eqc-models 0.15.0__py3-none-any.whl → 0.15.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (73) hide show
  1. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/algorithms/alm.py +189 -23
  2. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/polyeval.c +250 -227
  3. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
  4. eqc_models-0.15.1.data/platlib/eqc_models/ml/utils.py +132 -0
  5. {eqc_models-0.15.0.dist-info → eqc_models-0.15.1.dist-info}/METADATA +1 -1
  6. eqc_models-0.15.1.dist-info/RECORD +72 -0
  7. {eqc_models-0.15.0.dist-info → eqc_models-0.15.1.dist-info}/WHEEL +1 -1
  8. eqc_models-0.15.0.dist-info/RECORD +0 -71
  9. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/compile_extensions.py +0 -0
  10. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/__init__.py +0 -0
  11. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/algorithms/__init__.py +0 -0
  12. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/algorithms/base.py +0 -0
  13. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/algorithms/penaltymultiplier.py +0 -0
  14. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/allocation/__init__.py +0 -0
  15. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/allocation/allocation.py +0 -0
  16. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/allocation/portbase.py +0 -0
  17. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/allocation/portmomentum.py +0 -0
  18. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/assignment/__init__.py +0 -0
  19. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/assignment/qap.py +0 -0
  20. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/assignment/resource.py +0 -0
  21. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/assignment/setpartition.py +0 -0
  22. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/__init__.py +0 -0
  23. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/base.py +0 -0
  24. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/binaries.py +0 -0
  25. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/constraints.py +0 -0
  26. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/operators.py +0 -0
  27. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/polyeval.pyx +0 -0
  28. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/polynomial.py +0 -0
  29. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/quadratic.py +0 -0
  30. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/base/results.py +0 -0
  31. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/combinatorics/__init__.py +0 -0
  32. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/combinatorics/setcover.py +0 -0
  33. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/combinatorics/setpartition.py +0 -0
  34. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/decoding.py +0 -0
  35. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/graph/__init__.py +0 -0
  36. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/graph/base.py +0 -0
  37. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/graph/hypergraph.py +0 -0
  38. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/graph/maxcut.py +0 -0
  39. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/graph/maxkcut.py +0 -0
  40. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/graph/partition.py +0 -0
  41. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/graph/rcshortestpath.py +0 -0
  42. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/graph/shortestpath.py +0 -0
  43. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/__init__.py +0 -0
  44. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/classifierbase.py +0 -0
  45. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/classifierqboost.py +0 -0
  46. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/classifierqsvm.py +0 -0
  47. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/clustering.py +0 -0
  48. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/clusteringbase.py +0 -0
  49. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx +0 -0
  50. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c +0 -0
  51. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h +0 -0
  52. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/decomposition.py +0 -0
  53. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/forecast.py +0 -0
  54. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/forecastbase.py +0 -0
  55. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/regressor.py +0 -0
  56. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/regressorbase.py +0 -0
  57. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/ml/reservoir.py +0 -0
  58. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/process/base.py +0 -0
  59. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/process/mpc.py +0 -0
  60. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/sequence/__init__.py +0 -0
  61. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/sequence/tsp.py +0 -0
  62. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/solvers/__init__.py +0 -0
  63. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/solvers/eqcdirect.py +0 -0
  64. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/solvers/mip.py +0 -0
  65. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/solvers/qciclient.py +0 -0
  66. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/solvers/responselog.py +0 -0
  67. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/utilities/__init__.py +0 -0
  68. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/utilities/fileio.py +0 -0
  69. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/utilities/general.py +0 -0
  70. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/utilities/polynomial.py +0 -0
  71. {eqc_models-0.15.0.data → eqc_models-0.15.1.data}/platlib/eqc_models/utilities/qplib.py +0 -0
  72. {eqc_models-0.15.0.dist-info → eqc_models-0.15.1.dist-info}/licenses/LICENSE.txt +0 -0
  73. {eqc_models-0.15.0.dist-info → eqc_models-0.15.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,132 @@
1
+ import numpy as np
2
+ from sklearn.metrics import (
3
+ auc,
4
+ precision_recall_curve,
5
+ roc_auc_score,
6
+ precision_score,
7
+ recall_score,
8
+ accuracy_score,
9
+ f1_score,
10
+ confusion_matrix,
11
+ )
12
+
13
+
14
+ def get_binary_classification_metrics(
15
+ y_true, y_pred, positive_label=1, negative_label=-1, threshold=0
16
+ ):
17
+ """Compute classifier merits.
18
+
19
+ Parameters
20
+ ----------
21
+ y_true: Actual labels (array-like of shape (n_samples,)).
22
+
23
+ y_pred: Predicted scores between negative and positive labels
24
+ (array-like of shape (n_samples,)).
25
+
26
+ positive_label: The positive label (integer; default: 1).
27
+
28
+ negative_label: The negative label (integer; default: -1).
29
+
30
+ threshold: Threshold for converting y_pred scores to predicted
31
+ labels, float; default: 0.
32
+
33
+ Returns
34
+ -------
35
+ Dict.
36
+
37
+ """
38
+
39
+ # Convert to numpy arrays
40
+ y_true = np.asarray(y_true).ravel()
41
+ y_pred = np.asarray(y_pred).ravel()
42
+
43
+ # Some sanity checks
44
+ if y_true.ndim != 1 or y_pred.ndim != 1:
45
+ raise ValueError(
46
+ "y_true and y_pred must be 1D arrays (or array-like)."
47
+ )
48
+ if y_true.shape[0] != y_pred.shape[0]:
49
+ raise ValueError(
50
+ f"Size mismatch: y_true has {y_true.shape[0]} elements, "
51
+ f"y_pred has {y_pred.shape[0]} elements."
52
+ )
53
+ if y_true.shape[0] == 0:
54
+ raise ValueError(
55
+ "Empty inputs: y_true/y_pred must have at least 1 element."
56
+ )
57
+
58
+ try:
59
+ positive_label = int(positive_label)
60
+ except Exception as e:
61
+ raise TypeError("positive_label must be an integer.") from e
62
+
63
+ try:
64
+ negative_label = int(negative_label)
65
+ except Exception as e:
66
+ raise TypeError("negative_label must be an integer.") from e
67
+
68
+ try:
69
+ threshold = float(threshold)
70
+ except Exception as e:
71
+ raise TypeError("threshold must be a float.") from e
72
+
73
+ assert (
74
+ positive_label != negative_label
75
+ ), "Positive and negative labels should not be equal!"
76
+
77
+ y_true = y_true.astype(int)
78
+ assert set(y_true) == {
79
+ positive_label,
80
+ negative_label,
81
+ }, "Incorrect labels!"
82
+
83
+ # Convert predicted scores to labels
84
+ dist_pos = np.abs(y_pred - positive_label)
85
+ dist_neg = np.abs(y_pred - negative_label)
86
+ y_pred_label = np.where(
87
+ dist_pos <= dist_neg, positive_label, negative_label
88
+ )
89
+
90
+ assert set(y_pred_label) == {
91
+ positive_label,
92
+ negative_label,
93
+ }, "Incorrect labels!"
94
+
95
+ # Calculate the metrics
96
+ precision, recall, _ = precision_recall_curve(y_true, y_pred)
97
+ pr_auc = auc(recall, precision)
98
+
99
+ out_hash = {
100
+ "positive_label": positive_label,
101
+ "negative_label": negative_label,
102
+ "threshold": threshold,
103
+ "pr_auc": pr_auc,
104
+ "roc_auc": roc_auc_score(y_true, y_pred),
105
+ "precision": precision_score(
106
+ y_true,
107
+ y_pred_label,
108
+ zero_division=0,
109
+ labels=[negative_label, positive_label],
110
+ pos_label=positive_label,
111
+ ),
112
+ "recall": recall_score(
113
+ y_true,
114
+ y_pred_label,
115
+ zero_division=0,
116
+ labels=[negative_label, positive_label],
117
+ pos_label=positive_label,
118
+ ),
119
+ "accuracy": accuracy_score(y_true, y_pred_label),
120
+ "f1_score": f1_score(
121
+ y_true,
122
+ y_pred_label,
123
+ zero_division=0,
124
+ labels=[negative_label, positive_label],
125
+ pos_label=positive_label,
126
+ ),
127
+ "confusion_matrix": confusion_matrix(
128
+ y_true, y_pred_label, labels=[negative_label, positive_label]
129
+ ),
130
+ }
131
+
132
+ return out_hash
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eqc-models
3
- Version: 0.15.0
3
+ Version: 0.15.1
4
4
  Summary: Optimization and ML modeling package targeting EQC devices
5
5
  Author-email: "Quantum Computing Inc." <support@quantumcomputinginc.com>
6
6
  Project-URL: Homepage, https://quantumcomputinginc.com
@@ -0,0 +1,72 @@
1
+ eqc_models-0.15.1.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
+ eqc_models-0.15.1.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
+ eqc_models-0.15.1.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
+ eqc_models-0.15.1.data/platlib/eqc_models/algorithms/__init__.py,sha256=RQyUZJ-zKlaAYPp9m--1335Cie0jEfGalJ6tpAXOGz0,337
5
+ eqc_models-0.15.1.data/platlib/eqc_models/algorithms/alm.py,sha256=xNLIbwvd8sZT6-A9FY3uYMlIC-GjeRHEXFPpOxUgNI8,26670
6
+ eqc_models-0.15.1.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
7
+ eqc_models-0.15.1.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=8mXF-Gbz9CfLEmZ_jSGVLE8dd0c8ce8fWXfajUllU7I,7844
8
+ eqc_models-0.15.1.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
9
+ eqc_models-0.15.1.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
10
+ eqc_models-0.15.1.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
11
+ eqc_models-0.15.1.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
12
+ eqc_models-0.15.1.data/platlib/eqc_models/assignment/__init__.py,sha256=WDlTjWGu75UTxuNUPGNVGoMaYvYILWzZOuS-o72n054,160
13
+ eqc_models-0.15.1.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
14
+ eqc_models-0.15.1.data/platlib/eqc_models/assignment/resource.py,sha256=I0yAKjap2yQNpqDE9k7YoKbzVtsv_PVVpZzkUQuhbAE,6887
15
+ eqc_models-0.15.1.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
16
+ eqc_models-0.15.1.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
17
+ eqc_models-0.15.1.data/platlib/eqc_models/base/base.py,sha256=3ESnRDa9KrOmyGFtDHP10X-TNBnOaDnBQ549uVcSB34,6721
18
+ eqc_models-0.15.1.data/platlib/eqc_models/base/binaries.py,sha256=rS-EUl2vzlDRTvHQ9Qn6SkyXfpyLMik50wh-h_bX5Qs,726
19
+ eqc_models-0.15.1.data/platlib/eqc_models/base/constraints.py,sha256=BKTQlkITRE8C-_ix6pVWbIK42RxrLsmzS3e8faD5Y7U,9540
20
+ eqc_models-0.15.1.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
21
+ eqc_models-0.15.1.data/platlib/eqc_models/base/polyeval.c,sha256=vlk8x_Xp-SYZx4zRstgYLq2IVUp6EHALnIXDBC0-mf8,499052
22
+ eqc_models-0.15.1.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=C5LPmezsbJcsgpyy4hVJuLIZteS4cQcN6Oy8PhI8CoE,106768
23
+ eqc_models-0.15.1.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
24
+ eqc_models-0.15.1.data/platlib/eqc_models/base/polynomial.py,sha256=dkRs05mkItOwvWQgZjdAPG93OP3Pkd8jnJ0a2e1t-lU,13846
25
+ eqc_models-0.15.1.data/platlib/eqc_models/base/quadratic.py,sha256=IKjd-tL6pQosl217knS_ul2BXpk5a8ZZiSUzvKPg8S8,8082
26
+ eqc_models-0.15.1.data/platlib/eqc_models/base/results.py,sha256=pOX9AuVDRWuinzyw6YMqETmvKlA0-LdYbiEKwX9dYSA,8970
27
+ eqc_models-0.15.1.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
28
+ eqc_models-0.15.1.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
29
+ eqc_models-0.15.1.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
30
+ eqc_models-0.15.1.data/platlib/eqc_models/graph/__init__.py,sha256=mpueOOcKklmtw1A3yUsjFNXU5DJ5XnItmGJKapaBLPg,392
31
+ eqc_models-0.15.1.data/platlib/eqc_models/graph/base.py,sha256=K9d7hLgLuBtywEdK9Rz1dUV70Xtf-oVrwqtHyzXK7k4,2117
32
+ eqc_models-0.15.1.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
33
+ eqc_models-0.15.1.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
34
+ eqc_models-0.15.1.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
35
+ eqc_models-0.15.1.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
36
+ eqc_models-0.15.1.data/platlib/eqc_models/graph/rcshortestpath.py,sha256=oF2JUC3lV6Fpz5fslyoVVKG_nRE8DSPRWIzh2fEZxHU,3108
37
+ eqc_models-0.15.1.data/platlib/eqc_models/graph/shortestpath.py,sha256=aqoKjTIZ_EVtF_veHlM43zUxDpHgp9LUdFyMd1tnXGQ,7449
38
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
39
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/classifierbase.py,sha256=-AWHbSG6taL-qntU1zgOxHaafSoLOJQiMtyLiAyMecw,2962
40
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/classifierqboost.py,sha256=TXkM34zChHc2YFUnacbizFwIGmuDNjBTVrXjDMxb4Jo,20973
41
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=f-3uR1F9LrWO2eJclFBFpkLExqK5HtlFoqmU_2LlkTg,12532
42
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/clustering.py,sha256=L9P-j754Zii45REYlWoPr49Ao4jI3pAxtkumsy4pXVM,10883
43
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/clusteringbase.py,sha256=9tp7rxOeQQLwT_TDXt4AJEIg7P_9QaNBhCE_6ywo06A,3628
44
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
45
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
46
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
47
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/decomposition.py,sha256=k2KMVK66fYzf1K06QJj7fb1lEKEph-8s_y3dSTq_jKY,11420
48
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/forecast.py,sha256=PR5oIRXpz-Xfo5rCfPftkMXPiDOXlBJ4XQC8P56soQo,7235
49
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/forecastbase.py,sha256=zaDAFvTJhViOTG6w01-gImlRadjRmdGGHYTbKWt9xGk,3655
50
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/regressor.py,sha256=5KhI-V5hqG5zt-jyBN_XyaI5y3GkIB0_JQ-yhcxcq20,6387
51
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/regressorbase.py,sha256=j803xMwvoBMaq1wUkY8z8r9zGYp-Xmhs5_7PZlHJS5o,2886
52
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/reservoir.py,sha256=vs_YMD_cN52QpCVWXMrLB4sOhHurWBs-F4GsKryAKCc,3319
53
+ eqc_models-0.15.1.data/platlib/eqc_models/ml/utils.py,sha256=pkJjED99Pje1HDhM_0sMpzg3kHHkeMXLavxgKXUuSvg,3661
54
+ eqc_models-0.15.1.data/platlib/eqc_models/process/base.py,sha256=QmwbPRc9w9Yr7cwPvdnV6LBdgajif_8WGYGfwApvO34,443
55
+ eqc_models-0.15.1.data/platlib/eqc_models/process/mpc.py,sha256=V7RlA6t08IayV-VKkpK4mC01Lvk3ZTD-HlFYk60snks,645
56
+ eqc_models-0.15.1.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
57
+ eqc_models-0.15.1.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
58
+ eqc_models-0.15.1.data/platlib/eqc_models/solvers/__init__.py,sha256=iMxshg5jNzxzadMp3G2uLdN8Gvmtlnnt5OOMD9fknag,658
59
+ eqc_models-0.15.1.data/platlib/eqc_models/solvers/eqcdirect.py,sha256=dq0QjJhQcljCZr8FKTfPpheOfsb7ly3E28fXT-KYLE8,2875
60
+ eqc_models-0.15.1.data/platlib/eqc_models/solvers/mip.py,sha256=SvET_HzspqY3JoH_fnZSoU-wtBS0YXE9C9kpvE9TJHs,5358
61
+ eqc_models-0.15.1.data/platlib/eqc_models/solvers/qciclient.py,sha256=ore3YcZ9GAoLfdkYQUgo7XLU1WKvobHzl22DuwINWj8,26677
62
+ eqc_models-0.15.1.data/platlib/eqc_models/solvers/responselog.py,sha256=Vl0ZDYixwH2OnuCECP-TRwJ6PGfvPodWUgpvYOvYzRk,1735
63
+ eqc_models-0.15.1.data/platlib/eqc_models/utilities/__init__.py,sha256=6CpihFOS9_TVoR-9DBARUCb7aCwBTgA7hs3aW38rFkg,404
64
+ eqc_models-0.15.1.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
65
+ eqc_models-0.15.1.data/platlib/eqc_models/utilities/general.py,sha256=mHOG0rSxk8icd4ij5DWKxlZuki4mBggZyEA94P-bSlo,2564
66
+ eqc_models-0.15.1.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
67
+ eqc_models-0.15.1.data/platlib/eqc_models/utilities/qplib.py,sha256=jZ9Yvw1XBThZKCD-rocrVrDtAafiYMuDv7LAv8Omjyo,15803
68
+ eqc_models-0.15.1.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
69
+ eqc_models-0.15.1.dist-info/METADATA,sha256=YUG2Yd0KwgDwWlhKJspFWfcKVgxDpB37Q5tU8_ct0E8,7199
70
+ eqc_models-0.15.1.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
71
+ eqc_models-0.15.1.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
72
+ eqc_models-0.15.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,71 +0,0 @@
1
- eqc_models-0.15.0.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
- eqc_models-0.15.0.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
- eqc_models-0.15.0.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
- eqc_models-0.15.0.data/platlib/eqc_models/algorithms/__init__.py,sha256=RQyUZJ-zKlaAYPp9m--1335Cie0jEfGalJ6tpAXOGz0,337
5
- eqc_models-0.15.0.data/platlib/eqc_models/algorithms/alm.py,sha256=-0zR1-6gpfYqe6C1Z3s1Ve-2VHNASACN4vnTxDpxv44,18910
6
- eqc_models-0.15.0.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
7
- eqc_models-0.15.0.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=8mXF-Gbz9CfLEmZ_jSGVLE8dd0c8ce8fWXfajUllU7I,7844
8
- eqc_models-0.15.0.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
9
- eqc_models-0.15.0.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
10
- eqc_models-0.15.0.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
11
- eqc_models-0.15.0.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
12
- eqc_models-0.15.0.data/platlib/eqc_models/assignment/__init__.py,sha256=WDlTjWGu75UTxuNUPGNVGoMaYvYILWzZOuS-o72n054,160
13
- eqc_models-0.15.0.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
14
- eqc_models-0.15.0.data/platlib/eqc_models/assignment/resource.py,sha256=I0yAKjap2yQNpqDE9k7YoKbzVtsv_PVVpZzkUQuhbAE,6887
15
- eqc_models-0.15.0.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
16
- eqc_models-0.15.0.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
17
- eqc_models-0.15.0.data/platlib/eqc_models/base/base.py,sha256=3ESnRDa9KrOmyGFtDHP10X-TNBnOaDnBQ549uVcSB34,6721
18
- eqc_models-0.15.0.data/platlib/eqc_models/base/binaries.py,sha256=rS-EUl2vzlDRTvHQ9Qn6SkyXfpyLMik50wh-h_bX5Qs,726
19
- eqc_models-0.15.0.data/platlib/eqc_models/base/constraints.py,sha256=BKTQlkITRE8C-_ix6pVWbIK42RxrLsmzS3e8faD5Y7U,9540
20
- eqc_models-0.15.0.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
21
- eqc_models-0.15.0.data/platlib/eqc_models/base/polyeval.c,sha256=CnrXAXqieFdMOuB-YiDcHsWtiQQ2JWcqmH0OM4Eobx0,498234
22
- eqc_models-0.15.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=G20jGaUGlDfIe-DlRuZ5dNbOfmIhA1WPux-2YtAncaU,106768
23
- eqc_models-0.15.0.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
24
- eqc_models-0.15.0.data/platlib/eqc_models/base/polynomial.py,sha256=dkRs05mkItOwvWQgZjdAPG93OP3Pkd8jnJ0a2e1t-lU,13846
25
- eqc_models-0.15.0.data/platlib/eqc_models/base/quadratic.py,sha256=IKjd-tL6pQosl217knS_ul2BXpk5a8ZZiSUzvKPg8S8,8082
26
- eqc_models-0.15.0.data/platlib/eqc_models/base/results.py,sha256=pOX9AuVDRWuinzyw6YMqETmvKlA0-LdYbiEKwX9dYSA,8970
27
- eqc_models-0.15.0.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
28
- eqc_models-0.15.0.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
29
- eqc_models-0.15.0.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
30
- eqc_models-0.15.0.data/platlib/eqc_models/graph/__init__.py,sha256=mpueOOcKklmtw1A3yUsjFNXU5DJ5XnItmGJKapaBLPg,392
31
- eqc_models-0.15.0.data/platlib/eqc_models/graph/base.py,sha256=K9d7hLgLuBtywEdK9Rz1dUV70Xtf-oVrwqtHyzXK7k4,2117
32
- eqc_models-0.15.0.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
33
- eqc_models-0.15.0.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
34
- eqc_models-0.15.0.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
35
- eqc_models-0.15.0.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
36
- eqc_models-0.15.0.data/platlib/eqc_models/graph/rcshortestpath.py,sha256=oF2JUC3lV6Fpz5fslyoVVKG_nRE8DSPRWIzh2fEZxHU,3108
37
- eqc_models-0.15.0.data/platlib/eqc_models/graph/shortestpath.py,sha256=aqoKjTIZ_EVtF_veHlM43zUxDpHgp9LUdFyMd1tnXGQ,7449
38
- eqc_models-0.15.0.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
39
- eqc_models-0.15.0.data/platlib/eqc_models/ml/classifierbase.py,sha256=-AWHbSG6taL-qntU1zgOxHaafSoLOJQiMtyLiAyMecw,2962
40
- eqc_models-0.15.0.data/platlib/eqc_models/ml/classifierqboost.py,sha256=TXkM34zChHc2YFUnacbizFwIGmuDNjBTVrXjDMxb4Jo,20973
41
- eqc_models-0.15.0.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=f-3uR1F9LrWO2eJclFBFpkLExqK5HtlFoqmU_2LlkTg,12532
42
- eqc_models-0.15.0.data/platlib/eqc_models/ml/clustering.py,sha256=L9P-j754Zii45REYlWoPr49Ao4jI3pAxtkumsy4pXVM,10883
43
- eqc_models-0.15.0.data/platlib/eqc_models/ml/clusteringbase.py,sha256=9tp7rxOeQQLwT_TDXt4AJEIg7P_9QaNBhCE_6ywo06A,3628
44
- eqc_models-0.15.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
45
- eqc_models-0.15.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
46
- eqc_models-0.15.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
47
- eqc_models-0.15.0.data/platlib/eqc_models/ml/decomposition.py,sha256=k2KMVK66fYzf1K06QJj7fb1lEKEph-8s_y3dSTq_jKY,11420
48
- eqc_models-0.15.0.data/platlib/eqc_models/ml/forecast.py,sha256=PR5oIRXpz-Xfo5rCfPftkMXPiDOXlBJ4XQC8P56soQo,7235
49
- eqc_models-0.15.0.data/platlib/eqc_models/ml/forecastbase.py,sha256=zaDAFvTJhViOTG6w01-gImlRadjRmdGGHYTbKWt9xGk,3655
50
- eqc_models-0.15.0.data/platlib/eqc_models/ml/regressor.py,sha256=5KhI-V5hqG5zt-jyBN_XyaI5y3GkIB0_JQ-yhcxcq20,6387
51
- eqc_models-0.15.0.data/platlib/eqc_models/ml/regressorbase.py,sha256=j803xMwvoBMaq1wUkY8z8r9zGYp-Xmhs5_7PZlHJS5o,2886
52
- eqc_models-0.15.0.data/platlib/eqc_models/ml/reservoir.py,sha256=vs_YMD_cN52QpCVWXMrLB4sOhHurWBs-F4GsKryAKCc,3319
53
- eqc_models-0.15.0.data/platlib/eqc_models/process/base.py,sha256=QmwbPRc9w9Yr7cwPvdnV6LBdgajif_8WGYGfwApvO34,443
54
- eqc_models-0.15.0.data/platlib/eqc_models/process/mpc.py,sha256=V7RlA6t08IayV-VKkpK4mC01Lvk3ZTD-HlFYk60snks,645
55
- eqc_models-0.15.0.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
56
- eqc_models-0.15.0.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
57
- eqc_models-0.15.0.data/platlib/eqc_models/solvers/__init__.py,sha256=iMxshg5jNzxzadMp3G2uLdN8Gvmtlnnt5OOMD9fknag,658
58
- eqc_models-0.15.0.data/platlib/eqc_models/solvers/eqcdirect.py,sha256=dq0QjJhQcljCZr8FKTfPpheOfsb7ly3E28fXT-KYLE8,2875
59
- eqc_models-0.15.0.data/platlib/eqc_models/solvers/mip.py,sha256=SvET_HzspqY3JoH_fnZSoU-wtBS0YXE9C9kpvE9TJHs,5358
60
- eqc_models-0.15.0.data/platlib/eqc_models/solvers/qciclient.py,sha256=ore3YcZ9GAoLfdkYQUgo7XLU1WKvobHzl22DuwINWj8,26677
61
- eqc_models-0.15.0.data/platlib/eqc_models/solvers/responselog.py,sha256=Vl0ZDYixwH2OnuCECP-TRwJ6PGfvPodWUgpvYOvYzRk,1735
62
- eqc_models-0.15.0.data/platlib/eqc_models/utilities/__init__.py,sha256=6CpihFOS9_TVoR-9DBARUCb7aCwBTgA7hs3aW38rFkg,404
63
- eqc_models-0.15.0.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
64
- eqc_models-0.15.0.data/platlib/eqc_models/utilities/general.py,sha256=mHOG0rSxk8icd4ij5DWKxlZuki4mBggZyEA94P-bSlo,2564
65
- eqc_models-0.15.0.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
66
- eqc_models-0.15.0.data/platlib/eqc_models/utilities/qplib.py,sha256=jZ9Yvw1XBThZKCD-rocrVrDtAafiYMuDv7LAv8Omjyo,15803
67
- eqc_models-0.15.0.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
68
- eqc_models-0.15.0.dist-info/METADATA,sha256=lE9S-HSgfsR6wHokKtry1_t8b9lmgL7rMp93skQbW6Y,7199
69
- eqc_models-0.15.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
70
- eqc_models-0.15.0.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
71
- eqc_models-0.15.0.dist-info/RECORD,,