eqc-models 0.9.9__py3-none-any.whl → 0.10.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. eqc_models-0.10.0.data/platlib/compile_extensions.py +67 -0
  2. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/base/polyeval.c +127 -123
  3. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
  4. eqc_models-0.10.0.data/platlib/eqc_models/base.py +115 -0
  5. eqc_models-0.10.0.data/platlib/eqc_models/combinatorics/setcover.py +93 -0
  6. eqc_models-0.10.0.data/platlib/eqc_models/communitydetection.py +25 -0
  7. eqc_models-0.10.0.data/platlib/eqc_models/eqcdirectsolver.py +61 -0
  8. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/graph/base.py +28 -17
  9. eqc_models-0.10.0.data/platlib/eqc_models/graph/partition.py +148 -0
  10. eqc_models-0.10.0.data/platlib/eqc_models/graphs.py +28 -0
  11. eqc_models-0.10.0.data/platlib/eqc_models/maxcut.py +113 -0
  12. eqc_models-0.10.0.data/platlib/eqc_models/maxkcut.py +185 -0
  13. eqc_models-0.10.0.data/platlib/eqc_models/ml/classifierqboost.py +628 -0
  14. eqc_models-0.10.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx +83 -0
  15. eqc_models-0.10.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c +68 -0
  16. eqc_models-0.10.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h +14 -0
  17. eqc_models-0.10.0.data/platlib/eqc_models/quadraticmodel.py +131 -0
  18. eqc_models-0.10.0.data/platlib/eqc_models/solvers/eqcdirect.py +160 -0
  19. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/utilities/polynomial.py +11 -0
  20. {eqc_models-0.9.9.dist-info → eqc_models-0.10.0.dist-info}/METADATA +2 -1
  21. eqc_models-0.10.0.dist-info/RECORD +65 -0
  22. eqc_models-0.9.9.data/platlib/compile_extensions.py +0 -23
  23. eqc_models-0.9.9.data/platlib/eqc_models/ml/classifierqboost.py +0 -423
  24. eqc_models-0.9.9.dist-info/RECORD +0 -52
  25. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/__init__.py +0 -0
  26. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/algorithms/__init__.py +0 -0
  27. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/algorithms/base.py +0 -0
  28. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/algorithms/penaltymultiplier.py +0 -0
  29. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/allocation/__init__.py +0 -0
  30. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/allocation/allocation.py +0 -0
  31. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/allocation/portbase.py +0 -0
  32. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/allocation/portmomentum.py +0 -0
  33. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/assignment/__init__.py +0 -0
  34. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/assignment/qap.py +0 -0
  35. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/assignment/setpartition.py +0 -0
  36. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/base/__init__.py +0 -0
  37. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/base/base.py +0 -0
  38. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/base/constraints.py +0 -0
  39. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/base/operators.py +0 -0
  40. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/base/polyeval.pyx +0 -0
  41. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/base/polynomial.py +0 -0
  42. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/base/quadratic.py +0 -0
  43. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/decoding.py +0 -0
  44. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/graph/__init__.py +0 -0
  45. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/graph/hypergraph.py +0 -0
  46. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/graph/maxcut.py +0 -0
  47. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/graph/maxkcut.py +0 -0
  48. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/__init__.py +0 -0
  49. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/classifierbase.py +0 -0
  50. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/classifierqsvm.py +0 -0
  51. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/clustering.py +0 -0
  52. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/clusteringbase.py +0 -0
  53. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/decomposition.py +0 -0
  54. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/forecast.py +0 -0
  55. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/forecastbase.py +0 -0
  56. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/regressor.py +0 -0
  57. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/regressorbase.py +0 -0
  58. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/ml/reservoir.py +0 -0
  59. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/sequence/__init__.py +0 -0
  60. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/sequence/tsp.py +0 -0
  61. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/solvers/__init__.py +0 -0
  62. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/solvers/qciclient.py +0 -0
  63. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/utilities/__init__.py +0 -0
  64. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/utilities/fileio.py +0 -0
  65. {eqc_models-0.9.9.data → eqc_models-0.10.0.data}/platlib/eqc_models/utilities/qplib.py +0 -0
  66. {eqc_models-0.9.9.dist-info → eqc_models-0.10.0.dist-info}/LICENSE.txt +0 -0
  67. {eqc_models-0.9.9.dist-info → eqc_models-0.10.0.dist-info}/WHEEL +0 -0
  68. {eqc_models-0.9.9.dist-info → eqc_models-0.10.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,68 @@
1
+ #include <stdlib.h>
2
+ #include <stdio.h>
3
+ #include <string.h>
4
+ #include <omp.h>
5
+ #include "cvqboost_hamiltonian_c_func.h"
6
+
7
+ void get_hamiltonian_c(
8
+ float **J,
9
+ float *C,
10
+ float **h_vals,
11
+ float *y,
12
+ float lambda_coef,
13
+ int n_records,
14
+ int n_classifiers
15
+ ) {
16
+ float tmp_i, tmp_j;
17
+
18
+ // omp_set_num_threads(8);
19
+
20
+ /*
21
+ #pragma omp parallel
22
+ {
23
+ #pragma omp single
24
+ printf("Number of threads: %d\n", omp_get_num_threads());
25
+ }
26
+ */
27
+
28
+ double start = omp_get_wtime();
29
+ // Compute J matrix
30
+ //#pragma omp parallel for collapse(2) //schedule(static,10)
31
+ for (int i = 0; i < n_classifiers; i++) {
32
+ for (int j = 0; j < n_classifiers; j++) {
33
+ J[i][j] = 0.0f;
34
+
35
+ // Parallelized innermost loop
36
+ #pragma omp parallel for reduction(+:J[i][j]) schedule(dynamic, 10000)
37
+ for (int k = 0; k < n_records; k++) {
38
+ tmp_i = h_vals[i][k];
39
+ tmp_j = h_vals[j][k];
40
+ J[i][j] += tmp_i * tmp_j;
41
+ }
42
+ }
43
+ }
44
+ double end = omp_get_wtime();
45
+ printf("Time J loop: %f seconds\n", end - start);
46
+
47
+ // Compute C vector
48
+ start = omp_get_wtime();
49
+ //#pragma omp parallel for schedule(static,10)
50
+ for (int i = 0; i < n_classifiers; i++) {
51
+ C[i] = 0.0f;
52
+
53
+ // Parallelized innermost loop
54
+ #pragma omp parallel for reduction(+:C[i]) schedule(dynamic, 10000)
55
+ for (int m = 0; m < n_records; m++) {
56
+ tmp_i = -2.0f * y[m] * h_vals[i][m];
57
+ C[i] += tmp_i;
58
+ }
59
+ }
60
+ end = omp_get_wtime();
61
+ printf("Time C loop: %f seconds\n", end - start);
62
+
63
+ // Add lambda_coef to the diagonal of J
64
+ //#pragma omp parallel for schedule(static)
65
+ for (int i = 0; i < n_classifiers; i++) {
66
+ J[i][i] += lambda_coef;
67
+ }
68
+ }
@@ -0,0 +1,14 @@
1
+ #ifndef CVQBOOST_HAMILTONIAN_C_FUNC_H
2
+ #define CVQBOOST_HAMILTONIAN_C_FUNC_H
3
+
4
+ void get_hamiltonian_c(
5
+ float **J,
6
+ float *C,
7
+ float **h_vals,
8
+ float *y,
9
+ float lambda_coef,
10
+ int n_records,
11
+ int n_classifiers
12
+ );
13
+
14
+ #endif // CVQBOOST_HAMILTONIAN_C_FUNC_H
@@ -0,0 +1,131 @@
1
+ from typing import Tuple
2
+ import numpy as np
3
+ from .base import EqcModel
4
+
5
+ class QuadraticMixIn:
6
+ C = None
7
+ J = None
8
+
9
+ def encode(self, levels:int=200, norm_value:float=None, dtype=np.float32) -> np.ndarray:
10
+ """
11
+ Encode Hamiltonian into the domain of the device
12
+
13
+ The encoding method can be tuned using levels or norm_value. The parameter
14
+ levels and the member self.domains are used to generate a vector t such that
15
+ $$
16
+ x = ts
17
+ $$
18
+ thus,
19
+ $$
20
+ h^Tx + x^TJx = h^T(ts) + (ts)^TJ(ts) = (th)^Ts + s^T(t\\cross tJ)s
21
+ $$
22
+
23
+ """
24
+
25
+ n = max(self.domains.shape)
26
+ J = self.J
27
+ C = self.C
28
+ if norm_value is None:
29
+ max_level = levels - 1
30
+ multipliers = (self.domains) / max_level
31
+ J = np.array(np.outer(multipliers, multipliers) * J)
32
+ # h = np.multiply(h[:,0], multipliers)
33
+ C *= multipliers
34
+ C = C.reshape((n, 1))
35
+ else:
36
+ # normalize the operator
37
+ max_val_J = np.max(np.abs(J))
38
+ max_val_C = np.max(np.abs(C))
39
+ if max_val_J > max_val_C:
40
+ max_val = max_val_J
41
+ else:
42
+ max_val = max_val_C
43
+ C /= max_val
44
+ C *= norm_value
45
+ J /= max_val
46
+ J *= norm_value
47
+ # make J symmetric
48
+ J += J.T
49
+ J /= 2
50
+ # return operator in hJ format
51
+ H = np.hstack([C, J]).astype(dtype)
52
+
53
+ if self.machine_slacks > 0:
54
+ machine_slacks = self.machine_slacks
55
+ n = H.shape[0]
56
+ Hslack = np.zeros((n+machine_slacks, n+machine_slacks+1), dtype=dtype)
57
+ Hslack[:n, :n+1] = H
58
+ H = Hslack
59
+
60
+ return np.array(H)
61
+
62
+ @property
63
+ def sparse(self) -> Tuple[np.ndarray, np.ndarray]:
64
+ """ Put the linear and quadratic terms in a sparse format
65
+
66
+ :returns: coefficients : List, indices : List
67
+ """
68
+ C, J = self.H
69
+ n = self.n
70
+ indices = []
71
+ coefficients = []
72
+ # build a key (ordered tuple of indices) of length 2 for each element
73
+ for i in range(n):
74
+ if C[i,0] != 0:
75
+ key = (0, i+1)
76
+ indices.append(key)
77
+ coefficients.append(C[i,0])
78
+ # make J upper triangular
79
+ J = np.triu(J) + np.tril(J, -1).T
80
+ for i in range(n):
81
+ for j in range(i, n):
82
+ val = J[i, j]
83
+ if val != 0:
84
+ key = (i+1, j+1)
85
+ indices.append(key)
86
+ coefficients.append(val)
87
+ return np.array(coefficients, dtype=np.float32), np.array(indices, dtype=np.int32)
88
+
89
+ def evaluate(self, solution: np.ndarray, decode:bool=False, levels:int=200) -> float:
90
+ """
91
+ Evaluate the solution using the original operator. The decode
92
+ and levels parameters control the decoding of the solution. Without
93
+ specifying decode, the evaluation of the operator is done with the
94
+ solution provided.
95
+
96
+ """
97
+ H = self.H
98
+ h, J = H[:, 0], H[:, 1:]
99
+ if decode:
100
+ sol = self.decode(solution)
101
+ else:
102
+ sol = solution
103
+ return np.squeeze(sol.T@J@sol + h.T@sol)
104
+
105
+ class QuadraticModel(QuadraticMixIn, EqcModel):
106
+ """ Provides a quadratic operator and device sum constraint support """
107
+
108
+ def __init__(self, C : np.ndarray, J : np.ndarray, sum_constraint : float):
109
+ self._C = C
110
+ self._J = J
111
+ self._sum_constraint = sum_constraint
112
+
113
+ @property
114
+ def H(self):
115
+ return self._C, self._J
116
+
117
+ def check_constraint(self, solution: np.array) -> bool:
118
+ """ Evaluate the solution against the original sum constraint """
119
+ return np.sum(solution) == self.sum_constraint
120
+
121
+ @property
122
+ def sum_constraint(self) -> int:
123
+ """ Integer value which all qudits must sum to.
124
+ The value must be less than or equal to n * base for
125
+ the model to make sense. """
126
+
127
+ return self._sum_constraint
128
+
129
+ @sum_constraint.setter
130
+ def sum_constraint(self, value : int):
131
+ self._sum_constraint = value
@@ -0,0 +1,160 @@
1
+ # (C) Quantum Computing Inc., 2024.
2
+ from typing import Dict
3
+ import logging
4
+ import numpy as np
5
+ from eqc_direct.client import EqcClient
6
+ from eqc_models.base.base import ModelSolver, EqcModel
7
+
8
+ log = logging.getLogger(name=__name__)
9
+
10
+
11
+ class EqcDirectMixin:
12
+ """
13
+ This class provides an instance method and property that
14
+ manage the direct connection to a QCi device.
15
+
16
+ """
17
+
18
+ ip_addr = None
19
+ port = None
20
+
21
+ def connect(self, ip_addr: str, port: str) -> str:
22
+ """
23
+ Explicitly set device address; if environment is
24
+ configured with the connection, this call is not required.
25
+
26
+ Parameters
27
+ ------------
28
+
29
+ ip_addr: The IP address of the device.
30
+
31
+ port: The port number of the device.
32
+
33
+ Parameters
34
+ ------------
35
+ The status.
36
+
37
+ """
38
+ self.ip_addr = ip_addr
39
+ self.port = port
40
+ client = self.client
41
+ return client.system_status()["status_desc"]
42
+
43
+ @property
44
+ def client(self):
45
+ params = {}
46
+ if self.ip_addr is not None:
47
+ params["ip_address"] = self.ip_addr
48
+ if self.port is not None:
49
+ params["port"] = self.port
50
+ return EqcClient(**params)
51
+
52
+
53
+ class EqcDirectSolver(ModelSolver, EqcDirectMixin):
54
+ """
55
+ This class provides an instance method for direct submission
56
+ of jobs to QCi devices.
57
+
58
+ """
59
+
60
+ def solve(
61
+ self,
62
+ model: EqcModel,
63
+ relaxation_schedule: int = 2,
64
+ precision: float = 1.0,
65
+ ) -> Dict:
66
+ """Parameters
67
+ -------------
68
+ model: An EqcModel instance.
69
+
70
+ relaxation_schedule: A predefined schedule indicator which
71
+ sets parameters on the device to control the sampling through
72
+ photon measurement; default is 2.
73
+
74
+ precision: A value which, when not None, indicates
75
+ the numerical precision desired in the solution: 1 for
76
+ integer, 0.1 for tenths place, 0.01 for hundreths and None for
77
+ raw; default is 1.0.
78
+
79
+ Returns
80
+ ---------
81
+ Json response from the solver.
82
+
83
+ """
84
+ poly_coefficients, poly_indices = model.sparse
85
+ # print(poly_indices)
86
+ if model.machine_slacks > 0:
87
+ # add a single 0 coefficient entry as the next-highest index
88
+ highest_idx = int(np.max(poly_indices))
89
+ # print("POLY HIGHEST", highest_idx)
90
+ for i in range(model.machine_slacks):
91
+ addtl_index = [0 for i in range(len(poly_indices[0]))]
92
+ addtl_index[-1] = highest_idx + i + 1
93
+ poly_indices = poly_indices.tolist() + [addtl_index]
94
+ poly_coefficients = poly_coefficients.tolist() + [0]
95
+ # print(poly_indices)
96
+ scval = model.sum_constraint
97
+
98
+ client = self.client
99
+ lock_id, start_ts, end_ts = client.wait_for_lock()
100
+ log.debug(
101
+ "Got device lock id %s. Wait time %f",
102
+ lock_id,
103
+ end_ts - start_ts,
104
+ )
105
+ resp = None
106
+ try:
107
+ log.debug(
108
+ "Calling device with parameters relaxation_schedule %d sum_constraint %s lock_id %s solution_precision %f",
109
+ relaxation_schedule,
110
+ scval,
111
+ lock_id,
112
+ precision,
113
+ )
114
+ resp = client.process_job(
115
+ poly_coefficients=poly_coefficients,
116
+ poly_indices=poly_indices,
117
+ relaxation_schedule=relaxation_schedule,
118
+ sum_constraint=scval,
119
+ lock_id=lock_id,
120
+ solution_precision=precision,
121
+ )
122
+ log.debug("Received response with status %s", resp["err_desc"])
123
+ log.debug(
124
+ "Runtime %f resulting in energy %f",
125
+ resp["runtime"],
126
+ resp["energy"],
127
+ )
128
+ log.debug(
129
+ "Distillation runtime %s resulting in energy %f",
130
+ resp["distilled_runtime"],
131
+ resp["distilled_energy"],
132
+ )
133
+ finally:
134
+ client.release_lock(lock_id=lock_id)
135
+ if resp is not None:
136
+ solution = resp["solution"]
137
+ energy = resp["energy"]
138
+ runtime = resp["runtime"]
139
+ dirac3_sol = np.array(solution)
140
+ log.debug(
141
+ "Energy %f Runtime %f Solution Size %i Solution Sum %f",
142
+ energy,
143
+ runtime,
144
+ len(dirac3_sol),
145
+ sum(dirac3_sol),
146
+ )
147
+ else:
148
+ raise RuntimeError("FAILED TO GET RESPONSE")
149
+ return resp
150
+
151
+
152
+ class Dirac3DirectSolver(EqcDirectSolver):
153
+
154
+ """
155
+ Naming this for when when other devices are available and have
156
+ different requirements. For instance, Dirac-3 requires the
157
+ summation constraint parameter, but others might not. The same
158
+ could be true for relaxation schedule.
159
+
160
+ """
@@ -48,22 +48,33 @@ def convert_hamiltonian_to_polynomial(
48
48
  assert num_vars >= 1, "Invalid number of variables <%d>!" % num_vars
49
49
 
50
50
  if D is not None:
51
+ assert len(D.shape) == 4, "Incorrect shape!"
51
52
  assert D.shape[0] == num_vars, "Inconsistent dimensions!"
52
53
  assert D.shape[1] == num_vars, "Inconsistent dimensions!"
53
54
  assert D.shape[2] == num_vars, "Inconsistent dimensions!"
54
55
  assert D.shape[3] == num_vars, "Inconsistent dimensions!"
55
56
  poly_order = 4
56
57
  elif C is not None:
58
+ assert len(C.shape) == 3, "Incorrect shape!"
57
59
  assert C.shape[0] == num_vars, "Inconsistent dimensions!"
58
60
  assert C.shape[1] == num_vars, "Inconsistent dimensions!"
59
61
  assert C.shape[2] == num_vars, "Inconsistent dimensions!"
60
62
  poly_order = 3
61
63
  elif B is not None:
64
+ assert len(B.shape) == 2, "Incorrect shape!"
62
65
  assert B.shape[0] == num_vars, "Inconsistent dimensions!"
63
66
  assert B.shape[1] == num_vars, "Inconsistent dimensions!"
64
67
  poly_order = 2
65
68
  elif A is not None:
69
+ assert len(A.shape) in [1, 2], "Incorrect shape!"
70
+ if len(A.shape) == 2:
71
+ if A.shape[1] == 1:
72
+ A = A.reshape((A.shape[0]))
73
+ else:
74
+ assert False, "Incorrect shape!"
75
+
66
76
  assert A.shape[0] == num_vars, "Inconsistent dimensions!"
77
+
67
78
  poly_order = 1
68
79
  else:
69
80
  assert False, "No hamiltonian provided!"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: eqc-models
3
- Version: 0.9.9
3
+ Version: 0.10.0
4
4
  Summary: Optimization and ML modeling package targeting EQC devices
5
5
  Author: Quantum Computing Inc.
6
6
  Author-email: support@quantumcomputinginc.com
@@ -13,6 +13,7 @@ License-File: LICENSE.txt
13
13
  Requires-Dist: numpy<2,>=1.22.1
14
14
  Requires-Dist: networkx<3,>=2.6.3
15
15
  Requires-Dist: pandas>=2.1.0
16
+ Requires-Dist: scikit-learn>=1.2.1
16
17
  Requires-Dist: qci-client<5,>=4.3.0
17
18
  Requires-Dist: emucore-direct==1.0.6
18
19
  Provides-Extra: direct
@@ -0,0 +1,65 @@
1
+ eqc_models-0.10.0.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
+ eqc_models-0.10.0.data/platlib/eqc_models/__init__.py,sha256=njh-tvfgnAIVBGw9FXFv6XQOAgwrnBG23dU9dipa1Jg,585
3
+ eqc_models-0.10.0.data/platlib/eqc_models/base.py,sha256=YWS9kjmh-ZEZqpByDaik4fLjeGbwKLLlqbVMsHto6Bs,3524
4
+ eqc_models-0.10.0.data/platlib/eqc_models/communitydetection.py,sha256=-zqESm8MFDdaw_a39Kg6Wuu5Tvman3JOeUH4bbPXB48,891
5
+ eqc_models-0.10.0.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
6
+ eqc_models-0.10.0.data/platlib/eqc_models/eqcdirectsolver.py,sha256=zoR8VHD9OFEBxKO9GW8sPLtuqVfWMubg4SDFCQKr3fc,2444
7
+ eqc_models-0.10.0.data/platlib/eqc_models/graphs.py,sha256=8gWGwPKhAFoddYFRiJ770CNHrbudy_UVqgsv2BrHVDA,895
8
+ eqc_models-0.10.0.data/platlib/eqc_models/maxcut.py,sha256=ohD08acRcmDhnxRI5MN1wvY6k81xUs8PRpsAzO5kQXI,2899
9
+ eqc_models-0.10.0.data/platlib/eqc_models/maxkcut.py,sha256=fzittwUftQljSqe9yBS042-SXeyj2AmLTDuW8yc0JFw,5812
10
+ eqc_models-0.10.0.data/platlib/eqc_models/quadraticmodel.py,sha256=vhWMNmKxzxaV6kdb9TTI-SqJMUEvKMLHfAOD6BVYBwc,4242
11
+ eqc_models-0.10.0.data/platlib/eqc_models/algorithms/__init__.py,sha256=lzQoMMSs2QTqp5suEYNvcQaSEN16d0LwIsZ1mRstumU,135
12
+ eqc_models-0.10.0.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
13
+ eqc_models-0.10.0.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=gV48irx3q9yvMsCRqv2fa8DGQEOUkgVNGbZdNzI-3Tc,7057
14
+ eqc_models-0.10.0.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
15
+ eqc_models-0.10.0.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
16
+ eqc_models-0.10.0.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
17
+ eqc_models-0.10.0.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
18
+ eqc_models-0.10.0.data/platlib/eqc_models/assignment/__init__.py,sha256=CX_QYl8P1meajV8gcVs6hm07VhoLVe8uu436t7-1XQo,86
19
+ eqc_models-0.10.0.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
20
+ eqc_models-0.10.0.data/platlib/eqc_models/assignment/setpartition.py,sha256=-DJjPgsSMslEjfo3iDdXbKHQ9Lfc3cHlNc-9DtkJnW0,6202
21
+ eqc_models-0.10.0.data/platlib/eqc_models/base/__init__.py,sha256=RwZguuucmsuOSVqfPLBqj-wzinBOzcgO-2ifFU-DCqg,2885
22
+ eqc_models-0.10.0.data/platlib/eqc_models/base/base.py,sha256=kpnOb1dw0aaQyassIYKNlS6rIH1fNvZMI-NKPosAEMk,4856
23
+ eqc_models-0.10.0.data/platlib/eqc_models/base/constraints.py,sha256=KMPyCdt_8GMWLnVEdpzw1T1WqXm2f7Lh629ClUH7XDY,8271
24
+ eqc_models-0.10.0.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
25
+ eqc_models-0.10.0.data/platlib/eqc_models/base/polyeval.c,sha256=4Rbo0snmzpBfk3EL1u5NLsYt_vni5wk_4p9XwsszFkg,445633
26
+ eqc_models-0.10.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=p9WsRiRpK18WJUHT4-x3s2VPr92_-DF5TLLPOuvwl_o,101024
27
+ eqc_models-0.10.0.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
28
+ eqc_models-0.10.0.data/platlib/eqc_models/base/polynomial.py,sha256=dlWqL-PgSzV1UX-1S-MDwEL4sp3vs3h0vdRkv4JYfLo,12981
29
+ eqc_models-0.10.0.data/platlib/eqc_models/base/quadratic.py,sha256=BHZKniUvSq30pZgzguVasdO39BCEYue_wi5AIklPGS8,8062
30
+ eqc_models-0.10.0.data/platlib/eqc_models/combinatorics/setcover.py,sha256=v42_pB2gPF2YkVllCqqjw58t97y5AAddfWITIsESZI8,2730
31
+ eqc_models-0.10.0.data/platlib/eqc_models/graph/__init__.py,sha256=Cpo4jb630U57J0lS_iZddE_W3v9N4ijUb7xZRIYuguo,95
32
+ eqc_models-0.10.0.data/platlib/eqc_models/graph/base.py,sha256=j48OwhorZ5jTlTysTmMiXCeiAdj6jylBREk3NxCpFLI,2072
33
+ eqc_models-0.10.0.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
34
+ eqc_models-0.10.0.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
35
+ eqc_models-0.10.0.data/platlib/eqc_models/graph/maxkcut.py,sha256=OFZwmC3wWpIJWVHOb9wkUeka0g0bOHrwf-mx0VZvt58,5807
36
+ eqc_models-0.10.0.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
37
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
38
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/classifierbase.py,sha256=1yXufiUGpaiBjI2evMiwfYn-Zr-SnWwCnvtREqprtJw,2184
39
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/classifierqboost.py,sha256=5Dcpd0DjpMmlUULyZFKKWm4UuZpeMaknWKViiIjwc0U,18978
40
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=b6TdwlghR84UoQpfUThwMwNF_wmkABbCqOn6T1uY2dA,6636
41
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/clustering.py,sha256=yhh6jlgwZiQVn9h2pnYBlzVTCocK7rzsEurSQxCn5FQ,9486
42
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/clusteringbase.py,sha256=AvQbt6jeocBAGCuAmXHKyr3wLWqYUtBDq9PbsEOSlSc,2632
43
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
44
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
45
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
46
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/decomposition.py,sha256=Nsnq0GmINpbGOszndgCHXqKdECNpiNiampBrHPU_Gjg,8943
47
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/forecast.py,sha256=fFcBxQK9ZryfEuyvlr9HXicHoZRzLFybimYYttzhI9E,7403
48
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/forecastbase.py,sha256=s-6nUMvtYqG07r7MmmkFVj8_QqgeGkD-HVoEEDTE2bk,3654
49
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/regressor.py,sha256=LA1woXCnefG0wfoOxilX1kszgCUmfNcbQgs_WZ4Ai0o,5683
50
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/regressorbase.py,sha256=H5E8-8pUji1oH5JRdS37LJQoHuKt2JU8eXCZp-ZaEM4,2109
51
+ eqc_models-0.10.0.data/platlib/eqc_models/ml/reservoir.py,sha256=cPRvpCaWLYTBkui35jCssHcOPQgSQZallrG6Ac9djVI,2827
52
+ eqc_models-0.10.0.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
53
+ eqc_models-0.10.0.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
54
+ eqc_models-0.10.0.data/platlib/eqc_models/solvers/__init__.py,sha256=hTjJI4F0FNDgQlK_oRHJxLIkg6of3I1-nEqU_3RL4Gk,542
55
+ eqc_models-0.10.0.data/platlib/eqc_models/solvers/eqcdirect.py,sha256=RzcRz3e3a0nJaR_qZ1td3NRKHT1NKPei_QNYExN3ooI,4898
56
+ eqc_models-0.10.0.data/platlib/eqc_models/solvers/qciclient.py,sha256=Vnfqa1N6JSzigb-mbqXj6g0r-1wOkeYzmEmctId1VCo,26975
57
+ eqc_models-0.10.0.data/platlib/eqc_models/utilities/__init__.py,sha256=SI2U7JKmPWSiq-F1WcSyfd7l9V6nbOZv_p8quMAZaT0,340
58
+ eqc_models-0.10.0.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
59
+ eqc_models-0.10.0.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
60
+ eqc_models-0.10.0.data/platlib/eqc_models/utilities/qplib.py,sha256=Do-MjmCFdI5HyDOAjfoz4_5lugySLMBlMAWDLUWx2OA,15796
61
+ eqc_models-0.10.0.dist-info/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
62
+ eqc_models-0.10.0.dist-info/METADATA,sha256=vFFt3ENmDo-0sFt3-9V_ffKaZm2y9COhcC0N_AVbUvM,7107
63
+ eqc_models-0.10.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
64
+ eqc_models-0.10.0.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
65
+ eqc_models-0.10.0.dist-info/RECORD,,
@@ -1,23 +0,0 @@
1
- from setuptools import Extension
2
- from setuptools.command.build_py import build_py as _build_py
3
- import numpy
4
-
5
- # Modules to be compiled and include_dirs when necessary
6
- extensions = [
7
- Extension(
8
- "eqc_models.base.polyeval",
9
- ["eqc_models/base/polyeval.pyx"], include_dirs=[numpy.get_include()],
10
- ),
11
- ]
12
-
13
- class build_py(_build_py):
14
- def run(self):
15
- self.run_command("build_ext")
16
- return super().run()
17
-
18
- def initialize_options(self):
19
- super().initialize_options()
20
- if self.distribution.ext_modules == None:
21
- self.distribution.ext_modules = []
22
-
23
- self.distribution.ext_modules.extend(extensions)