essreduce 25.12.0__py3-none-any.whl → 25.12.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ess/reduce/nexus/workflow.py +8 -6
- ess/reduce/normalization.py +154 -26
- ess/reduce/time_of_flight/eto_to_tof.py +18 -2
- {essreduce-25.12.0.dist-info → essreduce-25.12.1.dist-info}/METADATA +1 -1
- {essreduce-25.12.0.dist-info → essreduce-25.12.1.dist-info}/RECORD +9 -9
- {essreduce-25.12.0.dist-info → essreduce-25.12.1.dist-info}/WHEEL +0 -0
- {essreduce-25.12.0.dist-info → essreduce-25.12.1.dist-info}/entry_points.txt +0 -0
- {essreduce-25.12.0.dist-info → essreduce-25.12.1.dist-info}/licenses/LICENSE +0 -0
- {essreduce-25.12.0.dist-info → essreduce-25.12.1.dist-info}/top_level.txt +0 -0
ess/reduce/nexus/workflow.py
CHANGED
|
@@ -370,6 +370,8 @@ def get_calibrated_detector(
|
|
|
370
370
|
----------
|
|
371
371
|
detector:
|
|
372
372
|
NeXus detector group.
|
|
373
|
+
transform:
|
|
374
|
+
Transformation matrix for the detector.
|
|
373
375
|
offset:
|
|
374
376
|
Offset to add to the detector position.
|
|
375
377
|
bank_sizes:
|
|
@@ -430,8 +432,8 @@ def assemble_detector_data(
|
|
|
430
432
|
|
|
431
433
|
def get_calibrated_monitor(
|
|
432
434
|
monitor: NeXusComponent[MonitorType, RunType],
|
|
435
|
+
transform: NeXusTransformation[MonitorType, RunType],
|
|
433
436
|
offset: MonitorPositionOffset[RunType, MonitorType],
|
|
434
|
-
source_position: Position[snx.NXsource, RunType],
|
|
435
437
|
) -> EmptyMonitor[RunType, MonitorType]:
|
|
436
438
|
"""
|
|
437
439
|
Extract the data array corresponding to a monitor's signal field.
|
|
@@ -443,16 +445,16 @@ def get_calibrated_monitor(
|
|
|
443
445
|
----------
|
|
444
446
|
monitor:
|
|
445
447
|
NeXus monitor group.
|
|
448
|
+
transform:
|
|
449
|
+
Transformation matrix for the monitor.
|
|
446
450
|
offset:
|
|
447
451
|
Offset to add to the monitor position.
|
|
448
|
-
source_position:
|
|
449
|
-
Position of the neutron source.
|
|
450
452
|
"""
|
|
451
|
-
|
|
453
|
+
transform_unit = transform.value.unit
|
|
452
454
|
return EmptyMonitor[RunType, MonitorType](
|
|
453
455
|
nexus.extract_signal_data_array(monitor).assign_coords(
|
|
454
|
-
position=
|
|
455
|
-
|
|
456
|
+
position=transform.value * sc.vector([0, 0, 0], unit=transform_unit)
|
|
457
|
+
+ offset.to(unit=transform_unit),
|
|
456
458
|
)
|
|
457
459
|
)
|
|
458
460
|
|
ess/reduce/normalization.py
CHANGED
|
@@ -2,7 +2,11 @@
|
|
|
2
2
|
# Copyright (c) 2025 Scipp contributors (https://github.com/scipp)
|
|
3
3
|
"""Normalization routines for neutron data reduction."""
|
|
4
4
|
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import enum
|
|
5
8
|
import functools
|
|
9
|
+
import warnings
|
|
6
10
|
|
|
7
11
|
import scipp as sc
|
|
8
12
|
|
|
@@ -14,6 +18,7 @@ def normalize_by_monitor_histogram(
|
|
|
14
18
|
*,
|
|
15
19
|
monitor: sc.DataArray,
|
|
16
20
|
uncertainty_broadcast_mode: UncertaintyBroadcastMode,
|
|
21
|
+
skip_range_check: bool = False,
|
|
17
22
|
) -> sc.DataArray:
|
|
18
23
|
"""Normalize detector data by a normalized histogrammed monitor.
|
|
19
24
|
|
|
@@ -23,10 +28,13 @@ def normalize_by_monitor_histogram(
|
|
|
23
28
|
- For *event* detectors, the monitor values are mapped to the detector
|
|
24
29
|
using :func:`scipp.lookup`. That is, for detector event :math:`d_i`,
|
|
25
30
|
:math:`m_i` is the monitor bin value at the same coordinate.
|
|
26
|
-
- For *histogram* detectors, the monitor is rebinned using
|
|
31
|
+
- For *histogram* detectors, the monitor is generally rebinned using the detector
|
|
27
32
|
binning using :func:`scipp.rebin`. Thus, detector value :math:`d_i` and
|
|
28
33
|
monitor value :math:`m_i` correspond to the same bin.
|
|
29
34
|
|
|
35
|
+
- In case the detector coordinate does not have a dimension in common with the
|
|
36
|
+
monitor, :func:`scipp.lookup` is used as in the event case.
|
|
37
|
+
|
|
30
38
|
In both cases, let :math:`x_i` be the lower bound of monitor bin :math:`i`
|
|
31
39
|
and let :math:`\\Delta x_i = x_{i+1} - x_i` be the width of that bin.
|
|
32
40
|
|
|
@@ -47,6 +55,16 @@ def normalize_by_monitor_histogram(
|
|
|
47
55
|
Must be one-dimensional and have a dimension coordinate, typically "wavelength".
|
|
48
56
|
uncertainty_broadcast_mode:
|
|
49
57
|
Choose how uncertainties of the monitor are broadcast to the sample data.
|
|
58
|
+
skip_range_check:
|
|
59
|
+
If false (default), the detector data must be within the range of the monitor
|
|
60
|
+
coordinate. Set this to true to disable the check.
|
|
61
|
+
The value of out-of-range bins / events is undefined in that case.
|
|
62
|
+
|
|
63
|
+
This is useful when the detector contains data outside the monitor range, and it
|
|
64
|
+
is difficult or impossible to slice the detector without also removing in-range
|
|
65
|
+
data. In this case, the caller can mask those data points and skip the range
|
|
66
|
+
check. ``normalize_by_monitor_histogram`` does not take masks into account when
|
|
67
|
+
checking ranges as that is expensive to implement in a general case.
|
|
50
68
|
|
|
51
69
|
Returns
|
|
52
70
|
-------
|
|
@@ -60,22 +78,45 @@ def normalize_by_monitor_histogram(
|
|
|
60
78
|
normalize_by_monitor_integrated:
|
|
61
79
|
Normalize by an integrated monitor.
|
|
62
80
|
"""
|
|
63
|
-
|
|
81
|
+
if not skip_range_check:
|
|
82
|
+
_check_monitor_range_contains_detector(monitor=monitor, detector=detector)
|
|
64
83
|
|
|
65
84
|
dim = monitor.dim
|
|
66
85
|
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
86
|
+
match _HistogramNormalizationMode.deduce(detector, dim):
|
|
87
|
+
case _HistogramNormalizationMode.Events:
|
|
88
|
+
detector = _mask_detector_for_norm(detector=detector, monitor=monitor)
|
|
89
|
+
norm = _histogram_monitor_term(
|
|
90
|
+
monitor,
|
|
91
|
+
dim,
|
|
92
|
+
broadcast_to=detector,
|
|
93
|
+
uncertainty_broadcast_mode=uncertainty_broadcast_mode,
|
|
94
|
+
)
|
|
95
|
+
if dim in detector.bins.coords:
|
|
96
|
+
return detector.bins / sc.lookup(norm, dim=dim)
|
|
97
|
+
else:
|
|
98
|
+
return detector / norm
|
|
99
|
+
|
|
100
|
+
case _HistogramNormalizationMode.BinsCommonDim:
|
|
101
|
+
monitor = monitor.rebin({dim: detector.coords[dim]})
|
|
102
|
+
detector = _mask_detector_for_norm(detector=detector, monitor=monitor)
|
|
103
|
+
norm = _histogram_monitor_term(
|
|
104
|
+
monitor,
|
|
105
|
+
dim,
|
|
106
|
+
broadcast_to=detector,
|
|
107
|
+
uncertainty_broadcast_mode=uncertainty_broadcast_mode,
|
|
108
|
+
)
|
|
109
|
+
return detector / norm
|
|
110
|
+
|
|
111
|
+
case _HistogramNormalizationMode.BinsDifferentDim:
|
|
112
|
+
detector = _mask_detector_for_norm(detector=detector, monitor=monitor)
|
|
113
|
+
# No broadcast here because there are no common dims, use lookup instead.
|
|
114
|
+
norm = _histogram_monitor_term(
|
|
115
|
+
monitor,
|
|
116
|
+
dim,
|
|
117
|
+
uncertainty_broadcast_mode=uncertainty_broadcast_mode,
|
|
118
|
+
)
|
|
119
|
+
return detector / sc.lookup(norm)[_compute_bin_centers(detector, dim)]
|
|
79
120
|
|
|
80
121
|
|
|
81
122
|
def normalize_by_monitor_integrated(
|
|
@@ -83,6 +124,7 @@ def normalize_by_monitor_integrated(
|
|
|
83
124
|
*,
|
|
84
125
|
monitor: sc.DataArray,
|
|
85
126
|
uncertainty_broadcast_mode: UncertaintyBroadcastMode,
|
|
127
|
+
skip_range_check: bool = False,
|
|
86
128
|
) -> sc.DataArray:
|
|
87
129
|
"""Normalize detector data by an integrated monitor.
|
|
88
130
|
|
|
@@ -113,6 +155,16 @@ def normalize_by_monitor_integrated(
|
|
|
113
155
|
Must be one-dimensional and have a dimension coordinate, typically "wavelength".
|
|
114
156
|
uncertainty_broadcast_mode:
|
|
115
157
|
Choose how uncertainties of the monitor are broadcast to the sample data.
|
|
158
|
+
skip_range_check:
|
|
159
|
+
If false (default), the detector data must be within the range of the monitor
|
|
160
|
+
coordinate. Set this to true to disable the check.
|
|
161
|
+
The value of out-of-range bins / events is undefined in that case.
|
|
162
|
+
|
|
163
|
+
This is useful when the detector contains data outside the monitor range, and it
|
|
164
|
+
is difficult or impossible to slice the detector without also removing in-range
|
|
165
|
+
data. In this case, the caller can mask those data points and skip the range
|
|
166
|
+
check. ``normalize_by_monitor_histogram`` does not take masks into account when
|
|
167
|
+
checking ranges as that is expensive to implement in a general case.
|
|
116
168
|
|
|
117
169
|
Returns
|
|
118
170
|
-------
|
|
@@ -126,7 +178,8 @@ def normalize_by_monitor_integrated(
|
|
|
126
178
|
normalize_by_monitor_histogram:
|
|
127
179
|
Normalize by a monitor histogram.
|
|
128
180
|
"""
|
|
129
|
-
|
|
181
|
+
if not skip_range_check:
|
|
182
|
+
_check_monitor_range_contains_detector(monitor=monitor, detector=detector)
|
|
130
183
|
detector = _mask_detector_for_norm(detector=detector, monitor=monitor)
|
|
131
184
|
norm = monitor.nansum().data
|
|
132
185
|
norm = broadcast_uncertainties(
|
|
@@ -149,15 +202,15 @@ def _check_monitor_range_contains_detector(
|
|
|
149
202
|
# monitor range that is less than the detector bins which is fine for the events,
|
|
150
203
|
# but would be wrong if the detector was subsequently histogrammed.
|
|
151
204
|
if (det_coord := detector.coords.get(dim)) is not None:
|
|
152
|
-
|
|
153
|
-
hi = det_coord[dim, 1:].nanmax()
|
|
205
|
+
...
|
|
154
206
|
elif (det_coord := detector.bins.coords.get(dim)) is not None:
|
|
155
|
-
|
|
156
|
-
hi = det_coord.nanmax()
|
|
207
|
+
...
|
|
157
208
|
else:
|
|
158
209
|
raise sc.CoordError(
|
|
159
210
|
f"Missing '{dim}' coordinate in detector for monitor normalization."
|
|
160
211
|
)
|
|
212
|
+
lo = det_coord.nanmin()
|
|
213
|
+
hi = det_coord.nanmax()
|
|
161
214
|
|
|
162
215
|
if monitor.coords[dim].min() > lo or monitor.coords[dim].max() < hi:
|
|
163
216
|
raise ValueError(
|
|
@@ -181,13 +234,17 @@ def _mask_detector_for_norm(
|
|
|
181
234
|
if (monitor_mask := _monitor_mask(monitor)) is None:
|
|
182
235
|
return detector
|
|
183
236
|
|
|
184
|
-
if (detector_coord := detector.coords.get(
|
|
237
|
+
if (detector_coord := detector.coords.get(dim)) is not None:
|
|
185
238
|
# Apply the mask to the bins or a dense detector.
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
239
|
+
mask_da = sc.DataArray(monitor_mask, coords={dim: monitor.coords[dim]})
|
|
240
|
+
if dim in detector_coord.dims:
|
|
241
|
+
# Use rebin to reshape the mask to the detector.
|
|
242
|
+
mask = mask_da.rebin({dim: detector_coord}).data != sc.scalar(0, unit=None)
|
|
243
|
+
return detector.assign_masks(_monitor_mask=mask)
|
|
244
|
+
# else: need to use lookup to apply mask at matching coord elements
|
|
245
|
+
return detector.assign_masks(
|
|
246
|
+
_monitor_mask=sc.lookup(mask_da)[_compute_bin_centers(detector, dim)]
|
|
247
|
+
)
|
|
191
248
|
|
|
192
249
|
# else: Apply the mask to the events.
|
|
193
250
|
if dim not in detector.bins.coords:
|
|
@@ -197,7 +254,7 @@ def _mask_detector_for_norm(
|
|
|
197
254
|
event_mask = sc.lookup(
|
|
198
255
|
sc.DataArray(monitor_mask, coords={dim: monitor.coords[dim]})
|
|
199
256
|
)[detector.bins.coords[dim]]
|
|
200
|
-
return detector.bins.assign_masks(
|
|
257
|
+
return detector.bins.assign_masks(_monitor_mask=event_mask)
|
|
201
258
|
|
|
202
259
|
|
|
203
260
|
def _monitor_mask(monitor: sc.DataArray) -> sc.Variable | None:
|
|
@@ -213,3 +270,74 @@ def _monitor_mask(monitor: sc.DataArray) -> sc.Variable | None:
|
|
|
213
270
|
if not masks:
|
|
214
271
|
return None
|
|
215
272
|
return functools.reduce(sc.logical_or, masks)
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
def _histogram_monitor_term(
|
|
276
|
+
monitor: sc.DataArray,
|
|
277
|
+
dim: str,
|
|
278
|
+
*,
|
|
279
|
+
broadcast_to: sc.DataArray | None = None,
|
|
280
|
+
uncertainty_broadcast_mode: UncertaintyBroadcastMode,
|
|
281
|
+
) -> sc.DataArray:
|
|
282
|
+
if not monitor.coords.is_edges(dim, dim):
|
|
283
|
+
raise sc.CoordError(
|
|
284
|
+
f"Monitor coordinage {dim} must be bin-edges for normalization."
|
|
285
|
+
)
|
|
286
|
+
coord = monitor.coords[dim]
|
|
287
|
+
delta_w = sc.DataArray(coord[1:] - coord[:-1], masks=monitor.masks)
|
|
288
|
+
norm = monitor / delta_w
|
|
289
|
+
|
|
290
|
+
if broadcast_to is not None:
|
|
291
|
+
return broadcast_uncertainties(
|
|
292
|
+
norm, prototype=broadcast_to, mode=uncertainty_broadcast_mode
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
match uncertainty_broadcast_mode:
|
|
296
|
+
case UncertaintyBroadcastMode.fail:
|
|
297
|
+
return norm
|
|
298
|
+
case UncertaintyBroadcastMode.drop:
|
|
299
|
+
return sc.values(norm)
|
|
300
|
+
case _:
|
|
301
|
+
warnings.warn(
|
|
302
|
+
"Cannot broadcast uncertainties in this case.",
|
|
303
|
+
UserWarning,
|
|
304
|
+
stacklevel=3,
|
|
305
|
+
)
|
|
306
|
+
return norm
|
|
307
|
+
|
|
308
|
+
|
|
309
|
+
class _HistogramNormalizationMode(enum.Enum):
|
|
310
|
+
Events = enum.auto()
|
|
311
|
+
"""Use an event coordinate to lookup monitor values."""
|
|
312
|
+
BinsCommonDim = enum.auto()
|
|
313
|
+
"""Use a bin coordinate which contains the monitor dimension.
|
|
314
|
+
|
|
315
|
+
The coordinate may be multi-dimensional but one dimension matches
|
|
316
|
+
the dimension of the monitor.
|
|
317
|
+
"""
|
|
318
|
+
BinsDifferentDim = enum.auto()
|
|
319
|
+
"""Use a bin coordinate which does not contain the monitor dimension.
|
|
320
|
+
|
|
321
|
+
The coordinate may be multi-dimensions, e.g., in the DREAM powder workflow
|
|
322
|
+
where it has dims (two_theta, dspacing [bin-edges]).
|
|
323
|
+
"""
|
|
324
|
+
|
|
325
|
+
@classmethod
|
|
326
|
+
def deduce(cls, detector: sc.DataArray, dim: str) -> _HistogramNormalizationMode:
|
|
327
|
+
# Use an event-coord when available:
|
|
328
|
+
if detector.bins is not None and dim in detector.bins.coords:
|
|
329
|
+
return _HistogramNormalizationMode.Events
|
|
330
|
+
# else: use a bin-coord.
|
|
331
|
+
|
|
332
|
+
det_coord = detector.coords[dim]
|
|
333
|
+
if dim in det_coord.dims:
|
|
334
|
+
return _HistogramNormalizationMode.BinsCommonDim
|
|
335
|
+
return _HistogramNormalizationMode.BinsDifferentDim
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
def _compute_bin_centers(da: sc.DataArray, name: str) -> sc.Variable:
|
|
339
|
+
coord = da.coords[name]
|
|
340
|
+
for dim in coord.dims:
|
|
341
|
+
if da.coords.is_edges(name, dim):
|
|
342
|
+
coord = sc.midpoints(coord, dim=dim)
|
|
343
|
+
return coord
|
|
@@ -317,7 +317,19 @@ def _time_of_flight_data_events(
|
|
|
317
317
|
parts = da.bins.constituents
|
|
318
318
|
parts["data"] = tofs
|
|
319
319
|
result = da.bins.assign_coords(tof=sc.bins(**parts, validate_indices=False))
|
|
320
|
-
|
|
320
|
+
out = result.bins.drop_coords("event_time_offset")
|
|
321
|
+
|
|
322
|
+
# The result may still have an 'event_time_zero' dimension (in the case of an
|
|
323
|
+
# event monitor where events were not grouped by pixel).
|
|
324
|
+
if "event_time_zero" in out.dims:
|
|
325
|
+
if ("event_time_zero" in out.coords) and (
|
|
326
|
+
"event_time_zero" not in out.bins.coords
|
|
327
|
+
):
|
|
328
|
+
out.bins.coords["event_time_zero"] = sc.bins_like(
|
|
329
|
+
out, out.coords["event_time_zero"]
|
|
330
|
+
)
|
|
331
|
+
out = out.bins.concat("event_time_zero")
|
|
332
|
+
return out
|
|
321
333
|
|
|
322
334
|
|
|
323
335
|
def detector_ltotal_from_straight_line_approximation(
|
|
@@ -357,6 +369,7 @@ def detector_ltotal_from_straight_line_approximation(
|
|
|
357
369
|
|
|
358
370
|
def monitor_ltotal_from_straight_line_approximation(
|
|
359
371
|
monitor_beamline: EmptyMonitor[RunType, MonitorType],
|
|
372
|
+
source_position: Position[snx.NXsource, RunType],
|
|
360
373
|
) -> MonitorLtotal[RunType, MonitorType]:
|
|
361
374
|
"""
|
|
362
375
|
Compute Ltotal for the monitor.
|
|
@@ -369,7 +382,10 @@ def monitor_ltotal_from_straight_line_approximation(
|
|
|
369
382
|
Beamline data for the monitor that contains the positions necessary to compute
|
|
370
383
|
the straight-line approximation to Ltotal (source and monitor positions).
|
|
371
384
|
"""
|
|
372
|
-
graph =
|
|
385
|
+
graph = {
|
|
386
|
+
**scn.conversion.graph.beamline.beamline(scatter=False),
|
|
387
|
+
'source_position': lambda: source_position,
|
|
388
|
+
}
|
|
373
389
|
return MonitorLtotal[RunType, MonitorType](
|
|
374
390
|
monitor_beamline.transform_coords(
|
|
375
391
|
"Ltotal", graph=graph, keep_intermediate=False
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
ess/reduce/__init__.py,sha256=9iqQ57K3stwyujDzOk30hj7WqZt1Ycnb9AVDDDmk3K0,451
|
|
2
2
|
ess/reduce/logging.py,sha256=6n8Czq4LZ3OK9ENlKsWSI1M3KvKv6_HSoUiV4__IUlU,357
|
|
3
|
-
ess/reduce/normalization.py,sha256=
|
|
3
|
+
ess/reduce/normalization.py,sha256=r8H6SZgT94a1HE9qZ6Bx3N6c3VG3FzlJPzoCVMNI5-0,13081
|
|
4
4
|
ess/reduce/parameter.py,sha256=4sCfoKOI2HuO_Q7JLH_jAXnEOFANSn5P3NdaOBzhJxc,4635
|
|
5
5
|
ess/reduce/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
6
|
ess/reduce/streaming.py,sha256=zbqxQz5dASDq4ZVyx-TdbapBXMyBttImCYz_6WOj4pg,17978
|
|
@@ -18,10 +18,10 @@ ess/reduce/nexus/_nexus_loader.py,sha256=5J26y_t-kabj0ik0jf3OLSYda3lDLDQhvPd2_ro
|
|
|
18
18
|
ess/reduce/nexus/json_generator.py,sha256=ME2Xn8L7Oi3uHJk9ZZdCRQTRX-OV_wh9-DJn07Alplk,2529
|
|
19
19
|
ess/reduce/nexus/json_nexus.py,sha256=QrVc0p424nZ5dHX9gebAJppTw6lGZq9404P_OFl1giA,10282
|
|
20
20
|
ess/reduce/nexus/types.py,sha256=g5oBBEYPH7urF1tDP0tqXtixhQN8JDpe8vmiKrPiUW0,9320
|
|
21
|
-
ess/reduce/nexus/workflow.py,sha256=
|
|
21
|
+
ess/reduce/nexus/workflow.py,sha256=bVRnVZ6HTEdIFwZv61JuvFUeTt9efUwe1MR65gBhyw8,24995
|
|
22
22
|
ess/reduce/scripts/grow_nexus.py,sha256=hET3h06M0xlJd62E3palNLFvJMyNax2kK4XyJcOhl-I,3387
|
|
23
23
|
ess/reduce/time_of_flight/__init__.py,sha256=jn8x9rZ6PzyP_wK8ACd3cg9rOpDAu_IqHyTNSeKfVn0,1461
|
|
24
|
-
ess/reduce/time_of_flight/eto_to_tof.py,sha256=
|
|
24
|
+
ess/reduce/time_of_flight/eto_to_tof.py,sha256=WkCmp8aDpnFTSbPnWosjb17oY5TnCnPDbL66ZeCHo_E,18849
|
|
25
25
|
ess/reduce/time_of_flight/fakes.py,sha256=BqpO56PQyO9ua7QlZw6xXMAPBrqjKZEM_jc-VB83CyE,4289
|
|
26
26
|
ess/reduce/time_of_flight/interpolator_numba.py,sha256=wh2YS3j2rOu30v1Ok3xNHcwS7t8eEtZyZvbfXOCtgrQ,3835
|
|
27
27
|
ess/reduce/time_of_flight/interpolator_scipy.py,sha256=_InoAPuMm2qhJKZQBAHOGRFqtvvuQ8TStoN7j_YgS4M,1853
|
|
@@ -41,9 +41,9 @@ ess/reduce/widgets/_spinner.py,sha256=2VY4Fhfa7HMXox2O7UbofcdKsYG-AJGrsgGJB85nDX
|
|
|
41
41
|
ess/reduce/widgets/_string_widget.py,sha256=iPAdfANyXHf-nkfhgkyH6gQDklia0LebLTmwi3m-iYQ,1482
|
|
42
42
|
ess/reduce/widgets/_switchable_widget.py,sha256=fjKz99SKLhIF1BLgGVBSKKn3Lu_jYBwDYGeAjbJY3Q8,2390
|
|
43
43
|
ess/reduce/widgets/_vector_widget.py,sha256=aTaBqCFHZQhrIoX6-sSqFWCPePEW8HQt5kUio8jP1t8,1203
|
|
44
|
-
essreduce-25.12.
|
|
45
|
-
essreduce-25.12.
|
|
46
|
-
essreduce-25.12.
|
|
47
|
-
essreduce-25.12.
|
|
48
|
-
essreduce-25.12.
|
|
49
|
-
essreduce-25.12.
|
|
44
|
+
essreduce-25.12.1.dist-info/licenses/LICENSE,sha256=nVEiume4Qj6jMYfSRjHTM2jtJ4FGu0g-5Sdh7osfEYw,1553
|
|
45
|
+
essreduce-25.12.1.dist-info/METADATA,sha256=ALXVOH9hCHFE8rKM8p14XLErG_3gk24HyvWwhX1FzKc,1988
|
|
46
|
+
essreduce-25.12.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
47
|
+
essreduce-25.12.1.dist-info/entry_points.txt,sha256=PMZOIYzCifHMTe4pK3HbhxUwxjFaZizYlLD0td4Isb0,66
|
|
48
|
+
essreduce-25.12.1.dist-info/top_level.txt,sha256=0JxTCgMKPLKtp14wb1-RKisQPQWX7i96innZNvHBr-s,4
|
|
49
|
+
essreduce-25.12.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|