/third_party/thinkbench/__init__.py +3 -0
  67. evalscope/third_party/thinkbench/eval.py +429 -0
  68. evalscope/third_party/thinkbench/infer.py +130 -0
  69. evalscope/third_party/thinkbench/resources/critique_template.txt +17 -0
  70. evalscope/third_party/thinkbench/resources/reformat_template.txt +31 -0
  71. evalscope/third_party/thinkbench/tools/__init__.py +0 -0
  72. evalscope/third_party/thinkbench/tools/llm.py +48 -0
  73. evalscope/third_party/thinkbench/tools/utils.py +13 -0
  74. evalscope/third_party/toolbench_static/llm/swift_infer.py +50 -20
  75. evalscope/utils/chat_service.py +1 -0
  76. evalscope/utils/filters.py +59 -0
  77. evalscope/utils/logger.py +3 -3
  78. evalscope/utils/model_utils.py +17 -1
  79. evalscope/utils/utils.py +45 -45
  80. evalscope/version.py +2 -2
  81. {evalscope-0.11.0.dist-info → evalscope-0.12.1.dist-info}/METADATA +14 -5
  82. {evalscope-0.11.0.dist-info → evalscope-0.12.1.dist-info}/RECORD +89 -65
  83. tests/cli/test_collection.py +1 -1
  84. tests/cli/test_run.py +151 -32
  85. /evalscope/benchmarks/{aime24 → aime}/__init__.py +0 -0
  86. {evalscope-0.11.0.dist-info → evalscope-0.12.1.dist-info}/LICENSE +0 -0
  87. {evalscope-0.11.0.dist-info → evalscope-0.12.1.dist-info}/WHEEL +0 -0
  88. {evalscope-0.11.0.dist-info → evalscope-0.12.1.dist-info}/entry_points.txt +0 -0
  89. {evalscope-0.11.0.dist-info → evalscope-0.12.1.dist-info}/top_level.txt +0 -0
evalscope/arguments.py CHANGED
@@ -1,7 +1,7 @@
1
1
  import argparse
2
2
  import json
3
3
 
4
- from evalscope.constants import EvalBackend, EvalStage, EvalType
4
+ from evalscope.constants import EvalBackend, EvalStage, EvalType, OutputType
5
5
 
6
6
 
7
7
  class ParseStrArgsAction(argparse.Action):
@@ -71,6 +71,8 @@ def add_argument(parser: argparse.ArgumentParser):
71
71
  parser.add_argument('--seed', type=int, default=42, help='Random seed for reproducibility.')
72
72
  parser.add_argument('--api-key', type=str, default='EMPTY', help='The API key for the remote API model.')
73
73
  parser.add_argument('--api-url', type=str, default=None, help='The API url for the remote API model.')
74
+ parser.add_argument('--timeout', type=float, default=None, help='The timeout for the remote API model.')
75
+ parser.add_argument('--stream', action='store_true', default=False, help='Stream mode.') # noqa: E501
74
76
  # yapf: enable
75
77
 
76
78
 
@@ -1,6 +1,6 @@
1
1
  from evalscope.benchmarks import Benchmark, DataAdapter
2
+ from evalscope.constants import OutputType
2
3
  from evalscope.metrics.math_parser import extract_answer, math_equal, strip_answer_string
3
- from evalscope.models import ChatGenerationModelAdapter
4
4
  from evalscope.utils.logger import get_logger
5
5
 
6
6
  # flake8: noqa
@@ -10,8 +10,8 @@ logger = get_logger()
10
10
 
11
11
  @Benchmark.register(
12
12
  name='aime24',
13
+ pretty_name='AIME-2024',
13
14
  dataset_id='HuggingFaceH4/aime_2024',
14
- model_adapter=ChatGenerationModelAdapter,
15
15
  subset_list=['default'],
16
16
  metric_list=['AveragePass@1'],
17
17
  few_shot_num=0,
@@ -31,7 +31,7 @@ class AIME24Adapter(DataAdapter):
31
31
  problem = input_d['problem']
32
32
  full_prompt = self.prompt_template.format(query=problem)
33
33
 
34
- return {'data': [full_prompt], 'system_prompt': self.system_prompt}
34
+ return self.gen_prompt_data(full_prompt)
35
35
 
36
36
  def get_gold_answer(self, input_d: dict) -> str:
37
37
  # Extract the gold answer from the input dict.
@@ -0,0 +1,49 @@
1
+ from evalscope.benchmarks import Benchmark, DataAdapter
2
+ from evalscope.constants import OutputType
3
+ from evalscope.metrics.math_parser import extract_answer, math_equal, strip_answer_string
4
+ from evalscope.utils.logger import get_logger
5
+
6
+ # flake8: noqa
7
+
8
+ logger = get_logger()
9
+
10
+
11
+ @Benchmark.register(
12
+ name='aime25',
13
+ pretty_name='AIME-2025',
14
+ dataset_id='TIGER-Lab/AIME25',
15
+ subset_list=['default'],
16
+ metric_list=['AveragePass@1'],
17
+ few_shot_num=0,
18
+ train_split=None,
19
+ eval_split='train', # Only train set is available
20
+ prompt_template='{query}\nPlease reason step by step, and put your final answer within \\boxed{{}}.',
21
+ )
22
+ class AIME25Adapter(DataAdapter):
23
+
24
+ def __init__(self, *args, **kwargs):
25
+ super().__init__(*args, **kwargs)
26
+
27
+ def gen_prompt(self, input_d: dict, few_shot_list: list, **kwargs) -> dict:
28
+ """
29
+ Generate the prompt for the model input.
30
+ """
31
+ problem = input_d['question']
32
+ full_prompt = self.prompt_template.format(query=problem)
33
+
34
+ return self.gen_prompt_data(full_prompt)
35
+
36
+ def get_gold_answer(self, input_d: dict) -> str:
37
+ # Extract the gold answer from the input dict.
38
+ return strip_answer_string(input_d['answer'])
39
+
40
+ def parse_pred_result(self, result: str, raw_input_d: dict = None, eval_type: str = 'checkpoint') -> str:
41
+ """
42
+ Parse the model output to get the answer. Could be the best choice index.
43
+ """
44
+ # Note: Use same extraction method for both of checkpoint/service/custom
45
+ result = strip_answer_string(extract_answer(result))
46
+ return result
47
+
48
+ def match(self, gold: str, pred: str) -> float:
49
+ return math_equal(pred, gold)
@@ -4,9 +4,8 @@ import json
4
4
  import os
5
5
 
6
6
  from evalscope.benchmarks import Benchmark, DataAdapter
7
- from evalscope.constants import EvalType
7
+ from evalscope.constants import EvalType, OutputType
8
8
  from evalscope.metrics import exact_match
9
- from evalscope.models import MultiChoiceModelAdapter
10
9
  from evalscope.utils import ResponseParser
11
10
  from evalscope.utils.logger import get_logger
12
11
 
@@ -17,19 +16,20 @@ logger = get_logger()
17
16
 
18
17
  @Benchmark.register(
19
18
  name='arc',
19
+ pretty_name='ARC',
20
20
  dataset_id='modelscope/ai2_arc',
21
- model_adapter=MultiChoiceModelAdapter,
21
+ model_adapter=OutputType.MULTIPLE_CHOICE,
22
+ output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION],
22
23
  subset_list=['ARC-Easy', 'ARC-Challenge'],
23
24
  metric_list=['AverageAccuracy'],
24
25
  few_shot_num=0,
25
26
  train_split='train',
26
27
  eval_split='test',
27
- prompt_template='',
28
+ prompt_template=
29
+ 'The following are multiple choice questions, please output correct answer in the form of A or B or C or D, do not output explanation:\n{query}',
28
30
  )
29
31
  class ARCAdapter(DataAdapter):
30
32
 
31
- choices = ['A', 'B', 'C', 'D']
32
-
33
33
  def __init__(self, **kwargs):
34
34
  few_shot_num = kwargs.get('few_shot_num', None)
35
35
  if few_shot_num is None:
@@ -42,6 +42,8 @@ class ARCAdapter(DataAdapter):
42
42
 
43
43
  super().__init__(**kwargs)
44
44
 
45
+ self.choices = ['A', 'B', 'C', 'D']
46
+
45
47
  def load_from_disk(self, dataset_name_or_path, subset_list, work_dir, **kwargs) -> dict:
46
48
  """
47
49
  Load the dataset from local disk.
@@ -60,7 +62,7 @@ class ARCAdapter(DataAdapter):
60
62
  for split_name in ['Train', 'Test']:
61
63
  split_path = os.path.join(subset_path, f'{subset_name}-{split_name}.jsonl')
62
64
  if os.path.exists(split_path):
63
- with open(split_path, 'r', errors='ignore') as in_f:
65
+ with open(split_path, 'r', errors='ignore', encoding='utf-8') as in_f:
64
66
  rows = []
65
67
  for line in in_f:
66
68
  item = json.loads(line.strip())
@@ -107,12 +109,11 @@ class ARCAdapter(DataAdapter):
107
109
  {'data': ['xxx'], 'multi_choices': ['A', 'B', 'C', 'D']}
108
110
  """
109
111
  few_shot_prompts = [self._generate_prompt(input_d=sample, include_answer=True) for sample in few_shot_list]
110
- context: str = '\n'.join(few_shot_prompts)
112
+ context = '\n'.join(few_shot_prompts) + self._generate_prompt(input_d=input_d, include_answer=False)
111
113
 
112
- # context = f'The following are multiple choice questions, please output correct answer in the form of A or B or C or D, do not output explanation:\n {context}'
113
- full_prompt: str = context + self._generate_prompt(input_d=input_d, include_answer=False)
114
+ full_prompt = self.prompt_template.format(query=context)
114
115
 
115
- return {'data': [full_prompt], 'multi_choices': self.choices, 'system_prompt': self.system_prompt}
116
+ return self.gen_prompt_data(full_prompt)
116
117
 
117
118
  def get_gold_answer(self, input_d: dict) -> str:
118
119
  # Get the gold choice
@@ -130,14 +131,10 @@ class ARCAdapter(DataAdapter):
130
131
  Returns:
131
132
  The parsed answer. Depending on the dataset. Usually a string for chat.
132
133
  """
133
- if eval_type == EvalType.CHECKPOINT:
134
+ if self.model_adapter == OutputType.MULTIPLE_CHOICE:
134
135
  return result
135
- elif eval_type == EvalType.SERVICE:
136
- return ResponseParser.parse_first_option_with_choices(text=result, options=self.choices)
137
- elif eval_type == EvalType.CUSTOM:
138
- return ResponseParser.parse_first_option_with_choices(text=result, options=self.choices)
139
136
  else:
140
- raise ValueError(f'Invalid eval_type: {eval_type}')
137
+ return ResponseParser.parse_first_capital(text=result, options=self.choices)
141
138
 
142
139
  def match(self, gold: str, pred: str) -> float:
143
140
  return exact_match(gold=gold, pred=pred)
@@ -8,8 +8,6 @@ import re
8
8
  from evalscope.benchmarks import Benchmark, DataAdapter
9
9
  from evalscope.constants import AnswerKeys
10
10
  from evalscope.metrics import exact_match
11
- from evalscope.models.chat_adapter import ChatGenerationModelAdapter
12
- from evalscope.utils import ResponseParser
13
11
  from evalscope.utils.logger import get_logger
14
12
 
15
13
  # flake8: noqa
@@ -60,8 +58,8 @@ SUBSET_LIST = MULTIPLE_CHOICE_LIST + FREE_FORM_LIST
60
58
 
61
59
  @Benchmark.register(
62
60
  name='bbh',
61
+ pretty_name='BBH',
63
62
  dataset_id='modelscope/bbh',
64
- model_adapter=ChatGenerationModelAdapter,
65
63
  subset_list=SUBSET_LIST,
66
64
  metric_list=['AverageAccuracy'],
67
65
  few_shot_num=3,
@@ -94,7 +92,7 @@ class BBHAdapter(DataAdapter):
94
92
  else:
95
93
  file_path: str = os.path.join(work_dir, dataset_name_or_path, f'{subset_name}.json')
96
94
  if os.path.exists(file_path):
97
- with open(file_path, 'r') as f:
95
+ with open(file_path, 'r', encoding='utf-8') as f:
98
96
  examples = json.load(f)['examples']
99
97
  if subset_name in data_dict:
100
98
  data_dict[subset_name].update({split_name: examples})
@@ -125,7 +123,7 @@ class BBHAdapter(DataAdapter):
125
123
  cot_prompts = ''
126
124
  full_prompt = cot_prompts + self.prompt_template.format(query=input_d['input'])
127
125
 
128
- return {'data': [full_prompt], 'system_prompt': self.system_prompt}
126
+ return self.gen_prompt_data(full_prompt)
129
127
 
130
128
  def gen_prompts(self, data_dict: dict) -> dict:
131
129
  """
@@ -153,7 +151,9 @@ class BBHAdapter(DataAdapter):
153
151
  for sub_name, sub_data_dict in data_dict.items():
154
152
  few_shot_data = []
155
153
  if self.few_shot_num > 0:
156
- with open(os.path.join(os.path.dirname(__file__), 'cot_prompts', f'{sub_name}.txt'), 'r') as f:
154
+ with open(
155
+ os.path.join(os.path.dirname(__file__), 'cot_prompts', f'{sub_name}.txt'), 'r',
156
+ encoding='utf-8') as f:
157
157
  cot_prompt_str = f.read()
158
158
  few_shot_data = [cot_prompt_str]
159
159
 
@@ -171,11 +171,6 @@ class BBHAdapter(DataAdapter):
171
171
  prompt_d[AnswerKeys.RAW_INPUT] = sample_d_new
172
172
  res_dict[sub_name].append(prompt_d)
173
173
 
174
- rnd = random.Random()
175
- rnd.seed(42)
176
- for k, v in res_dict.items():
177
- rnd.shuffle(v)
178
-
179
174
  return res_dict
180
175
 
181
176
  def get_gold_answer(self, input_d: dict) -> str:
@@ -1,12 +1,13 @@
1
1
  import copy
2
+ from collections import OrderedDict
2
3
  from dataclasses import dataclass, field
3
4
  from typing import TYPE_CHECKING, Dict, List, Optional
4
5
 
6
+ from evalscope.constants import OutputType
7
+
5
8
  if TYPE_CHECKING:
6
9
  from evalscope.benchmarks import DataAdapter
7
10
 
8
- from evalscope.models import BaseModelAdapter
9
-
10
11
  BENCHMARK_MAPPINGS = {}
11
12
 
12
13
 
@@ -15,8 +16,9 @@ class BenchmarkMeta:
15
16
  name: str
16
17
  dataset_id: str
17
18
  data_adapter: 'DataAdapter'
18
- model_adapter: BaseModelAdapter
19
- subset_list: List[str] = field(default_factory=list)
19
+ model_adapter: Optional[str] = OutputType.GENERATION
20
+ output_types: Optional[List[str]] = field(default_factory=lambda: [OutputType.GENERATION])
21
+ subset_list: List[str] = field(default_factory=lambda: ['default'])
20
22
  metric_list: List[str] = field(default_factory=list)
21
23
  few_shot_num: int = 0
22
24
  few_shot_random: bool = False
@@ -24,6 +26,9 @@ class BenchmarkMeta:
24
26
  eval_split: Optional[str] = None
25
27
  prompt_template: Optional[str] = None
26
28
  system_prompt: Optional[str] = None
29
+ query_template: Optional[str] = None
30
+ pretty_name: Optional[str] = None
31
+ filters: Optional[OrderedDict] = None
27
32
 
28
33
  def _update(self, args: dict):
29
34
  if args.get('local_path'):
@@ -37,10 +42,7 @@ class BenchmarkMeta:
37
42
  def to_string_dict(self) -> dict:
38
43
  cur_dict = copy.deepcopy(self.__dict__)
39
44
  # cur_dict['data_adapter'] = self.data_adapter.__name__
40
- # cur_dict['model_adapter'] = self.model_adapter.__name__
41
- # cur_dict['metric_list'] = [metric['name'] for metric in self.metric_list]
42
45
  del cur_dict['data_adapter']
43
- del cur_dict['model_adapter']
44
46
  return cur_dict
45
47
 
46
48
  def get_data_adapter(self, config: dict = {}) -> 'DataAdapter':
@@ -59,18 +61,18 @@ class Benchmark:
59
61
  @classmethod
60
62
  def get(cls, name: str) -> 'BenchmarkMeta':
61
63
  if name not in BENCHMARK_MAPPINGS:
62
- raise Exception(f'Unknown benchmark: {name}. Available tasks: {BENCHMARK_MAPPINGS.keys()}')
64
+ raise Exception(f'Unknown benchmark: {name}. Available tasks: {list(BENCHMARK_MAPPINGS.keys())}')
63
65
  benchmark = BENCHMARK_MAPPINGS[name]
64
66
  return benchmark
65
67
 
66
68
  @classmethod
67
- def register(cls, name: str, dataset_id: str, model_adapter: BaseModelAdapter, **kwargs):
69
+ def register(cls, name: str, dataset_id: str, **kwargs):
68
70
 
69
71
  def register_wrapper(data_adapter):
70
72
  if name in BENCHMARK_MAPPINGS:
71
73
  raise Exception(f'Benchmark {name} already registered')
72
74
  BENCHMARK_MAPPINGS[name] = BenchmarkMeta(
73
- name=name, data_adapter=data_adapter, model_adapter=model_adapter, dataset_id=dataset_id, **kwargs)
75
+ name=name, data_adapter=data_adapter, dataset_id=dataset_id, **kwargs)
74
76
  return data_adapter
75
77
 
76
78
  return register_wrapper
@@ -3,9 +3,8 @@ import csv
3
3
  import os
4
4
 
5
5
  from evalscope.benchmarks import Benchmark, DataAdapter
6
- from evalscope.constants import EvalType
6
+ from evalscope.constants import EvalType, OutputType
7
7
  from evalscope.metrics.metrics import exact_match
8
- from evalscope.models import MultiChoiceModelAdapter
9
8
  from evalscope.utils import ResponseParser
10
9
  from evalscope.utils.logger import get_logger
11
10
 
@@ -126,8 +125,10 @@ SUBJECT_MAPPING = {
126
125
 
127
126
  @Benchmark.register(
128
127
  name='ceval',
128
+ pretty_name='C-Eval',
129
129
  dataset_id='modelscope/ceval-exam',
130
- model_adapter=MultiChoiceModelAdapter,
130
+ model_adapter=OutputType.MULTIPLE_CHOICE,
131
+ output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION],
131
132
  subset_list=SUBSET_LIST,
132
133
  metric_list=['AverageAccuracy'],
133
134
  few_shot_num=0,
@@ -137,8 +138,6 @@ SUBJECT_MAPPING = {
137
138
  )
138
139
  class CEVALAdapter(DataAdapter):
139
140
 
140
- choices = ['A', 'B', 'C', 'D']
141
-
142
141
  def __init__(self, **kwargs):
143
142
 
144
143
  few_shot_num = kwargs.get('few_shot_num', 0)
@@ -148,6 +147,7 @@ class CEVALAdapter(DataAdapter):
148
147
  super().__init__(**kwargs)
149
148
 
150
149
  self.category_map = {k: v[-1] for k, v in SUBJECT_MAPPING.items()}
150
+ self.choices = ['A', 'B', 'C', 'D']
151
151
 
152
152
  def load_from_disk(self, dataset_name_or_path, subset_list, work_dir, **kwargs) -> dict:
153
153
  data_dict = {}
@@ -207,7 +207,7 @@ class CEVALAdapter(DataAdapter):
207
207
  subject_name: str = SUBJECT_MAPPING.get(subset_name)[1] if SUBJECT_MAPPING.get(subset_name) else subset_name
208
208
  full_prompt = self.prompt_template.format(subset_name=subject_name, query=query)
209
209
 
210
- return {'data': [full_prompt], 'multi_choices': self.choices, 'system_prompt': self.system_prompt}
210
+ return self.gen_prompt_data(full_prompt)
211
211
 
212
212
  def get_gold_answer(self, input_d: dict) -> str:
213
213
  # Get the gold choice
@@ -225,22 +225,17 @@ class CEVALAdapter(DataAdapter):
225
225
  Returns:
226
226
  The parsed answer. Depending on the dataset. Usually a string for chat.
227
227
  """
228
- if eval_type == EvalType.CHECKPOINT:
228
+ if self.model_adapter == OutputType.MULTIPLE_CHOICE:
229
229
  return result
230
- elif eval_type == EvalType.SERVICE:
231
- return ResponseParser.parse_first_option_with_choices(result, self.choices)
232
- elif eval_type == EvalType.CUSTOM:
233
- return ResponseParser.parse_first_option_with_choices(result, self.choices)
234
230
  else:
235
- raise ValueError(f'Invalid eval_type: {eval_type}')
231
+ return ResponseParser.parse_first_option_with_choices(text=result, options=self.choices)
236
232
 
237
233
  def match(self, gold: str, pred: str) -> float:
238
234
  return exact_match(gold=gold, pred=pred)
239
235
 
240
- @classmethod
241
- def _format_example(cls, input_d: dict, include_answer=True):
236
+ def _format_example(self, input_d: dict, include_answer=True):
242
237
  example = '问题:' + input_d['question']
243
- for choice in cls.choices:
238
+ for choice in self.choices:
244
239
  example += f'\n{choice}. {input_d[f"{choice}"]}'
245
240
 
246
241
  if include_answer:
@@ -4,9 +4,8 @@ import csv
4
4
  import os
5
5
 
6
6
  from evalscope.benchmarks import Benchmark, DataAdapter
7
- from evalscope.constants import EvalType
7
+ from evalscope.constants import EvalType, OutputType
8
8
  from evalscope.metrics import exact_match
9
- from evalscope.models import MultiChoiceModelAdapter
10
9
  from evalscope.utils import ResponseParser
11
10
  from evalscope.utils.logger import get_logger
12
11
 
@@ -103,8 +102,10 @@ SUBJECT_MAPPING = {
103
102
 
104
103
  @Benchmark.register(
105
104
  name='cmmlu',
105
+ pretty_name='C-MMLU',
106
106
  dataset_id='modelscope/cmmlu',
107
- model_adapter=MultiChoiceModelAdapter,
107
+ model_adapter=OutputType.MULTIPLE_CHOICE,
108
+ output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION],
108
109
  subset_list=SUBSET_LIST,
109
110
  metric_list=['AverageAccuracy'],
110
111
  few_shot_num=5,
@@ -114,12 +115,11 @@ SUBJECT_MAPPING = {
114
115
  )
115
116
  class CMMLUAdapter(DataAdapter):
116
117
 
117
- choices = ['A', 'B', 'C', 'D']
118
-
119
118
  def __init__(self, **kwargs):
120
119
  super().__init__(**kwargs)
121
120
 
122
121
  self.category_map = {k: v[-1] for k, v in SUBJECT_MAPPING.items()}
122
+ self.choices = ['A', 'B', 'C', 'D']
123
123
 
124
124
  def load_from_disk(self, dataset_name_or_path, subset_list, work_dir, **kwargs) -> dict:
125
125
  data_dict = {}
@@ -172,7 +172,7 @@ class CMMLUAdapter(DataAdapter):
172
172
 
173
173
  full_prompt = self.prompt_template.format(subset_name=self._format_subject(subset_name), query=context.strip())
174
174
 
175
- return {'data': [full_prompt], 'multi_choices': self.choices, 'system_prompt': self.system_prompt}
175
+ return self.gen_prompt_data(full_prompt)
176
176
 
177
177
  def get_gold_answer(self, input_d: dict) -> str:
178
178
  # Get the gold choice
@@ -190,26 +190,21 @@ class CMMLUAdapter(DataAdapter):
190
190
  Returns:
191
191
  The parsed answer. Depending on the dataset. Usually a string for chat.
192
192
  """
193
- if eval_type == EvalType.CHECKPOINT:
193
+ if self.model_adapter == OutputType.MULTIPLE_CHOICE:
194
194
  return result
195
- elif eval_type == EvalType.SERVICE:
196
- return ResponseParser.parse_first_option_with_choices(result, self.choices)
197
- elif eval_type == EvalType.CUSTOM:
198
- return ResponseParser.parse_first_option_with_choices(result, self.choices)
199
195
  else:
200
- raise ValueError(f'Invalid eval_type: {eval_type}')
196
+ return ResponseParser.parse_first_option_with_choices(text=result, options=self.choices)
201
197
 
202
198
  def match(self, gold: str, pred: str) -> float:
203
199
  return exact_match(gold=gold, pred=pred)
204
200
 
205
- @classmethod
206
- def _generate_prompt(cls, input_d: dict, include_answer=True) -> str:
201
+ def _generate_prompt(self, input_d: dict, include_answer=True) -> str:
207
202
 
208
203
  input_choices: list = [input_d['A'], input_d['B'], input_d['C'], input_d['D']]
209
204
 
210
205
  example: str = input_d['Question']
211
- for j in range(len(cls.choices)):
212
- example += '\n{}. {}'.format(cls.choices[j], input_choices[j])
206
+ for j in range(len(self.choices)):
207
+ example += '\n{}. {}'.format(self.choices[j], input_choices[j])
213
208
 
214
209
  example += '\nAnswer:'
215
210
  if include_answer:
@@ -18,12 +18,12 @@ logger = get_logger()
18
18
 
19
19
  @Benchmark.register(
20
20
  name='competition_math',
21
+ pretty_name='MATH',
21
22
  dataset_id='modelscope/competition_math',
22
- model_adapter=ChatGenerationModelAdapter,
23
23
  subset_list=['Level 1', 'Level 2', 'Level 3', 'Level 4', 'Level 5'],
24
24
  metric_list=['AveragePass@1'],
25
25
  few_shot_num=4,
26
- train_split='train',
26
+ train_split=None,
27
27
  eval_split='test',
28
28
  prompt_template='{query}\nPlease reason step by step, and put your final answer within \\boxed{{}}.',
29
29
  )
@@ -43,7 +43,8 @@ class CompetitionMathAdapter(DataAdapter):
43
43
  def load(self, **kwargs):
44
44
  # default load all levels
45
45
  kwargs['subset_list'] = ['default']
46
- return super().load(**kwargs)
46
+ data_dict = super().load(**kwargs)
47
+ return self.reformat_subset(data_dict, subset_key='level')
47
48
 
48
49
  def load_from_disk(self, dataset_name_or_path, subset_list, work_dir, **kwargs) -> dict:
49
50
  data_dict = defaultdict(dict)
@@ -57,27 +58,12 @@ class CompetitionMathAdapter(DataAdapter):
57
58
  split_data = []
58
59
  for file_path in split_files:
59
60
  if os.path.exists(file_path):
60
- with open(file_path, 'r') as f:
61
+ with open(file_path, 'r', encoding='utf-8') as f:
61
62
  split_data.append(json.load(f))
62
63
  data_dict[subset_name][split_name] = split_data
63
64
 
64
65
  return data_dict
65
66
 
66
- def gen_prompts(self, data_dict: dict) -> dict:
67
- res_dict: dict = defaultdict(list)
68
-
69
- # use level as subset
70
- for sub_name, sub_data_dict in data_dict.items():
71
- for sample_d in sub_data_dict[self.eval_split]:
72
- level = sample_d['level']
73
- if level not in self.subset_list:
74
- continue
75
- prompt_d = self.gen_prompt(input_d=sample_d, few_shot_list=None)
76
- prompt_d[AnswerKeys.RAW_INPUT] = sample_d
77
- res_dict[level].append(prompt_d)
78
-
79
- return res_dict
80
-
81
67
  def gen_prompt(self, input_d: dict, few_shot_list: list, **kwargs) -> dict:
82
68
  """
83
69
  Generate the prompt for the model input.
@@ -95,7 +81,7 @@ class CompetitionMathAdapter(DataAdapter):
95
81
  use_fewshot = self.few_shot_num > 0
96
82
  query = self._generate_prompt(input_d, use_fewshot=use_fewshot)
97
83
  full_prompt = self.prompt_template.format(query=query)
98
- return {'data': [full_prompt], 'system_prompt': self.system_prompt}
84
+ return self.gen_prompt_data(full_prompt)
99
85
 
100
86
  def get_gold_answer(self, input_d: dict) -> str:
101
87
  # Extract the gold answer from the input dict.