essreduce 25.11.2__py3-none-any.whl → 25.11.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ess/reduce/__init__.py +2 -2
- ess/reduce/live/raw.py +183 -5
- ess/reduce/normalization.py +215 -0
- {essreduce-25.11.2.dist-info → essreduce-25.11.4.dist-info}/METADATA +1 -1
- {essreduce-25.11.2.dist-info → essreduce-25.11.4.dist-info}/RECORD +9 -8
- {essreduce-25.11.2.dist-info → essreduce-25.11.4.dist-info}/WHEEL +0 -0
- {essreduce-25.11.2.dist-info → essreduce-25.11.4.dist-info}/entry_points.txt +0 -0
- {essreduce-25.11.2.dist-info → essreduce-25.11.4.dist-info}/licenses/LICENSE +0 -0
- {essreduce-25.11.2.dist-info → essreduce-25.11.4.dist-info}/top_level.txt +0 -0
ess/reduce/__init__.py
CHANGED
|
@@ -4,7 +4,7 @@
|
|
|
4
4
|
|
|
5
5
|
import importlib.metadata
|
|
6
6
|
|
|
7
|
-
from . import nexus, time_of_flight, uncertainty
|
|
7
|
+
from . import nexus, normalization, time_of_flight, uncertainty
|
|
8
8
|
|
|
9
9
|
try:
|
|
10
10
|
__version__ = importlib.metadata.version("essreduce")
|
|
@@ -13,4 +13,4 @@ except importlib.metadata.PackageNotFoundError:
|
|
|
13
13
|
|
|
14
14
|
del importlib
|
|
15
15
|
|
|
16
|
-
__all__ = ["nexus", "time_of_flight", "uncertainty"]
|
|
16
|
+
__all__ = ["nexus", "normalization", "time_of_flight", "uncertainty"]
|
ess/reduce/live/raw.py
CHANGED
|
@@ -21,7 +21,7 @@ options:
|
|
|
21
21
|
from __future__ import annotations
|
|
22
22
|
|
|
23
23
|
from collections.abc import Callable, Sequence
|
|
24
|
-
from math import ceil
|
|
24
|
+
from math import ceil, prod
|
|
25
25
|
from typing import Literal, NewType
|
|
26
26
|
|
|
27
27
|
import numpy as np
|
|
@@ -138,6 +138,139 @@ class Histogrammer:
|
|
|
138
138
|
return self._hist(replicated, coords=self._coords) / self.replicas
|
|
139
139
|
|
|
140
140
|
|
|
141
|
+
class LogicalView:
|
|
142
|
+
"""
|
|
143
|
+
Logical view for detector data.
|
|
144
|
+
|
|
145
|
+
Implements a view by applying a user-defined transform (e.g., fold or slice
|
|
146
|
+
operations) optionally followed by reduction (summing) over specified dimensions.
|
|
147
|
+
Transformation and reduction must be specified separately for `LogicalView` to
|
|
148
|
+
construct a mapping from output indices to input indices. So `transform` must not
|
|
149
|
+
perform any reductions.
|
|
150
|
+
|
|
151
|
+
This class provides both data transformation (__call__) and index mapping
|
|
152
|
+
(input_indices) using the same transform, ensuring consistency for ROI filtering.
|
|
153
|
+
"""
|
|
154
|
+
|
|
155
|
+
def __init__(
|
|
156
|
+
self,
|
|
157
|
+
transform: Callable[[sc.DataArray], sc.DataArray],
|
|
158
|
+
reduction_dim: str | list[str] | None = None,
|
|
159
|
+
input_sizes: dict[str, int] | None = None,
|
|
160
|
+
):
|
|
161
|
+
"""
|
|
162
|
+
Create a logical view.
|
|
163
|
+
|
|
164
|
+
Parameters
|
|
165
|
+
----------
|
|
166
|
+
transform:
|
|
167
|
+
Callable that transforms input data by reshaping or selecting pixels.
|
|
168
|
+
Examples:
|
|
169
|
+
- Fold: lambda da: da.fold('x', {'x': 512, 'x_bin': 2})
|
|
170
|
+
- Slice: lambda da: da['z', 0] (select front layer of volume)
|
|
171
|
+
- Combined: lambda da: da.fold('x', {'x': 4, 'z': 8})['z', 0]
|
|
172
|
+
reduction_dim:
|
|
173
|
+
Dimension(s) to sum over after applying transform. If None or empty,
|
|
174
|
+
no reduction is performed (pure transform).
|
|
175
|
+
Example: 'x_bin' or ['x_bin', 'y_bin']
|
|
176
|
+
input_sizes:
|
|
177
|
+
Dictionary defining the input dimension sizes.
|
|
178
|
+
Required for input_indices().
|
|
179
|
+
If not provided, input_indices() will raise an error.
|
|
180
|
+
When used with RollingDetectorView, this is automatically
|
|
181
|
+
inferred from detector_number.
|
|
182
|
+
"""
|
|
183
|
+
self._transform = transform
|
|
184
|
+
if reduction_dim is None:
|
|
185
|
+
self._reduction_dim = []
|
|
186
|
+
elif isinstance(reduction_dim, str):
|
|
187
|
+
self._reduction_dim = [reduction_dim]
|
|
188
|
+
else:
|
|
189
|
+
self._reduction_dim = reduction_dim
|
|
190
|
+
self._input_sizes = input_sizes
|
|
191
|
+
|
|
192
|
+
@property
|
|
193
|
+
def replicas(self) -> int:
|
|
194
|
+
"""Number of replicas. Always 1 for LogicalView."""
|
|
195
|
+
return 1
|
|
196
|
+
|
|
197
|
+
def __call__(self, da: sc.DataArray) -> sc.DataArray:
|
|
198
|
+
"""
|
|
199
|
+
Apply transform and optionally sum over reduction dimensions.
|
|
200
|
+
|
|
201
|
+
Parameters
|
|
202
|
+
----------
|
|
203
|
+
da:
|
|
204
|
+
Data to downsample.
|
|
205
|
+
|
|
206
|
+
Returns
|
|
207
|
+
-------
|
|
208
|
+
:
|
|
209
|
+
Transformed (and optionally reduced) data array.
|
|
210
|
+
"""
|
|
211
|
+
transformed = self._transform(da)
|
|
212
|
+
if self._reduction_dim:
|
|
213
|
+
return transformed.sum(self._reduction_dim)
|
|
214
|
+
return transformed
|
|
215
|
+
|
|
216
|
+
def input_indices(self) -> sc.DataArray:
|
|
217
|
+
"""
|
|
218
|
+
Create index mapping for ROI filtering.
|
|
219
|
+
|
|
220
|
+
Returns a DataArray mapping output pixels to input indices (as indices into
|
|
221
|
+
the flattened input array). If reduction dimensions are specified, returns
|
|
222
|
+
binned data where each output pixel contains a list of contributing input
|
|
223
|
+
indices. If no reduction, returns dense indices (1:1 mapping).
|
|
224
|
+
|
|
225
|
+
Returns
|
|
226
|
+
-------
|
|
227
|
+
:
|
|
228
|
+
DataArray mapping output pixels to input indices.
|
|
229
|
+
|
|
230
|
+
Raises
|
|
231
|
+
------
|
|
232
|
+
ValueError:
|
|
233
|
+
If input_sizes was not provided during initialization.
|
|
234
|
+
"""
|
|
235
|
+
if self._input_sizes is None:
|
|
236
|
+
raise ValueError(
|
|
237
|
+
"input_sizes is required for input_indices(). "
|
|
238
|
+
"Provide it during LogicalView initialization."
|
|
239
|
+
)
|
|
240
|
+
|
|
241
|
+
# Create sequential indices (0, 1, 2, ...) and fold to input shape
|
|
242
|
+
total_size = prod(self._input_sizes.values())
|
|
243
|
+
indices = sc.arange('_temp', total_size, dtype='int64', unit=None)
|
|
244
|
+
indices = indices.fold(dim='_temp', sizes=self._input_sizes)
|
|
245
|
+
|
|
246
|
+
# Apply transform to get the grouping structure
|
|
247
|
+
transformed = self._transform(sc.DataArray(data=indices))
|
|
248
|
+
|
|
249
|
+
if not self._reduction_dim:
|
|
250
|
+
# No reduction: 1:1 mapping, return dense indices
|
|
251
|
+
return sc.DataArray(data=transformed.data)
|
|
252
|
+
|
|
253
|
+
# Flatten reduction dimensions to a single dimension.
|
|
254
|
+
# First transpose to make reduction dims contiguous at the end.
|
|
255
|
+
output_dims = [d for d in transformed.dims if d not in self._reduction_dim]
|
|
256
|
+
transformed = transformed.transpose(output_dims + self._reduction_dim)
|
|
257
|
+
transformed = transformed.flatten(dims=self._reduction_dim, to='_reduction')
|
|
258
|
+
|
|
259
|
+
# Convert dense array to binned structure where each output pixel
|
|
260
|
+
# contains a bin with the indices of contributing input pixels.
|
|
261
|
+
bin_size = transformed.sizes['_reduction']
|
|
262
|
+
output_shape = [transformed.sizes[d] for d in output_dims]
|
|
263
|
+
data_flat = transformed.data.flatten(to='_flat')
|
|
264
|
+
begin = sc.array(
|
|
265
|
+
dims=output_dims,
|
|
266
|
+
values=np.arange(0, data_flat.size, bin_size, dtype=np.int64).reshape(
|
|
267
|
+
output_shape
|
|
268
|
+
),
|
|
269
|
+
unit=None,
|
|
270
|
+
)
|
|
271
|
+
return sc.DataArray(sc.bins(begin=begin, dim='_flat', data=data_flat))
|
|
272
|
+
|
|
273
|
+
|
|
141
274
|
class Detector:
|
|
142
275
|
def __init__(self, detector_number: sc.Variable):
|
|
143
276
|
self._data = sc.DataArray(
|
|
@@ -220,6 +353,48 @@ class RollingDetectorView(Detector):
|
|
|
220
353
|
self._cumulative: sc.DataArray
|
|
221
354
|
self.clear_counts()
|
|
222
355
|
|
|
356
|
+
@staticmethod
|
|
357
|
+
def with_logical_view(
|
|
358
|
+
*,
|
|
359
|
+
detector_number: sc.Variable,
|
|
360
|
+
window: int,
|
|
361
|
+
transform: Callable[[sc.DataArray], sc.DataArray],
|
|
362
|
+
reduction_dim: str | list[str] | None = None,
|
|
363
|
+
) -> RollingDetectorView:
|
|
364
|
+
"""
|
|
365
|
+
Create a RollingDetectorView with a LogicalView projection.
|
|
366
|
+
|
|
367
|
+
This factory method creates a LogicalView with input_sizes
|
|
368
|
+
automatically inferred from detector_number.sizes.
|
|
369
|
+
|
|
370
|
+
Parameters
|
|
371
|
+
----------
|
|
372
|
+
detector_number:
|
|
373
|
+
Detector number for each pixel.
|
|
374
|
+
window:
|
|
375
|
+
Size of the rolling window.
|
|
376
|
+
transform:
|
|
377
|
+
Transform function for the LogicalView.
|
|
378
|
+
reduction_dim:
|
|
379
|
+
Reduction dimension(s) for the LogicalView. If None or empty,
|
|
380
|
+
no reduction is performed (pure transform).
|
|
381
|
+
|
|
382
|
+
Returns
|
|
383
|
+
-------
|
|
384
|
+
:
|
|
385
|
+
RollingDetectorView with LogicalView projection.
|
|
386
|
+
"""
|
|
387
|
+
view = LogicalView(
|
|
388
|
+
transform=transform,
|
|
389
|
+
reduction_dim=reduction_dim,
|
|
390
|
+
input_sizes=dict(detector_number.sizes),
|
|
391
|
+
)
|
|
392
|
+
return RollingDetectorView(
|
|
393
|
+
detector_number=detector_number,
|
|
394
|
+
window=window,
|
|
395
|
+
projection=view,
|
|
396
|
+
)
|
|
397
|
+
|
|
223
398
|
@property
|
|
224
399
|
def max_window(self) -> int:
|
|
225
400
|
return self._window
|
|
@@ -249,9 +424,11 @@ class RollingDetectorView(Detector):
|
|
|
249
424
|
def make_roi_filter(self) -> roi.ROIFilter:
|
|
250
425
|
"""Return a ROI filter operating via the projection plane of the view."""
|
|
251
426
|
norm = 1.0
|
|
252
|
-
if
|
|
427
|
+
# Use duck typing: check if projection has input_indices method
|
|
428
|
+
if hasattr(self._projection, 'input_indices'):
|
|
253
429
|
indices = self._projection.input_indices()
|
|
254
|
-
|
|
430
|
+
# Get replicas property if it exists (Histogrammer has it, default to 1.0)
|
|
431
|
+
norm = getattr(self._projection, 'replicas', 1.0)
|
|
255
432
|
else:
|
|
256
433
|
indices = sc.ones(sizes=self.data.sizes, dtype='int32', unit=None)
|
|
257
434
|
indices = sc.cumsum(indices, mode='exclusive')
|
|
@@ -292,10 +469,11 @@ class RollingDetectorView(Detector):
|
|
|
292
469
|
if not sc.identical(det_num, self.detector_number):
|
|
293
470
|
raise sc.CoordError("Mismatching detector numbers in weights.")
|
|
294
471
|
weights = weights.data
|
|
295
|
-
|
|
472
|
+
# Use duck typing: check for apply_full method (Histogrammer)
|
|
473
|
+
if hasattr(self._projection, 'apply_full'):
|
|
296
474
|
xs = self._projection.apply_full(weights) # Use all replicas
|
|
297
475
|
elif self._projection is not None:
|
|
298
|
-
xs = self._projection(weights)
|
|
476
|
+
xs = self._projection(weights) # LogicalDownsampler or callable
|
|
299
477
|
else:
|
|
300
478
|
xs = weights.copy()
|
|
301
479
|
nonempty = xs.values[xs.values > 0]
|
|
@@ -0,0 +1,215 @@
|
|
|
1
|
+
# SPDX-License-Identifier: BSD-3-Clause
|
|
2
|
+
# Copyright (c) 2025 Scipp contributors (https://github.com/scipp)
|
|
3
|
+
"""Normalization routines for neutron data reduction."""
|
|
4
|
+
|
|
5
|
+
import functools
|
|
6
|
+
|
|
7
|
+
import scipp as sc
|
|
8
|
+
|
|
9
|
+
from .uncertainty import UncertaintyBroadcastMode, broadcast_uncertainties
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def normalize_by_monitor_histogram(
|
|
13
|
+
detector: sc.DataArray,
|
|
14
|
+
*,
|
|
15
|
+
monitor: sc.DataArray,
|
|
16
|
+
uncertainty_broadcast_mode: UncertaintyBroadcastMode,
|
|
17
|
+
) -> sc.DataArray:
|
|
18
|
+
"""Normalize detector data by a normalized histogrammed monitor.
|
|
19
|
+
|
|
20
|
+
This normalization accounts for both the (wavelength) profile of the incident beam
|
|
21
|
+
and the integrated neutron flux, meaning measurement duration and source strength.
|
|
22
|
+
|
|
23
|
+
- For *event* detectors, the monitor values are mapped to the detector
|
|
24
|
+
using :func:`scipp.lookup`. That is, for detector event :math:`d_i`,
|
|
25
|
+
:math:`m_i` is the monitor bin value at the same coordinate.
|
|
26
|
+
- For *histogram* detectors, the monitor is rebinned using to the detector
|
|
27
|
+
binning using :func:`scipp.rebin`. Thus, detector value :math:`d_i` and
|
|
28
|
+
monitor value :math:`m_i` correspond to the same bin.
|
|
29
|
+
|
|
30
|
+
In both cases, let :math:`x_i` be the lower bound of monitor bin :math:`i`
|
|
31
|
+
and let :math:`\\Delta x_i = x_{i+1} - x_i` be the width of that bin.
|
|
32
|
+
|
|
33
|
+
The detector is normalized according to
|
|
34
|
+
|
|
35
|
+
.. math::
|
|
36
|
+
|
|
37
|
+
d_i^\\text{Norm} = \\frac{d_i}{m_i} \\Delta x_i
|
|
38
|
+
|
|
39
|
+
Parameters
|
|
40
|
+
----------
|
|
41
|
+
detector:
|
|
42
|
+
Input detector data.
|
|
43
|
+
Must have a coordinate named ``monitor.dim``, that is, the single
|
|
44
|
+
dimension name of the **monitor**.
|
|
45
|
+
monitor:
|
|
46
|
+
A histogrammed monitor.
|
|
47
|
+
Must be one-dimensional and have a dimension coordinate, typically "wavelength".
|
|
48
|
+
uncertainty_broadcast_mode:
|
|
49
|
+
Choose how uncertainties of the monitor are broadcast to the sample data.
|
|
50
|
+
|
|
51
|
+
Returns
|
|
52
|
+
-------
|
|
53
|
+
:
|
|
54
|
+
``detector`` normalized by ``monitor``.
|
|
55
|
+
If the monitor has masks or contains non-finite values, the output has a mask
|
|
56
|
+
called '_monitor_mask' constructed from the monitor masks and non-finite values.
|
|
57
|
+
|
|
58
|
+
See also
|
|
59
|
+
--------
|
|
60
|
+
normalize_by_monitor_integrated:
|
|
61
|
+
Normalize by an integrated monitor.
|
|
62
|
+
"""
|
|
63
|
+
_check_monitor_range_contains_detector(monitor=monitor, detector=detector)
|
|
64
|
+
|
|
65
|
+
dim = monitor.dim
|
|
66
|
+
|
|
67
|
+
if detector.bins is None:
|
|
68
|
+
monitor = monitor.rebin({dim: detector.coords[dim]})
|
|
69
|
+
detector = _mask_detector_for_norm(detector=detector, monitor=monitor)
|
|
70
|
+
coord = monitor.coords[dim]
|
|
71
|
+
delta_w = sc.DataArray(coord[1:] - coord[:-1], masks=monitor.masks)
|
|
72
|
+
norm = broadcast_uncertainties(
|
|
73
|
+
monitor / delta_w, prototype=detector, mode=uncertainty_broadcast_mode
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
if detector.bins is None:
|
|
77
|
+
return detector / norm.rebin({dim: detector.coords[dim]})
|
|
78
|
+
return detector.bins / sc.lookup(norm, dim=dim)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def normalize_by_monitor_integrated(
|
|
82
|
+
detector: sc.DataArray,
|
|
83
|
+
*,
|
|
84
|
+
monitor: sc.DataArray,
|
|
85
|
+
uncertainty_broadcast_mode: UncertaintyBroadcastMode,
|
|
86
|
+
) -> sc.DataArray:
|
|
87
|
+
"""Normalize detector data by an integrated monitor.
|
|
88
|
+
|
|
89
|
+
This normalization accounts only for the integrated neutron flux,
|
|
90
|
+
meaning measurement duration and source strength.
|
|
91
|
+
It does *not* account for the (wavelength) profile of the incident beam.
|
|
92
|
+
For that, see :func:`normalize_by_monitor_histogram`.
|
|
93
|
+
|
|
94
|
+
Let :math:`d_i` be a detector event or the counts in a detector bin.
|
|
95
|
+
The normalized detector is
|
|
96
|
+
|
|
97
|
+
.. math::
|
|
98
|
+
|
|
99
|
+
d_i^\\text{Norm} = \\frac{d_i}{\\sum_j\\, m_j}
|
|
100
|
+
|
|
101
|
+
where :math:`m_j` is the monitor counts in bin :math:`j`.
|
|
102
|
+
Note that this is not a true integral but only a sum over monitor events.
|
|
103
|
+
|
|
104
|
+
The result depends on the range of the monitor but not its
|
|
105
|
+
binning within that range.
|
|
106
|
+
|
|
107
|
+
Parameters
|
|
108
|
+
----------
|
|
109
|
+
detector:
|
|
110
|
+
Input detector data.
|
|
111
|
+
monitor:
|
|
112
|
+
A histogrammed monitor.
|
|
113
|
+
Must be one-dimensional and have a dimension coordinate, typically "wavelength".
|
|
114
|
+
uncertainty_broadcast_mode:
|
|
115
|
+
Choose how uncertainties of the monitor are broadcast to the sample data.
|
|
116
|
+
|
|
117
|
+
Returns
|
|
118
|
+
-------
|
|
119
|
+
:
|
|
120
|
+
`detector` normalized by a monitor.
|
|
121
|
+
If the monitor has masks or contains non-finite values, the output has a mask
|
|
122
|
+
called '_monitor_mask' constructed from the monitor masks and non-finite values.
|
|
123
|
+
|
|
124
|
+
See also
|
|
125
|
+
--------
|
|
126
|
+
normalize_by_monitor_histogram:
|
|
127
|
+
Normalize by a monitor histogram.
|
|
128
|
+
"""
|
|
129
|
+
_check_monitor_range_contains_detector(monitor=monitor, detector=detector)
|
|
130
|
+
detector = _mask_detector_for_norm(detector=detector, monitor=monitor)
|
|
131
|
+
norm = monitor.nansum().data
|
|
132
|
+
norm = broadcast_uncertainties(
|
|
133
|
+
norm, prototype=detector, mode=uncertainty_broadcast_mode
|
|
134
|
+
)
|
|
135
|
+
return detector / norm
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def _check_monitor_range_contains_detector(
|
|
139
|
+
*, monitor: sc.DataArray, detector: sc.DataArray
|
|
140
|
+
) -> None:
|
|
141
|
+
dim = monitor.dim
|
|
142
|
+
if not monitor.coords.is_edges(dim):
|
|
143
|
+
raise sc.CoordError(
|
|
144
|
+
f"Monitor coordinate '{dim}' must be bin-edges to integrate the monitor."
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
# Prefer a bin coord over an event coord because this makes the behavior for binned
|
|
148
|
+
# and histogrammed data consistent. If we used an event coord, we might allow a
|
|
149
|
+
# monitor range that is less than the detector bins which is fine for the events,
|
|
150
|
+
# but would be wrong if the detector was subsequently histogrammed.
|
|
151
|
+
if (det_coord := detector.coords.get(dim)) is not None:
|
|
152
|
+
lo = det_coord[dim, :-1].nanmin()
|
|
153
|
+
hi = det_coord[dim, 1:].nanmax()
|
|
154
|
+
elif (det_coord := detector.bins.coords.get(dim)) is not None:
|
|
155
|
+
lo = det_coord.nanmin()
|
|
156
|
+
hi = det_coord.nanmax()
|
|
157
|
+
else:
|
|
158
|
+
raise sc.CoordError(
|
|
159
|
+
f"Missing '{dim}' coordinate in detector for monitor normalization."
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
if monitor.coords[dim].min() > lo or monitor.coords[dim].max() < hi:
|
|
163
|
+
raise ValueError(
|
|
164
|
+
f"Cannot normalize by monitor: The {dim} range of the monitor "
|
|
165
|
+
f"({monitor.coords[dim].min():c} to {monitor.coords[dim].max():c}) "
|
|
166
|
+
f"is smaller than the range of the detector ({lo:c} to {hi:c})."
|
|
167
|
+
)
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
def _mask_detector_for_norm(
|
|
171
|
+
*, detector: sc.DataArray, monitor: sc.DataArray
|
|
172
|
+
) -> sc.DataArray:
|
|
173
|
+
"""Mask the detector where the monitor is masked.
|
|
174
|
+
|
|
175
|
+
For performance, this applies the monitor mask to the detector bins.
|
|
176
|
+
This can lead to masking more events than strictly necessary if we
|
|
177
|
+
used an event mask.
|
|
178
|
+
"""
|
|
179
|
+
dim = monitor.dim
|
|
180
|
+
|
|
181
|
+
if (monitor_mask := _monitor_mask(monitor)) is None:
|
|
182
|
+
return detector
|
|
183
|
+
|
|
184
|
+
if (detector_coord := detector.coords.get(monitor.dim)) is not None:
|
|
185
|
+
# Apply the mask to the bins or a dense detector.
|
|
186
|
+
# Use rebin to reshape the mask to the detector.
|
|
187
|
+
mask = sc.DataArray(monitor_mask, coords={dim: monitor.coords[dim]}).rebin(
|
|
188
|
+
{dim: detector_coord}
|
|
189
|
+
).data != sc.scalar(0, unit=None)
|
|
190
|
+
return detector.assign_masks({"_monitor_mask": mask})
|
|
191
|
+
|
|
192
|
+
# else: Apply the mask to the events.
|
|
193
|
+
if dim not in detector.bins.coords:
|
|
194
|
+
raise sc.CoordError(
|
|
195
|
+
f"Detector must have coordinate '{dim}' to mask by monitor."
|
|
196
|
+
)
|
|
197
|
+
event_mask = sc.lookup(
|
|
198
|
+
sc.DataArray(monitor_mask, coords={dim: monitor.coords[dim]})
|
|
199
|
+
)[detector.bins.coords[dim]]
|
|
200
|
+
return detector.bins.assign_masks({"_monitor_mask": event_mask})
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
def _monitor_mask(monitor: sc.DataArray) -> sc.Variable | None:
|
|
204
|
+
"""Mask nonfinite and zero monitor values and combine all masks."""
|
|
205
|
+
masks = list(monitor.masks.values())
|
|
206
|
+
|
|
207
|
+
finite = sc.isfinite(monitor.data)
|
|
208
|
+
nonzero = monitor.data != sc.scalar(0, unit=monitor.unit)
|
|
209
|
+
valid = finite & nonzero
|
|
210
|
+
if not valid.all():
|
|
211
|
+
masks.append(~valid)
|
|
212
|
+
|
|
213
|
+
if not masks:
|
|
214
|
+
return None
|
|
215
|
+
return functools.reduce(sc.logical_or, masks)
|
|
@@ -1,5 +1,6 @@
|
|
|
1
|
-
ess/reduce/__init__.py,sha256=
|
|
1
|
+
ess/reduce/__init__.py,sha256=9iqQ57K3stwyujDzOk30hj7WqZt1Ycnb9AVDDDmk3K0,451
|
|
2
2
|
ess/reduce/logging.py,sha256=6n8Czq4LZ3OK9ENlKsWSI1M3KvKv6_HSoUiV4__IUlU,357
|
|
3
|
+
ess/reduce/normalization.py,sha256=B4O5W3CV_ti-zeU7tyQEAXk5pCUebZ0BG30YN2I3TyY,7844
|
|
3
4
|
ess/reduce/parameter.py,sha256=4sCfoKOI2HuO_Q7JLH_jAXnEOFANSn5P3NdaOBzhJxc,4635
|
|
4
5
|
ess/reduce/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
5
6
|
ess/reduce/streaming.py,sha256=zbqxQz5dASDq4ZVyx-TdbapBXMyBttImCYz_6WOj4pg,17978
|
|
@@ -9,7 +10,7 @@ ess/reduce/workflow.py,sha256=738-lcdgsORYfQ4A0UTk2IgnbVxC3jBdpscpaOFIpdc,3114
|
|
|
9
10
|
ess/reduce/data/__init__.py,sha256=uDtqkmKA_Zwtj6II25zntz9T812XhdCn3tktYev4uyY,486
|
|
10
11
|
ess/reduce/data/_registry.py,sha256=50qY36y5gd2i3JP0Ks6bXApGcW6l70qA6riO0m9Bz4o,11475
|
|
11
12
|
ess/reduce/live/__init__.py,sha256=jPQVhihRVNtEDrE20PoKkclKV2aBF1lS7cCHootgFgI,204
|
|
12
|
-
ess/reduce/live/raw.py,sha256=
|
|
13
|
+
ess/reduce/live/raw.py,sha256=CkPqp4VMNvj0IcFPp1J0n7sVt5PNKdIXnDlALCg9W_Q,31031
|
|
13
14
|
ess/reduce/live/roi.py,sha256=Hs-pW98k41WU6Kl3UQ41kQawk80c2QNOQ_WNctLzDPE,3795
|
|
14
15
|
ess/reduce/live/workflow.py,sha256=bsbwvTqPhRO6mC__3b7MgU7DWwAnOvGvG-t2n22EKq8,4285
|
|
15
16
|
ess/reduce/nexus/__init__.py,sha256=xXc982vZqRba4jR4z5hA2iim17Z7niw4KlS1aLFbn1Q,1107
|
|
@@ -40,9 +41,9 @@ ess/reduce/widgets/_spinner.py,sha256=2VY4Fhfa7HMXox2O7UbofcdKsYG-AJGrsgGJB85nDX
|
|
|
40
41
|
ess/reduce/widgets/_string_widget.py,sha256=iPAdfANyXHf-nkfhgkyH6gQDklia0LebLTmwi3m-iYQ,1482
|
|
41
42
|
ess/reduce/widgets/_switchable_widget.py,sha256=fjKz99SKLhIF1BLgGVBSKKn3Lu_jYBwDYGeAjbJY3Q8,2390
|
|
42
43
|
ess/reduce/widgets/_vector_widget.py,sha256=aTaBqCFHZQhrIoX6-sSqFWCPePEW8HQt5kUio8jP1t8,1203
|
|
43
|
-
essreduce-25.11.
|
|
44
|
-
essreduce-25.11.
|
|
45
|
-
essreduce-25.11.
|
|
46
|
-
essreduce-25.11.
|
|
47
|
-
essreduce-25.11.
|
|
48
|
-
essreduce-25.11.
|
|
44
|
+
essreduce-25.11.4.dist-info/licenses/LICENSE,sha256=nVEiume4Qj6jMYfSRjHTM2jtJ4FGu0g-5Sdh7osfEYw,1553
|
|
45
|
+
essreduce-25.11.4.dist-info/METADATA,sha256=Foul2luwyG1rhulA2Q5KlXbxtrYFGlp99ApSkGjAKOE,1937
|
|
46
|
+
essreduce-25.11.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
47
|
+
essreduce-25.11.4.dist-info/entry_points.txt,sha256=PMZOIYzCifHMTe4pK3HbhxUwxjFaZizYlLD0td4Isb0,66
|
|
48
|
+
essreduce-25.11.4.dist-info/top_level.txt,sha256=0JxTCgMKPLKtp14wb1-RKisQPQWX7i96innZNvHBr-s,4
|
|
49
|
+
essreduce-25.11.4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|