eqc-models 0.14.3__py3-none-any.whl → 0.14.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/polyeval.c +122 -122
  2. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
  3. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/classifierbase.py +11 -9
  4. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/classifierqboost.py +12 -5
  5. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/classifierqsvm.py +30 -14
  6. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/clustering.py +39 -23
  7. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/clusteringbase.py +11 -5
  8. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/decomposition.py +30 -14
  9. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/forecast.py +24 -23
  10. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/forecastbase.py +1 -0
  11. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/regressor.py +15 -7
  12. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/regressorbase.py +14 -10
  13. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/reservoir.py +20 -19
  14. {eqc_models-0.14.3.dist-info → eqc_models-0.14.4.dist-info}/METADATA +1 -1
  15. eqc_models-0.14.4.dist-info/RECORD +70 -0
  16. eqc_models-0.14.3.dist-info/RECORD +0 -70
  17. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/compile_extensions.py +0 -0
  18. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/__init__.py +0 -0
  19. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/algorithms/__init__.py +0 -0
  20. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/algorithms/base.py +0 -0
  21. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/algorithms/penaltymultiplier.py +0 -0
  22. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/allocation/__init__.py +0 -0
  23. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/allocation/allocation.py +0 -0
  24. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/allocation/portbase.py +0 -0
  25. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/allocation/portmomentum.py +0 -0
  26. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/assignment/__init__.py +0 -0
  27. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/assignment/qap.py +0 -0
  28. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/assignment/resource.py +0 -0
  29. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/assignment/setpartition.py +0 -0
  30. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/__init__.py +0 -0
  31. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/base.py +0 -0
  32. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/binaries.py +0 -0
  33. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/constraints.py +0 -0
  34. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/operators.py +0 -0
  35. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/polyeval.pyx +0 -0
  36. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/polynomial.py +0 -0
  37. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/quadratic.py +0 -0
  38. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/base/results.py +0 -0
  39. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/combinatorics/__init__.py +0 -0
  40. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/combinatorics/setcover.py +0 -0
  41. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/combinatorics/setpartition.py +0 -0
  42. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/decoding.py +0 -0
  43. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/graph/__init__.py +0 -0
  44. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/graph/base.py +0 -0
  45. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/graph/hypergraph.py +0 -0
  46. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/graph/maxcut.py +0 -0
  47. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/graph/maxkcut.py +0 -0
  48. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/graph/partition.py +0 -0
  49. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/graph/rcshortestpath.py +0 -0
  50. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/graph/shortestpath.py +0 -0
  51. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/__init__.py +0 -0
  52. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx +0 -0
  53. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c +0 -0
  54. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h +0 -0
  55. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/process/base.py +0 -0
  56. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/process/mpc.py +0 -0
  57. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/sequence/__init__.py +0 -0
  58. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/sequence/tsp.py +0 -0
  59. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/solvers/__init__.py +0 -0
  60. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/solvers/eqcdirect.py +0 -0
  61. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/solvers/mip.py +0 -0
  62. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/solvers/qciclient.py +0 -0
  63. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/solvers/responselog.py +0 -0
  64. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/utilities/__init__.py +0 -0
  65. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/utilities/fileio.py +0 -0
  66. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/utilities/general.py +0 -0
  67. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/utilities/polynomial.py +0 -0
  68. {eqc_models-0.14.3.data → eqc_models-0.14.4.data}/platlib/eqc_models/utilities/qplib.py +0 -0
  69. {eqc_models-0.14.3.dist-info → eqc_models-0.14.4.dist-info}/WHEEL +0 -0
  70. {eqc_models-0.14.3.dist-info → eqc_models-0.14.4.dist-info}/licenses/LICENSE.txt +0 -0
  71. {eqc_models-0.14.3.dist-info → eqc_models-0.14.4.dist-info}/top_level.txt +0 -0
@@ -6,6 +6,7 @@ from sklearn.linear_model import LinearRegression, Ridge
6
6
  from .reservoir import QciReservoir
7
7
  from .forecastbase import BaseForecastModel
8
8
 
9
+
9
10
  class ReservoirForecastModel(BaseForecastModel, QciReservoir):
10
11
  """
11
12
  A reservoir based forecast model.
@@ -24,14 +25,14 @@ class ReservoirForecastModel(BaseForecastModel, QciReservoir):
24
25
 
25
26
  reg_coef: L2 regularization coefficient for linear regression;
26
27
  default: 0.
27
-
28
+
28
29
  device: The QCi reservoir device. Currently only 'EmuCore' is
29
30
  supported; default: EmuCore.
30
31
 
31
32
 
32
33
  Examples
33
34
  ---------
34
-
35
+
35
36
  >>> MAX_TRAIN_DAY = 800
36
37
  >>> IP_ADDR = "172.22.19.49"
37
38
  >>> FEATURE_SCALING = 0.1
@@ -60,9 +61,9 @@ class ReservoirForecastModel(BaseForecastModel, QciReservoir):
60
61
  ... y_train_pred = model.predict(train_df, mode="in_sample")
61
62
  ... y_test_pred = model.predict(test_df, mode="in_sample")
62
63
  >>> model.close()
63
-
64
+
64
65
  """
65
-
66
+
66
67
  def __init__(
67
68
  self,
68
69
  ip_addr,
@@ -75,14 +76,14 @@ class ReservoirForecastModel(BaseForecastModel, QciReservoir):
75
76
  super(ReservoirForecastModel).__init__()
76
77
  BaseForecastModel.__init__(self)
77
78
  QciReservoir.__init__(self, ip_addr, num_nodes)
78
-
79
+
79
80
  assert device == "EmuCore", "Unknown device!"
80
81
 
81
82
  self.ip_addr = ip_addr
82
83
  self.num_nodes = num_nodes
83
84
  self.feature_scaling = feature_scaling
84
85
  self.num_pads = num_pads
85
- self.reg_coef = reg_coef
86
+ self.reg_coef = reg_coef
86
87
  self.device = device
87
88
 
88
89
  self.lock_id = None
@@ -92,8 +93,8 @@ class ReservoirForecastModel(BaseForecastModel, QciReservoir):
92
93
  self.lags = None
93
94
  self.horizon_size = None
94
95
  self.zero_pad_data = None
95
- self.train_pad_data = None
96
-
96
+ self.train_pad_data = None
97
+
97
98
  self.init_reservoir()
98
99
 
99
100
  def close(self):
@@ -133,9 +134,9 @@ class ReservoirForecastModel(BaseForecastModel, QciReservoir):
133
134
  self.zero_pad_data = pd.DataFrame()
134
135
  for item in data.columns:
135
136
  self.zero_pad_data[item] = np.zeros(shape=(num_pads))
136
-
137
+
137
138
  data = pd.concat([self.zero_pad_data, data])
138
-
139
+
139
140
  # Prep data
140
141
  fea_data = np.array(data[feature_fields])
141
142
  targ_data = np.array(data[target_fields])
@@ -153,15 +154,15 @@ class ReservoirForecastModel(BaseForecastModel, QciReservoir):
153
154
  self.lags = lags
154
155
  self.horizon_size = horizon_size
155
156
 
156
- # Push to reservoir
157
+ # Push to reservoir
157
158
  X_train_resp = self.push_reservoir(X_train)
158
159
 
159
160
  if num_pads is not None and num_pads > 0:
160
161
  X_train_resp = X_train_resp[num_pads:]
161
162
  y_train = y_train[num_pads:]
162
-
163
+
163
164
  # Build linear model
164
- #self.lin_model = LinearRegression(fit_intercept=True)
165
+ # self.lin_model = LinearRegression(fit_intercept=True)
165
166
  self.lin_model = Ridge(alpha=self.reg_coef, fit_intercept=True)
166
167
  self.lin_model.fit(X_train_resp, y_train)
167
168
 
@@ -173,7 +174,7 @@ class ReservoirForecastModel(BaseForecastModel, QciReservoir):
173
174
 
174
175
  print("Training stats:", train_stats)
175
176
 
176
- if num_pads is not None and num_pads > 0:
177
+ if num_pads is not None and num_pads > 0:
177
178
  self.train_pad_data = data.tail(num_pads)
178
179
 
179
180
  return
@@ -193,7 +194,7 @@ class ReservoirForecastModel(BaseForecastModel, QciReservoir):
193
194
 
194
195
  pad_mode: Mode of the reservoir input padding, either
195
196
  'last_train' or 'zero'; default: 'zero.
196
-
197
+
197
198
  mode: A value of 'out_of_sample' predicts the horizon
198
199
  following the time series. A value of 'in_sample' predicts in
199
200
  sample (used for testing); default: in_sample.
@@ -216,13 +217,13 @@ class ReservoirForecastModel(BaseForecastModel, QciReservoir):
216
217
  pad_data = self.train_pad_data
217
218
  else:
218
219
  pad_data = self.zero_pad_data
219
-
220
+
220
221
  data = pd.concat([pad_data, data])
221
-
222
+
222
223
  num_records = data.shape[0]
223
224
  fea_data = np.array(data[self.feature_fields])
224
225
  targ_data = np.array(data[self.target_fields])
225
-
226
+
226
227
  if mode == "in_sample":
227
228
  X, y, _ = self.prep_fea_targs(
228
229
  fea_data=fea_data,
@@ -238,18 +239,18 @@ class ReservoirForecastModel(BaseForecastModel, QciReservoir):
238
239
  )
239
240
  else:
240
241
  assert False, "Unknown mode <%s>!" % mode
241
-
242
+
242
243
  X_resp = self.push_reservoir(X)
243
244
 
244
245
  if self.num_pads is not None and self.num_pads > 0:
245
- X_resp = X_resp[self.num_pads:]
246
- y = y[self.num_pads:]
247
-
246
+ X_resp = X_resp[self.num_pads :]
247
+ y = y[self.num_pads :]
248
+
248
249
  y_pred = self.lin_model.predict(X_resp)
249
250
 
250
251
  # Echo some stats
251
252
  if mode == "in_sample":
252
253
  stats = self.get_stats(y, y_pred)
253
254
  print("In-sample prediction stats:", stats)
254
-
255
+
255
256
  return y_pred
@@ -13,6 +13,7 @@ class BaseForecastModel:
13
13
  """
14
14
  A base class for forecast models.
15
15
  """
16
+
16
17
  def __init__(self):
17
18
  pass
18
19
 
@@ -47,10 +47,14 @@ class LinearRegression(RegressorBase):
47
47
 
48
48
  solver_access: Solver access type: cloud or direct; default: cloud.
49
49
 
50
+ api_url: API URL used when cloud access is used; default: None.
51
+
52
+ api_token: API token used when cloud access is used; default: None.
53
+
50
54
  ip_addr: IP address of the device when direct access is used; default: None.
51
55
 
52
56
  port: Port number of the device when direct access is used; default: None.
53
-
57
+
54
58
  l2_reg_coef: L2 regularization penalty multiplier; default: 0.
55
59
 
56
60
  alpha: A penalty multiplier to ensure the correct sign of a
@@ -64,35 +68,39 @@ class LinearRegression(RegressorBase):
64
68
  >>> X_test = np.array([[6], [7], [8]])
65
69
  >>> y_test = np.array([13, 15, 17])
66
70
  >>> from eqc_models.ml.regressor import LinearRegression
67
- >>> from contextlib import redirect_stdout
71
+ >>> from contextlib import redirect_stdout
68
72
  >>> import io
69
73
  >>> f = io.StringIO()
70
- >>> with redirect_stdout(f):
74
+ >>> with redirect_stdout(f):
71
75
  ... model = LinearRegression()
72
76
  ... model = model.fit(X_train, y_train)
73
77
  ... y_pred_train = model.predict(X_train)
74
78
  ... y_pred_test = model.predict(X_test)
75
79
  """
76
-
80
+
77
81
  def __init__(
78
82
  self,
79
83
  relaxation_schedule=2,
80
84
  num_samples=1,
81
85
  solver_access="cloud",
86
+ api_url=None,
87
+ api_token=None,
82
88
  ip_addr=None,
83
- port=None,
89
+ port=None,
84
90
  l2_reg_coef=0,
85
91
  alpha=0,
86
92
  ):
87
93
  super(LinearRegression).__init__()
88
94
 
89
95
  assert solver_access in ["cloud", "direct"]
90
-
96
+
91
97
  self.relaxation_schedule = relaxation_schedule
92
98
  self.num_samples = num_samples
93
99
  self.solver_access = solver_access
100
+ self.api_url = api_url
101
+ self.api_token = api_token
94
102
  self.ip_addr = ip_addr
95
- self.port = port
103
+ self.port = port
96
104
  self.l2_reg_coef = l2_reg_coef
97
105
  self.alpha = alpha
98
106
  self.params = None
@@ -13,25 +13,29 @@ from eqc_models import QuadraticModel
13
13
  from eqc_models.solvers.qciclient import Dirac3CloudSolver
14
14
  from eqc_models.solvers.eqcdirect import Dirac3DirectSolver
15
15
 
16
+
16
17
  class RegressorBase(QuadraticModel):
17
18
  def __init__(
18
19
  self,
19
20
  relaxation_schedule=2,
20
21
  num_samples=1,
21
22
  solver_access="cloud",
23
+ api_url=None,
24
+ api_token=None,
22
25
  ip_addr=None,
23
- port=None,
26
+ port=None,
24
27
  ):
25
-
26
28
  super(self).__init__(None, None, None)
27
29
 
28
30
  assert solver_access in ["cloud", "direct"]
29
-
31
+
30
32
  self.relaxation_schedule = relaxation_schedule
31
33
  self.num_samples = num_samples
32
34
  self.solver_access = solver_access
35
+ self.api_url = api_url
36
+ self.api_token = api_token
33
37
  self.ip_addr = ip_addr
34
- self.port = port
38
+ self.port = port
35
39
  self.params = None
36
40
 
37
41
  def predict(self, X: np.array):
@@ -45,7 +49,6 @@ class RegressorBase(QuadraticModel):
45
49
  pass
46
50
 
47
51
  def set_model(self, J, C, sum_constraint):
48
-
49
52
  # Set hamiltonians
50
53
  self._C = C
51
54
  self._J = J
@@ -55,7 +58,7 @@ class RegressorBase(QuadraticModel):
55
58
  # Set domains
56
59
  num_variables = C.shape[0]
57
60
  self.domains = sum_constraint * np.ones((num_variables,))
58
-
61
+
59
62
  return
60
63
 
61
64
  def solve(self):
@@ -64,7 +67,8 @@ class RegressorBase(QuadraticModel):
64
67
  solver.connect(self.ip_addr, self.port)
65
68
  else:
66
69
  solver = Dirac3CloudSolver()
67
-
70
+ solver.connect(self.api_url, self.api_token)
71
+
68
72
  response = solver.solve(
69
73
  self,
70
74
  sum_constraint=self._sum_constraint,
@@ -78,12 +82,12 @@ class RegressorBase(QuadraticModel):
78
82
  elif self.solver_access == "direct":
79
83
  energies = response["energy"]
80
84
  solutions = response["solution"]
81
-
85
+
82
86
  min_id = np.argmin(energies)
83
87
  sol = solutions[min_id]
84
88
 
85
89
  print(response)
86
-
90
+
87
91
  return sol
88
92
 
89
93
  def convert_sol_to_params(self, sol):
@@ -91,7 +95,7 @@ class RegressorBase(QuadraticModel):
91
95
 
92
96
  def fit(self, X, y):
93
97
  return self
94
-
98
+
95
99
  def get_dynamic_range(self):
96
100
  C = self._C
97
101
  J = self._J
@@ -16,32 +16,34 @@ except ModuleNotFoundError:
16
16
  "emucore-direct package not available, likely because Python version is 3.11+"
17
17
  )
18
18
 
19
+
19
20
  # Parameters
20
21
  VBIAS = 0.31
21
22
  GAIN = 0.72
22
23
  FEATURE_SCALING = 0.1
23
24
  DENSITY = 1
24
25
 
26
+
25
27
  class QciReservoir:
26
28
  """
27
29
  A class designed as an interface to QCi's reservoir devices.
28
30
 
29
31
  Parameters
30
32
  ----------
31
-
33
+
32
34
  ip_addr: The IP address of the device.
33
-
35
+
34
36
  num_nodes: Number of reservoir network nodes.
35
-
36
- vbias: Bias of the reservoir device; default: 0.31.
37
-
37
+
38
+ vbias: Bias of the reservoir device; default: 0.31.
39
+
38
40
  gain: Gain of the reservoir device; default: 0.72.
39
-
41
+
40
42
  density: Density used for normalization of the reservoir
41
43
  output; default: 1 (no normalization done).
42
-
44
+
43
45
  feature_scaling: The factor used to scale the reservoir output; default: 0.1.
44
-
46
+
45
47
  device: The QCi reservoir device. Currently only 'EmuCore' is
46
48
  supported; default: EmuCore.
47
49
 
@@ -68,14 +70,14 @@ class QciReservoir:
68
70
  self.device = device
69
71
  self.client = None
70
72
  self.lock_id = None
71
-
73
+
72
74
  def init_reservoir(self):
73
75
  self.client = EmuCoreClient(ip_addr=self.ip_addr)
74
-
76
+
75
77
  self.lock_id, _, _ = self.client.wait_for_lock()
76
78
 
77
79
  self.client.reservoir_reset(lock_id=self.lock_id)
78
-
80
+
79
81
  self.client.rc_config(
80
82
  lock_id=self.lock_id,
81
83
  vbias=self.vbias,
@@ -86,12 +88,15 @@ class QciReservoir:
86
88
 
87
89
  def release_lock(self):
88
90
  self.client.release_lock(lock_id=self.lock_id)
89
-
91
+
90
92
  def push_reservoir(self, X):
93
+ assert (
94
+ self.client is not None
95
+ ), "The reservoir should be initialized!"
96
+ assert (
97
+ self.lock_id is not None
98
+ ), "The reservoir should be initialized!"
91
99
 
92
- assert self.client is not None, "The reservoir should be initialized!"
93
- assert self.lock_id is not None, "The reservoir should be initialized!"
94
-
95
100
  X_resp, _, _ = self.client.process_all_data(
96
101
  input_data=X,
97
102
  num_nodes=self.num_nodes,
@@ -103,19 +108,15 @@ class QciReservoir:
103
108
  return X_resp
104
109
 
105
110
  def run_reservoir(self, X_train, X_test=None):
106
-
107
111
  if X_test is not None:
108
112
  assert X_train.shape[1] == X_test.shape[1]
109
113
 
110
114
  num_feas = X_train.shape[1]
111
115
 
112
-
113
116
  X_resp_train = _push_emucore(X_train, lock_id)
114
117
 
115
118
  X_resp_test = None
116
119
  if X_test is not None:
117
120
  X_resp_test = _push_emucore(X_test, lock_id)
118
121
 
119
-
120
-
121
122
  return X_resp_train, X_resp_test
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eqc-models
3
- Version: 0.14.3
3
+ Version: 0.14.4
4
4
  Summary: Optimization and ML modeling package targeting EQC devices
5
5
  Author-email: "Quantum Computing Inc." <support@quantumcomputinginc.com>
6
6
  Project-URL: Homepage, https://quantumcomputinginc.com
@@ -0,0 +1,70 @@
1
+ eqc_models-0.14.4.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
+ eqc_models-0.14.4.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
+ eqc_models-0.14.4.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
+ eqc_models-0.14.4.data/platlib/eqc_models/algorithms/__init__.py,sha256=lzQoMMSs2QTqp5suEYNvcQaSEN16d0LwIsZ1mRstumU,135
5
+ eqc_models-0.14.4.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
6
+ eqc_models-0.14.4.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=8mXF-Gbz9CfLEmZ_jSGVLE8dd0c8ce8fWXfajUllU7I,7844
7
+ eqc_models-0.14.4.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
8
+ eqc_models-0.14.4.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
9
+ eqc_models-0.14.4.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
10
+ eqc_models-0.14.4.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
11
+ eqc_models-0.14.4.data/platlib/eqc_models/assignment/__init__.py,sha256=WDlTjWGu75UTxuNUPGNVGoMaYvYILWzZOuS-o72n054,160
12
+ eqc_models-0.14.4.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
13
+ eqc_models-0.14.4.data/platlib/eqc_models/assignment/resource.py,sha256=I0yAKjap2yQNpqDE9k7YoKbzVtsv_PVVpZzkUQuhbAE,6887
14
+ eqc_models-0.14.4.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
15
+ eqc_models-0.14.4.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
16
+ eqc_models-0.14.4.data/platlib/eqc_models/base/base.py,sha256=3ESnRDa9KrOmyGFtDHP10X-TNBnOaDnBQ549uVcSB34,6721
17
+ eqc_models-0.14.4.data/platlib/eqc_models/base/binaries.py,sha256=rS-EUl2vzlDRTvHQ9Qn6SkyXfpyLMik50wh-h_bX5Qs,726
18
+ eqc_models-0.14.4.data/platlib/eqc_models/base/constraints.py,sha256=BKTQlkITRE8C-_ix6pVWbIK42RxrLsmzS3e8faD5Y7U,9540
19
+ eqc_models-0.14.4.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
20
+ eqc_models-0.14.4.data/platlib/eqc_models/base/polyeval.c,sha256=Z_8z6pVqFnfA-WT4bs6LWM3zsuopbIkAnhqwOcX2urI,483319
21
+ eqc_models-0.14.4.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=U6j9X5hZ0zw6RJBwnBNgxpUy0t3dZMJgP6hA_zbwWAk,109264
22
+ eqc_models-0.14.4.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
23
+ eqc_models-0.14.4.data/platlib/eqc_models/base/polynomial.py,sha256=dkRs05mkItOwvWQgZjdAPG93OP3Pkd8jnJ0a2e1t-lU,13846
24
+ eqc_models-0.14.4.data/platlib/eqc_models/base/quadratic.py,sha256=IKjd-tL6pQosl217knS_ul2BXpk5a8ZZiSUzvKPg8S8,8082
25
+ eqc_models-0.14.4.data/platlib/eqc_models/base/results.py,sha256=pOX9AuVDRWuinzyw6YMqETmvKlA0-LdYbiEKwX9dYSA,8970
26
+ eqc_models-0.14.4.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
27
+ eqc_models-0.14.4.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
28
+ eqc_models-0.14.4.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
29
+ eqc_models-0.14.4.data/platlib/eqc_models/graph/__init__.py,sha256=mpueOOcKklmtw1A3yUsjFNXU5DJ5XnItmGJKapaBLPg,392
30
+ eqc_models-0.14.4.data/platlib/eqc_models/graph/base.py,sha256=K9d7hLgLuBtywEdK9Rz1dUV70Xtf-oVrwqtHyzXK7k4,2117
31
+ eqc_models-0.14.4.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
32
+ eqc_models-0.14.4.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
33
+ eqc_models-0.14.4.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
34
+ eqc_models-0.14.4.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
35
+ eqc_models-0.14.4.data/platlib/eqc_models/graph/rcshortestpath.py,sha256=g5sy8pRk6c5x4nHVrs9vd0DjDxqlaLDkSytsiIp1hRw,3127
36
+ eqc_models-0.14.4.data/platlib/eqc_models/graph/shortestpath.py,sha256=p0NMGQt9pGbRQwu2pSIXXetSJfHB9K7K0rXP5JvDpQE,6443
37
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
38
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/classifierbase.py,sha256=-AWHbSG6taL-qntU1zgOxHaafSoLOJQiMtyLiAyMecw,2962
39
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/classifierqboost.py,sha256=TXkM34zChHc2YFUnacbizFwIGmuDNjBTVrXjDMxb4Jo,20973
40
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=f-3uR1F9LrWO2eJclFBFpkLExqK5HtlFoqmU_2LlkTg,12532
41
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/clustering.py,sha256=L9P-j754Zii45REYlWoPr49Ao4jI3pAxtkumsy4pXVM,10883
42
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/clusteringbase.py,sha256=9tp7rxOeQQLwT_TDXt4AJEIg7P_9QaNBhCE_6ywo06A,3628
43
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
44
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
45
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
46
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/decomposition.py,sha256=k2KMVK66fYzf1K06QJj7fb1lEKEph-8s_y3dSTq_jKY,11420
47
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/forecast.py,sha256=PR5oIRXpz-Xfo5rCfPftkMXPiDOXlBJ4XQC8P56soQo,7235
48
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/forecastbase.py,sha256=zaDAFvTJhViOTG6w01-gImlRadjRmdGGHYTbKWt9xGk,3655
49
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/regressor.py,sha256=5KhI-V5hqG5zt-jyBN_XyaI5y3GkIB0_JQ-yhcxcq20,6387
50
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/regressorbase.py,sha256=j803xMwvoBMaq1wUkY8z8r9zGYp-Xmhs5_7PZlHJS5o,2886
51
+ eqc_models-0.14.4.data/platlib/eqc_models/ml/reservoir.py,sha256=vs_YMD_cN52QpCVWXMrLB4sOhHurWBs-F4GsKryAKCc,3319
52
+ eqc_models-0.14.4.data/platlib/eqc_models/process/base.py,sha256=QmwbPRc9w9Yr7cwPvdnV6LBdgajif_8WGYGfwApvO34,443
53
+ eqc_models-0.14.4.data/platlib/eqc_models/process/mpc.py,sha256=V7RlA6t08IayV-VKkpK4mC01Lvk3ZTD-HlFYk60snks,645
54
+ eqc_models-0.14.4.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
55
+ eqc_models-0.14.4.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
56
+ eqc_models-0.14.4.data/platlib/eqc_models/solvers/__init__.py,sha256=uC1fL2y-S_XwxnuN_ln-Tk3UvF4PGUKN_YolqnQZWDs,676
57
+ eqc_models-0.14.4.data/platlib/eqc_models/solvers/eqcdirect.py,sha256=dq0QjJhQcljCZr8FKTfPpheOfsb7ly3E28fXT-KYLE8,2875
58
+ eqc_models-0.14.4.data/platlib/eqc_models/solvers/mip.py,sha256=SvET_HzspqY3JoH_fnZSoU-wtBS0YXE9C9kpvE9TJHs,5358
59
+ eqc_models-0.14.4.data/platlib/eqc_models/solvers/qciclient.py,sha256=ore3YcZ9GAoLfdkYQUgo7XLU1WKvobHzl22DuwINWj8,26677
60
+ eqc_models-0.14.4.data/platlib/eqc_models/solvers/responselog.py,sha256=Vl0ZDYixwH2OnuCECP-TRwJ6PGfvPodWUgpvYOvYzRk,1735
61
+ eqc_models-0.14.4.data/platlib/eqc_models/utilities/__init__.py,sha256=6CpihFOS9_TVoR-9DBARUCb7aCwBTgA7hs3aW38rFkg,404
62
+ eqc_models-0.14.4.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
63
+ eqc_models-0.14.4.data/platlib/eqc_models/utilities/general.py,sha256=mHOG0rSxk8icd4ij5DWKxlZuki4mBggZyEA94P-bSlo,2564
64
+ eqc_models-0.14.4.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
65
+ eqc_models-0.14.4.data/platlib/eqc_models/utilities/qplib.py,sha256=jZ9Yvw1XBThZKCD-rocrVrDtAafiYMuDv7LAv8Omjyo,15803
66
+ eqc_models-0.14.4.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
67
+ eqc_models-0.14.4.dist-info/METADATA,sha256=2b0A_G7-rbweagRUDhJHsiNHrwyvCDGHeDeTXt--Vm0,7199
68
+ eqc_models-0.14.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
69
+ eqc_models-0.14.4.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
70
+ eqc_models-0.14.4.dist-info/RECORD,,
@@ -1,70 +0,0 @@
1
- eqc_models-0.14.3.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
- eqc_models-0.14.3.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
- eqc_models-0.14.3.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
- eqc_models-0.14.3.data/platlib/eqc_models/algorithms/__init__.py,sha256=lzQoMMSs2QTqp5suEYNvcQaSEN16d0LwIsZ1mRstumU,135
5
- eqc_models-0.14.3.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
6
- eqc_models-0.14.3.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=8mXF-Gbz9CfLEmZ_jSGVLE8dd0c8ce8fWXfajUllU7I,7844
7
- eqc_models-0.14.3.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
8
- eqc_models-0.14.3.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
9
- eqc_models-0.14.3.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
10
- eqc_models-0.14.3.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
11
- eqc_models-0.14.3.data/platlib/eqc_models/assignment/__init__.py,sha256=WDlTjWGu75UTxuNUPGNVGoMaYvYILWzZOuS-o72n054,160
12
- eqc_models-0.14.3.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
13
- eqc_models-0.14.3.data/platlib/eqc_models/assignment/resource.py,sha256=I0yAKjap2yQNpqDE9k7YoKbzVtsv_PVVpZzkUQuhbAE,6887
14
- eqc_models-0.14.3.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
15
- eqc_models-0.14.3.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
16
- eqc_models-0.14.3.data/platlib/eqc_models/base/base.py,sha256=3ESnRDa9KrOmyGFtDHP10X-TNBnOaDnBQ549uVcSB34,6721
17
- eqc_models-0.14.3.data/platlib/eqc_models/base/binaries.py,sha256=rS-EUl2vzlDRTvHQ9Qn6SkyXfpyLMik50wh-h_bX5Qs,726
18
- eqc_models-0.14.3.data/platlib/eqc_models/base/constraints.py,sha256=BKTQlkITRE8C-_ix6pVWbIK42RxrLsmzS3e8faD5Y7U,9540
19
- eqc_models-0.14.3.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
20
- eqc_models-0.14.3.data/platlib/eqc_models/base/polyeval.c,sha256=KFlJ_591QXbr5j7fj7ms9bxhfm-3maEQK8ofAAAX7-M,483319
21
- eqc_models-0.14.3.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=he0uBV2PNQ6AoXMizHz7tvXwIWfCbAhRJglB0WNfG-Q,109264
22
- eqc_models-0.14.3.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
23
- eqc_models-0.14.3.data/platlib/eqc_models/base/polynomial.py,sha256=dkRs05mkItOwvWQgZjdAPG93OP3Pkd8jnJ0a2e1t-lU,13846
24
- eqc_models-0.14.3.data/platlib/eqc_models/base/quadratic.py,sha256=IKjd-tL6pQosl217knS_ul2BXpk5a8ZZiSUzvKPg8S8,8082
25
- eqc_models-0.14.3.data/platlib/eqc_models/base/results.py,sha256=pOX9AuVDRWuinzyw6YMqETmvKlA0-LdYbiEKwX9dYSA,8970
26
- eqc_models-0.14.3.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
27
- eqc_models-0.14.3.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
28
- eqc_models-0.14.3.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
29
- eqc_models-0.14.3.data/platlib/eqc_models/graph/__init__.py,sha256=mpueOOcKklmtw1A3yUsjFNXU5DJ5XnItmGJKapaBLPg,392
30
- eqc_models-0.14.3.data/platlib/eqc_models/graph/base.py,sha256=K9d7hLgLuBtywEdK9Rz1dUV70Xtf-oVrwqtHyzXK7k4,2117
31
- eqc_models-0.14.3.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
32
- eqc_models-0.14.3.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
33
- eqc_models-0.14.3.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
34
- eqc_models-0.14.3.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
35
- eqc_models-0.14.3.data/platlib/eqc_models/graph/rcshortestpath.py,sha256=g5sy8pRk6c5x4nHVrs9vd0DjDxqlaLDkSytsiIp1hRw,3127
36
- eqc_models-0.14.3.data/platlib/eqc_models/graph/shortestpath.py,sha256=p0NMGQt9pGbRQwu2pSIXXetSJfHB9K7K0rXP5JvDpQE,6443
37
- eqc_models-0.14.3.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
38
- eqc_models-0.14.3.data/platlib/eqc_models/ml/classifierbase.py,sha256=IJxHMVnF7L2ClYI5b-gshs1q1t0apz5yWQtmEFSbR8E,2856
39
- eqc_models-0.14.3.data/platlib/eqc_models/ml/classifierqboost.py,sha256=WUwfd5BAnJ6p6DTnNI7NjLjuT5xLlkRGeGxz5ZrqzFM,20753
40
- eqc_models-0.14.3.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=ELKAdOMExeNjJIJCHd28bf7xQYBI2TpQDGkifldThkU,12120
41
- eqc_models-0.14.3.data/platlib/eqc_models/ml/clustering.py,sha256=wdzJVZwXKoK1L2QHhF0WiAjGDzDNfuoqcmNd46x7qqY,10503
42
- eqc_models-0.14.3.data/platlib/eqc_models/ml/clusteringbase.py,sha256=BbhyJfUpe5EgcCquz64qahK3HISsaQcEI2N6G64FJQU,3514
43
- eqc_models-0.14.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
44
- eqc_models-0.14.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
45
- eqc_models-0.14.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
46
- eqc_models-0.14.3.data/platlib/eqc_models/ml/decomposition.py,sha256=sDvJmHMqHbdRKnfIN1DV3h9qmiH38NMAdJW3SZP7xEg,10992
47
- eqc_models-0.14.3.data/platlib/eqc_models/ml/forecast.py,sha256=fFcBxQK9ZryfEuyvlr9HXicHoZRzLFybimYYttzhI9E,7403
48
- eqc_models-0.14.3.data/platlib/eqc_models/ml/forecastbase.py,sha256=s-6nUMvtYqG07r7MmmkFVj8_QqgeGkD-HVoEEDTE2bk,3654
49
- eqc_models-0.14.3.data/platlib/eqc_models/ml/regressor.py,sha256=cF9L5MjoFKkdcKs3bCm6qaSzvSDiSIi1JtJeZE974hw,6174
50
- eqc_models-0.14.3.data/platlib/eqc_models/ml/regressorbase.py,sha256=a5PMOEOxIOkpYwvrkReh_edgAcjBm6e3lR6petNkqTg,2798
51
- eqc_models-0.14.3.data/platlib/eqc_models/ml/reservoir.py,sha256=HDY-diloMevbtNDjKPoDJmx37NGxwBOI7d8Y-8KeGfA,3375
52
- eqc_models-0.14.3.data/platlib/eqc_models/process/base.py,sha256=QmwbPRc9w9Yr7cwPvdnV6LBdgajif_8WGYGfwApvO34,443
53
- eqc_models-0.14.3.data/platlib/eqc_models/process/mpc.py,sha256=V7RlA6t08IayV-VKkpK4mC01Lvk3ZTD-HlFYk60snks,645
54
- eqc_models-0.14.3.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
55
- eqc_models-0.14.3.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
56
- eqc_models-0.14.3.data/platlib/eqc_models/solvers/__init__.py,sha256=uC1fL2y-S_XwxnuN_ln-Tk3UvF4PGUKN_YolqnQZWDs,676
57
- eqc_models-0.14.3.data/platlib/eqc_models/solvers/eqcdirect.py,sha256=dq0QjJhQcljCZr8FKTfPpheOfsb7ly3E28fXT-KYLE8,2875
58
- eqc_models-0.14.3.data/platlib/eqc_models/solvers/mip.py,sha256=SvET_HzspqY3JoH_fnZSoU-wtBS0YXE9C9kpvE9TJHs,5358
59
- eqc_models-0.14.3.data/platlib/eqc_models/solvers/qciclient.py,sha256=ore3YcZ9GAoLfdkYQUgo7XLU1WKvobHzl22DuwINWj8,26677
60
- eqc_models-0.14.3.data/platlib/eqc_models/solvers/responselog.py,sha256=Vl0ZDYixwH2OnuCECP-TRwJ6PGfvPodWUgpvYOvYzRk,1735
61
- eqc_models-0.14.3.data/platlib/eqc_models/utilities/__init__.py,sha256=6CpihFOS9_TVoR-9DBARUCb7aCwBTgA7hs3aW38rFkg,404
62
- eqc_models-0.14.3.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
63
- eqc_models-0.14.3.data/platlib/eqc_models/utilities/general.py,sha256=mHOG0rSxk8icd4ij5DWKxlZuki4mBggZyEA94P-bSlo,2564
64
- eqc_models-0.14.3.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
65
- eqc_models-0.14.3.data/platlib/eqc_models/utilities/qplib.py,sha256=jZ9Yvw1XBThZKCD-rocrVrDtAafiYMuDv7LAv8Omjyo,15803
66
- eqc_models-0.14.3.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
67
- eqc_models-0.14.3.dist-info/METADATA,sha256=iclS-ivsPrJlZ9LkbDgjLIIIEWzDN5lbNI0d2C-0B94,7199
68
- eqc_models-0.14.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
69
- eqc_models-0.14.3.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
70
- eqc_models-0.14.3.dist-info/RECORD,,