eqc-models 0.12.0__py3-none-any.whl → 0.13.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/base/base.py +11 -0
  2. eqc_models-0.13.0.data/platlib/eqc_models/base/binaries.py +33 -0
  3. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/base/constraints.py +39 -0
  4. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/base/polyeval.c +443 -267
  5. eqc_models-0.13.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
  6. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/base/polynomial.py +21 -2
  7. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/base/results.py +81 -1
  8. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/graph/__init__.py +2 -0
  9. eqc_models-0.13.0.data/platlib/eqc_models/graph/rcshortestpath.py +81 -0
  10. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/graph/shortestpath.py +52 -19
  11. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/classifierbase.py +0 -1
  12. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/clusteringbase.py +0 -1
  13. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/decomposition.py +0 -1
  14. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/regressorbase.py +0 -1
  15. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/solvers/__init__.py +9 -1
  16. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/solvers/eqcdirect.py +9 -4
  17. eqc_models-0.13.0.data/platlib/eqc_models/solvers/mip.py +115 -0
  18. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/solvers/qciclient.py +11 -22
  19. eqc_models-0.13.0.data/platlib/eqc_models/solvers/responselog.py +47 -0
  20. {eqc_models-0.12.0.dist-info → eqc_models-0.13.0.dist-info}/METADATA +7 -8
  21. eqc_models-0.13.0.dist-info/RECORD +69 -0
  22. eqc_models-0.12.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
  23. eqc_models-0.12.0.dist-info/RECORD +0 -65
  24. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/compile_extensions.py +0 -0
  25. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/__init__.py +0 -0
  26. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/algorithms/__init__.py +0 -0
  27. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/algorithms/base.py +0 -0
  28. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/algorithms/penaltymultiplier.py +0 -0
  29. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/allocation/__init__.py +0 -0
  30. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/allocation/allocation.py +0 -0
  31. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/allocation/portbase.py +0 -0
  32. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/allocation/portmomentum.py +0 -0
  33. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/assignment/__init__.py +0 -0
  34. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/assignment/qap.py +0 -0
  35. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/assignment/resource.py +0 -0
  36. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/assignment/setpartition.py +0 -0
  37. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/base/__init__.py +0 -0
  38. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/base/operators.py +0 -0
  39. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/base/polyeval.pyx +0 -0
  40. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/base/quadratic.py +0 -0
  41. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/combinatorics/__init__.py +0 -0
  42. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/combinatorics/setcover.py +0 -0
  43. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/combinatorics/setpartition.py +0 -0
  44. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/decoding.py +0 -0
  45. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/graph/base.py +0 -0
  46. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/graph/hypergraph.py +0 -0
  47. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/graph/maxcut.py +0 -0
  48. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/graph/maxkcut.py +0 -0
  49. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/graph/partition.py +0 -0
  50. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/__init__.py +0 -0
  51. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/classifierqboost.py +0 -0
  52. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/classifierqsvm.py +0 -0
  53. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/clustering.py +0 -0
  54. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx +0 -0
  55. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c +0 -0
  56. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h +0 -0
  57. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/forecast.py +0 -0
  58. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/forecastbase.py +0 -0
  59. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/regressor.py +0 -0
  60. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/ml/reservoir.py +0 -0
  61. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/process/base.py +0 -0
  62. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/process/mpc.py +0 -0
  63. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/sequence/__init__.py +0 -0
  64. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/sequence/tsp.py +0 -0
  65. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/utilities/__init__.py +0 -0
  66. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/utilities/fileio.py +0 -0
  67. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/utilities/polynomial.py +0 -0
  68. {eqc_models-0.12.0.data → eqc_models-0.13.0.data}/platlib/eqc_models/utilities/qplib.py +0 -0
  69. {eqc_models-0.12.0.dist-info → eqc_models-0.13.0.dist-info}/WHEEL +0 -0
  70. {eqc_models-0.12.0.dist-info → eqc_models-0.13.0.dist-info}/licenses/LICENSE.txt +0 -0
  71. {eqc_models-0.12.0.dist-info → eqc_models-0.13.0.dist-info}/top_level.txt +0 -0
@@ -6,6 +6,7 @@ import numpy as np
6
6
  from qci_client import QciClient
7
7
  from eqc_models.base.base import ModelSolver, EqcModel
8
8
  from eqc_models.base.operators import OperatorNotAvailableError
9
+ from eqc_models.base.results import SolutionResults
9
10
 
10
11
  log = logging.getLogger(name=__name__)
11
12
 
@@ -77,6 +78,11 @@ class QciClientMixin:
77
78
  metrics = client.get_job_metrics(job_id=job_id)
78
79
  return metrics
79
80
 
81
+ def makeResults(self, model : EqcModel, response : Dict) -> SolutionResults:
82
+ """ Build the results object """
83
+
84
+ return SolutionResults.from_cloud_response(model, response, self)
85
+
80
86
  class Dirac1Mixin:
81
87
  sampler_type = "dirac-1"
82
88
  requires_operator = "qubo"
@@ -125,7 +131,6 @@ class Dirac3Mixin:
125
131
  max_upper_bound = 10000
126
132
  job_params_names = [
127
133
  "num_samples",
128
- "solution_precision",
129
134
  "relaxation_schedule",
130
135
  "mean_photon_number",
131
136
  "quantum_fluctuation_coefficient",
@@ -427,10 +432,9 @@ class Dirac3CloudSolver(Dirac3Mixin, QciClientSolver):
427
432
  Dirac3CloudSolver is a class that encapsulates the different calls to Qatalyst
428
433
  for Dirac-3 jobs. Currently, there are two different jobs, one for integer and
429
434
  another for continuous solutions. Calling the solve method with different arguments
430
- controls which job is submitted. The continuous job requires :code:`sum_constraint`
431
- and optionally takes the :code:`solution_precision` argument. The integer job
432
- does not accept either of these parameters, so specifying a sum constraint forces
433
- the job type to be continuous and not specifying it results in the integer job being
435
+ controls which job is submitted. The continuous job requires :code:`sum_constraint`.
436
+ The integer job does not accept this parameter, so specifying a sum constraint forces
437
+ the job type to be continuous, and not specifying it results in the integer job being
434
438
  called.
435
439
 
436
440
  Continuous Solver
@@ -454,8 +458,7 @@ class Dirac3CloudSolver(Dirac3Mixin, QciClientSolver):
454
458
  >>> model = QuadraticModel(C, J)
455
459
  >>> model.upper_bound = np.array([1, 1]) # set the domain maximum per variable
456
460
  >>> solver = Dirac3CloudSolver()
457
- >>> response = solver.solve(model, sum_constraint=1, relaxation_schedule=1,
458
- ... solution_precision=None) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
461
+ >>> response = solver.solve(model, sum_constraint=1, relaxation_schedule=1) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
459
462
  2... submitted... COMPLETED...
460
463
  >>> response["results"]["energies"][0] <= 1.0
461
464
  True
@@ -479,7 +482,6 @@ class Dirac3CloudSolver(Dirac3Mixin, QciClientSolver):
479
482
  tags: List = None,
480
483
  sum_constraint: float = None,
481
484
  relaxation_schedule: int = None,
482
- solution_precision: float = None,
483
485
  num_samples: int = 1,
484
486
  wait: bool = True,
485
487
  mean_photon_number: float = None,
@@ -503,11 +505,6 @@ class Dirac3CloudSolver(Dirac3Mixin, QciClientSolver):
503
505
  a predefined schedule indicator which sets parameters
504
506
  on the device to control the sampling through photon
505
507
  measurement
506
- solution_precision : float
507
- a value which, when not None, indicates the numerical
508
- precision desired in the solution: 1 for integer, 0.1
509
- for tenths place, 0.01 for hundreths and None for raw,
510
- only used with continuous solver
511
508
  num_samples : int
512
509
  the number of samples to take, defaults to 1
513
510
  wait : bool
@@ -540,7 +537,6 @@ class Dirac3CloudSolver(Dirac3Mixin, QciClientSolver):
540
537
  job_kwargs["relaxation_schedule"] = relaxation_schedule
541
538
  job_kwargs["mean_photon_number"] = mean_photon_number
542
539
  job_kwargs["quantum_fluctuation_coefficient"] = quantum_fluctuation_coefficient
543
- job_kwargs["solution_precision"] = solution_precision
544
540
  job_type = "sample-" + self.job_type
545
541
  return super().solve(
546
542
  model,
@@ -663,8 +659,7 @@ class Dirac3ContinuousCloudSolver(Dirac3Mixin, QciClientSolver):
663
659
  >>> model = QuadraticModel(C, J)
664
660
  >>> model.upper_bound = np.array([1, 1]) # set the domain maximum per variable
665
661
  >>> solver = Dirac3ContinuousCloudSolver()
666
- >>> response = solver.solve(model, sum_constraint=1, relaxation_schedule=1,
667
- ... solution_precision=None) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
662
+ >>> response = solver.solve(model, sum_constraint=1, relaxation_schedule=1) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
668
663
  2... submitted... COMPLETED...
669
664
  >>> response["results"]["energies"][0] <= 1.0
670
665
  True
@@ -680,7 +675,6 @@ class Dirac3ContinuousCloudSolver(Dirac3Mixin, QciClientSolver):
680
675
  tags: List = None,
681
676
  sum_constraint: float = None,
682
677
  relaxation_schedule: int = None,
683
- solution_precision: float = None,
684
678
  num_samples: int = 1,
685
679
  wait: bool = True,
686
680
  mean_photon_number: float = None,
@@ -703,10 +697,6 @@ class Dirac3ContinuousCloudSolver(Dirac3Mixin, QciClientSolver):
703
697
  a predefined schedule indicator which sets parameters
704
698
  on the device to control the sampling through photon
705
699
  measurement
706
- solution_precision : float
707
- a value which, when not None, indicates the numerical
708
- precision desired in the solution: 1 for integer, 0.1
709
- for tenths place, 0.01 for hundreths and None for raw
710
700
  num_samples : int
711
701
  the number of samples to take, defaults to 1
712
702
  wait : bool
@@ -744,7 +734,6 @@ class Dirac3ContinuousCloudSolver(Dirac3Mixin, QciClientSolver):
744
734
  num_samples=num_samples,
745
735
  wait=wait,
746
736
  job_type=job_type,
747
- solution_precision=solution_precision,
748
737
  sum_constraint=sum_constraint,
749
738
  relaxation_schedule=relaxation_schedule,
750
739
  mean_photon_number=mean_photon_number,
@@ -0,0 +1,47 @@
1
+ import os
2
+ import json
3
+ import time
4
+
5
+ class ResponseLogMixin:
6
+
7
+ def logResponse(self, response, model, metrics=None):
8
+ record = {
9
+ "response": response,
10
+ "metrics": metrics,
11
+ "size": model.n,
12
+ "name": model.__class__.__name__,
13
+ "upper_bound": [u for u in model.upper_bound],
14
+ "machine_slacks": model.machine_slacks,
15
+ "penalty_multiplier": getattr(model, "penalty_multiplier", None)
16
+ }
17
+ fname = f"response-{time.time()}.json"
18
+ dirname = self.getLogDir()
19
+ fullname = os.path.join(dirname, fname)
20
+ if not os.access(fullname, os.W_OK):
21
+ log.warn(f"Response will not be logged because {fullname} is not writable")
22
+ return
23
+ elif os.path.exists(fullname):
24
+ log.warn(f"Response will not be logged because {fullname} exists")
25
+ return
26
+ with open(fullname, "w") as fp:
27
+ log.debug(f"Wrote response to {fullname}")
28
+ json.dump(record, fp)
29
+
30
+ def getLogDir(self):
31
+ """ Ensure the logging directory exists and return the path """
32
+
33
+ dirname = os.path.expanduser("~/.eqc-models")
34
+ if not os.path.exists(dirname):
35
+ try:
36
+ os.mkdir(dirname)
37
+ except OSError:
38
+ log.warn(f"Responses will not be logged because {dirname} is not writable")
39
+ return None
40
+ dirname = os.path.join(dirname, "responses")
41
+ if not os.path.exists(dirname):
42
+ try>
43
+ os.mkdir(dirname)
44
+ except OSError:
45
+ log.warn(f"Responses will not be logged because {dirname} is not writable")
46
+ return None
47
+ return dirname
@@ -1,9 +1,8 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eqc-models
3
- Version: 0.12.0
3
+ Version: 0.13.0
4
4
  Summary: Optimization and ML modeling package targeting EQC devices
5
- Author: Quantum Computing Inc.
6
- Author-email: support@quantumcomputinginc.com
5
+ Author-email: "Quantum Computing Inc." <support@quantumcomputinginc.com>
7
6
  Project-URL: Homepage, https://quantumcomputinginc.com
8
7
  Project-URL: Documentation, https://quantumcomputinginc.com/learn/support/software-packages/
9
8
  Project-URL: Issues, https://support.quantumcomputinginc.com/
@@ -12,11 +11,11 @@ Description-Content-Type: text/markdown
12
11
  License-File: LICENSE.txt
13
12
  Requires-Dist: numpy<2,>=1.22.1
14
13
  Requires-Dist: networkx<3,>=2.6.3
15
- Requires-Dist: pandas>=2.1.0
16
- Requires-Dist: scikit-learn>=1.2.1
17
- Requires-Dist: qci-client<5,>=4.3.0
18
- Requires-Dist: emucore-direct==1.0.6
19
- Requires-Dist: eqc-direct<3,>=2.0.1
14
+ Requires-Dist: pandas<3,>=2.1.0
15
+ Requires-Dist: scikit-learn<2,>=1.2.1
16
+ Requires-Dist: qci-client<6,>=5
17
+ Requires-Dist: emucore-direct==1.0.7
18
+ Requires-Dist: eqc-direct==2.0.2
20
19
  Provides-Extra: dev
21
20
  Requires-Dist: pytest<8,>=7.1.0; extra == "dev"
22
21
  Requires-Dist: pytest-cov; extra == "dev"
@@ -0,0 +1,69 @@
1
+ eqc_models-0.13.0.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
+ eqc_models-0.13.0.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
+ eqc_models-0.13.0.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
+ eqc_models-0.13.0.data/platlib/eqc_models/algorithms/__init__.py,sha256=lzQoMMSs2QTqp5suEYNvcQaSEN16d0LwIsZ1mRstumU,135
5
+ eqc_models-0.13.0.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
6
+ eqc_models-0.13.0.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=SndGxCZDS3JTaxFOPJpTBumFdIKcB0dKwSHwfl_BI6o,7845
7
+ eqc_models-0.13.0.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
8
+ eqc_models-0.13.0.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
9
+ eqc_models-0.13.0.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
10
+ eqc_models-0.13.0.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
11
+ eqc_models-0.13.0.data/platlib/eqc_models/assignment/__init__.py,sha256=WDlTjWGu75UTxuNUPGNVGoMaYvYILWzZOuS-o72n054,160
12
+ eqc_models-0.13.0.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
13
+ eqc_models-0.13.0.data/platlib/eqc_models/assignment/resource.py,sha256=Ux9e3Badty6bFMqRaLKAGbVRUtb1k1r1_E_2ajOhgb4,6883
14
+ eqc_models-0.13.0.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
15
+ eqc_models-0.13.0.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
16
+ eqc_models-0.13.0.data/platlib/eqc_models/base/base.py,sha256=3ESnRDa9KrOmyGFtDHP10X-TNBnOaDnBQ549uVcSB34,6721
17
+ eqc_models-0.13.0.data/platlib/eqc_models/base/binaries.py,sha256=rS-EUl2vzlDRTvHQ9Qn6SkyXfpyLMik50wh-h_bX5Qs,726
18
+ eqc_models-0.13.0.data/platlib/eqc_models/base/constraints.py,sha256=BKTQlkITRE8C-_ix6pVWbIK42RxrLsmzS3e8faD5Y7U,9540
19
+ eqc_models-0.13.0.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
20
+ eqc_models-0.13.0.data/platlib/eqc_models/base/polyeval.c,sha256=wu3gWbakYpq0kWgmJfj5XiEhPpk3Dc54xHNMGwKdXUE,483061
21
+ eqc_models-0.13.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=MvVkAT8p-rYhwEo7-rWGqgPyi-tb_S97PvX4cWXroTs,109312
22
+ eqc_models-0.13.0.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
23
+ eqc_models-0.13.0.data/platlib/eqc_models/base/polynomial.py,sha256=dkRs05mkItOwvWQgZjdAPG93OP3Pkd8jnJ0a2e1t-lU,13846
24
+ eqc_models-0.13.0.data/platlib/eqc_models/base/quadratic.py,sha256=IKjd-tL6pQosl217knS_ul2BXpk5a8ZZiSUzvKPg8S8,8082
25
+ eqc_models-0.13.0.data/platlib/eqc_models/base/results.py,sha256=P_tetLKJm-xWl6k00C0TFSTinq8jEeolwGsRTwsc-Zo,8777
26
+ eqc_models-0.13.0.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
27
+ eqc_models-0.13.0.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
28
+ eqc_models-0.13.0.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
29
+ eqc_models-0.13.0.data/platlib/eqc_models/graph/__init__.py,sha256=mpueOOcKklmtw1A3yUsjFNXU5DJ5XnItmGJKapaBLPg,392
30
+ eqc_models-0.13.0.data/platlib/eqc_models/graph/base.py,sha256=K9d7hLgLuBtywEdK9Rz1dUV70Xtf-oVrwqtHyzXK7k4,2117
31
+ eqc_models-0.13.0.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
32
+ eqc_models-0.13.0.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
33
+ eqc_models-0.13.0.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
34
+ eqc_models-0.13.0.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
35
+ eqc_models-0.13.0.data/platlib/eqc_models/graph/rcshortestpath.py,sha256=g5sy8pRk6c5x4nHVrs9vd0DjDxqlaLDkSytsiIp1hRw,3127
36
+ eqc_models-0.13.0.data/platlib/eqc_models/graph/shortestpath.py,sha256=p0NMGQt9pGbRQwu2pSIXXetSJfHB9K7K0rXP5JvDpQE,6443
37
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
38
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/classifierbase.py,sha256=1D6EYgiEqbtoXpBHnCaBqPDXKEjsIpJpM5UTIGxumfk,3080
39
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/classifierqboost.py,sha256=oxYnex7Z_iXglupqmMN9bK6gU1DxKcHOo03fLCmELfQ,19456
40
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=ELKAdOMExeNjJIJCHd28bf7xQYBI2TpQDGkifldThkU,12120
41
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/clustering.py,sha256=KD8mv_xY9-pRGKDRgeLDO3e38cjftzca4SUBvN4__-I,9522
42
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/clusteringbase.py,sha256=mBlNe72QJmiGUhgq_jepHauNvANWhG0hEZQY2EHWKtA,2604
43
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
44
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
45
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
46
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/decomposition.py,sha256=VbYAM6tJ0FSwvSezhHDrhpQjqbChVED9DAJPJd98I4A,9475
47
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/forecast.py,sha256=fFcBxQK9ZryfEuyvlr9HXicHoZRzLFybimYYttzhI9E,7403
48
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/forecastbase.py,sha256=s-6nUMvtYqG07r7MmmkFVj8_QqgeGkD-HVoEEDTE2bk,3654
49
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/regressor.py,sha256=LA1woXCnefG0wfoOxilX1kszgCUmfNcbQgs_WZ4Ai0o,5683
50
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/regressorbase.py,sha256=ZG1lCek3VEH8iONa5N-sNxRa_7X9gO3Tg_-uX2ItLnc,2075
51
+ eqc_models-0.13.0.data/platlib/eqc_models/ml/reservoir.py,sha256=cPRvpCaWLYTBkui35jCssHcOPQgSQZallrG6Ac9djVI,2827
52
+ eqc_models-0.13.0.data/platlib/eqc_models/process/base.py,sha256=QmwbPRc9w9Yr7cwPvdnV6LBdgajif_8WGYGfwApvO34,443
53
+ eqc_models-0.13.0.data/platlib/eqc_models/process/mpc.py,sha256=V7RlA6t08IayV-VKkpK4mC01Lvk3ZTD-HlFYk60snks,645
54
+ eqc_models-0.13.0.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
55
+ eqc_models-0.13.0.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
56
+ eqc_models-0.13.0.data/platlib/eqc_models/solvers/__init__.py,sha256=Q6QZkkeji_QyeBmgMT5qUs7mzdjK8hPUxw3zLqPxq00,677
57
+ eqc_models-0.13.0.data/platlib/eqc_models/solvers/eqcdirect.py,sha256=CUchx3GH0VqNaE6SlZN75tH6CoztwGdGbLuhLdUr85s,2319
58
+ eqc_models-0.13.0.data/platlib/eqc_models/solvers/mip.py,sha256=jdH2nHUZ5FZ2LCW2Tm08PjWfh5LM_SM0x5tLvlWNM_w,5270
59
+ eqc_models-0.13.0.data/platlib/eqc_models/solvers/qciclient.py,sha256=ore3YcZ9GAoLfdkYQUgo7XLU1WKvobHzl22DuwINWj8,26677
60
+ eqc_models-0.13.0.data/platlib/eqc_models/solvers/responselog.py,sha256=Vl0ZDYixwH2OnuCECP-TRwJ6PGfvPodWUgpvYOvYzRk,1735
61
+ eqc_models-0.13.0.data/platlib/eqc_models/utilities/__init__.py,sha256=SI2U7JKmPWSiq-F1WcSyfd7l9V6nbOZv_p8quMAZaT0,340
62
+ eqc_models-0.13.0.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
63
+ eqc_models-0.13.0.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
64
+ eqc_models-0.13.0.data/platlib/eqc_models/utilities/qplib.py,sha256=Do-MjmCFdI5HyDOAjfoz4_5lugySLMBlMAWDLUWx2OA,15796
65
+ eqc_models-0.13.0.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
66
+ eqc_models-0.13.0.dist-info/METADATA,sha256=KOi9xU2l9f1w678joAy7798-Z08D0CAXIF4-IkUtWcg,7082
67
+ eqc_models-0.13.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
68
+ eqc_models-0.13.0.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
69
+ eqc_models-0.13.0.dist-info/RECORD,,
@@ -1,65 +0,0 @@
1
- eqc_models-0.12.0.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
- eqc_models-0.12.0.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
- eqc_models-0.12.0.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
- eqc_models-0.12.0.data/platlib/eqc_models/algorithms/__init__.py,sha256=lzQoMMSs2QTqp5suEYNvcQaSEN16d0LwIsZ1mRstumU,135
5
- eqc_models-0.12.0.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
6
- eqc_models-0.12.0.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=SndGxCZDS3JTaxFOPJpTBumFdIKcB0dKwSHwfl_BI6o,7845
7
- eqc_models-0.12.0.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
8
- eqc_models-0.12.0.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
9
- eqc_models-0.12.0.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
10
- eqc_models-0.12.0.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
11
- eqc_models-0.12.0.data/platlib/eqc_models/assignment/__init__.py,sha256=WDlTjWGu75UTxuNUPGNVGoMaYvYILWzZOuS-o72n054,160
12
- eqc_models-0.12.0.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
13
- eqc_models-0.12.0.data/platlib/eqc_models/assignment/resource.py,sha256=Ux9e3Badty6bFMqRaLKAGbVRUtb1k1r1_E_2ajOhgb4,6883
14
- eqc_models-0.12.0.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
15
- eqc_models-0.12.0.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
16
- eqc_models-0.12.0.data/platlib/eqc_models/base/base.py,sha256=tL6z0MW4ffMKWlozZ0CH4soTiKxSlMXqyVDctaA110U,6405
17
- eqc_models-0.12.0.data/platlib/eqc_models/base/constraints.py,sha256=KMPyCdt_8GMWLnVEdpzw1T1WqXm2f7Lh629ClUH7XDY,8271
18
- eqc_models-0.12.0.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
19
- eqc_models-0.12.0.data/platlib/eqc_models/base/polyeval.c,sha256=bocwtLflgApAjP2W67qZSJAXusFfeCANi3aj486rcPA,476034
20
- eqc_models-0.12.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=nguZ04tigmotFBAmsz1DXha7X7G97pBSGoGDIXMOL5I,108736
21
- eqc_models-0.12.0.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
22
- eqc_models-0.12.0.data/platlib/eqc_models/base/polynomial.py,sha256=FQA26ihFlwfHz9k9XP3qDM0hl5Ko4rtUxiXloj3ail4,13056
23
- eqc_models-0.12.0.data/platlib/eqc_models/base/quadratic.py,sha256=IKjd-tL6pQosl217knS_ul2BXpk5a8ZZiSUzvKPg8S8,8082
24
- eqc_models-0.12.0.data/platlib/eqc_models/base/results.py,sha256=P7m88UBA1xir8BOYvA51Cnftrdu7hnWuFqt3lUIEVO8,5831
25
- eqc_models-0.12.0.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
26
- eqc_models-0.12.0.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
27
- eqc_models-0.12.0.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
28
- eqc_models-0.12.0.data/platlib/eqc_models/graph/__init__.py,sha256=PUSoVwzyZSHAbTEBfdakeRxWlkPeeGD1xfyY8OmMxYE,300
29
- eqc_models-0.12.0.data/platlib/eqc_models/graph/base.py,sha256=K9d7hLgLuBtywEdK9Rz1dUV70Xtf-oVrwqtHyzXK7k4,2117
30
- eqc_models-0.12.0.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
31
- eqc_models-0.12.0.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
32
- eqc_models-0.12.0.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
33
- eqc_models-0.12.0.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
34
- eqc_models-0.12.0.data/platlib/eqc_models/graph/shortestpath.py,sha256=5BIvPmYW43juxEDVtIAAlvK6hMP5Kj-fCB7SBKgY124,4988
35
- eqc_models-0.12.0.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
36
- eqc_models-0.12.0.data/platlib/eqc_models/ml/classifierbase.py,sha256=6W1iMlcorNtOPLS7ui8ED9UQ-xgFBK1yh_besy4swyM,3117
37
- eqc_models-0.12.0.data/platlib/eqc_models/ml/classifierqboost.py,sha256=oxYnex7Z_iXglupqmMN9bK6gU1DxKcHOo03fLCmELfQ,19456
38
- eqc_models-0.12.0.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=ELKAdOMExeNjJIJCHd28bf7xQYBI2TpQDGkifldThkU,12120
39
- eqc_models-0.12.0.data/platlib/eqc_models/ml/clustering.py,sha256=KD8mv_xY9-pRGKDRgeLDO3e38cjftzca4SUBvN4__-I,9522
40
- eqc_models-0.12.0.data/platlib/eqc_models/ml/clusteringbase.py,sha256=NSoOS_MJpiDrblJ3nQPSFXthJHsBWmTx8RJGhMexNUE,2642
41
- eqc_models-0.12.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
42
- eqc_models-0.12.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
43
- eqc_models-0.12.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
44
- eqc_models-0.12.0.data/platlib/eqc_models/ml/decomposition.py,sha256=Cmw9P-Xv_lzbyD0f-zNjJFX9H0ah--ZLyXUSRYXdfw0,9509
45
- eqc_models-0.12.0.data/platlib/eqc_models/ml/forecast.py,sha256=fFcBxQK9ZryfEuyvlr9HXicHoZRzLFybimYYttzhI9E,7403
46
- eqc_models-0.12.0.data/platlib/eqc_models/ml/forecastbase.py,sha256=s-6nUMvtYqG07r7MmmkFVj8_QqgeGkD-HVoEEDTE2bk,3654
47
- eqc_models-0.12.0.data/platlib/eqc_models/ml/regressor.py,sha256=LA1woXCnefG0wfoOxilX1kszgCUmfNcbQgs_WZ4Ai0o,5683
48
- eqc_models-0.12.0.data/platlib/eqc_models/ml/regressorbase.py,sha256=H5E8-8pUji1oH5JRdS37LJQoHuKt2JU8eXCZp-ZaEM4,2109
49
- eqc_models-0.12.0.data/platlib/eqc_models/ml/reservoir.py,sha256=cPRvpCaWLYTBkui35jCssHcOPQgSQZallrG6Ac9djVI,2827
50
- eqc_models-0.12.0.data/platlib/eqc_models/process/base.py,sha256=QmwbPRc9w9Yr7cwPvdnV6LBdgajif_8WGYGfwApvO34,443
51
- eqc_models-0.12.0.data/platlib/eqc_models/process/mpc.py,sha256=V7RlA6t08IayV-VKkpK4mC01Lvk3ZTD-HlFYk60snks,645
52
- eqc_models-0.12.0.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
53
- eqc_models-0.12.0.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
54
- eqc_models-0.12.0.data/platlib/eqc_models/solvers/__init__.py,sha256=OLwg3lxMh2rali4lovIxnR-CA1CISNnD5LRgCv48cck,432
55
- eqc_models-0.12.0.data/platlib/eqc_models/solvers/eqcdirect.py,sha256=VMMQzcW2VmalJ8__c_8hbygL0Kx0NDsL6HCi9l2T5-o,2115
56
- eqc_models-0.12.0.data/platlib/eqc_models/solvers/qciclient.py,sha256=73m6TNqwxvtgeVHKcym87UXqkSAAj4UrVeDRKlr7ys0,27362
57
- eqc_models-0.12.0.data/platlib/eqc_models/utilities/__init__.py,sha256=SI2U7JKmPWSiq-F1WcSyfd7l9V6nbOZv_p8quMAZaT0,340
58
- eqc_models-0.12.0.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
59
- eqc_models-0.12.0.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
60
- eqc_models-0.12.0.data/platlib/eqc_models/utilities/qplib.py,sha256=Do-MjmCFdI5HyDOAjfoz4_5lugySLMBlMAWDLUWx2OA,15796
61
- eqc_models-0.12.0.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
62
- eqc_models-0.12.0.dist-info/METADATA,sha256=LlwLohomCtAUlHu7eVM5ZicCPxrgu0YI4r8NWfmGT2Q,7087
63
- eqc_models-0.12.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
64
- eqc_models-0.12.0.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
65
- eqc_models-0.12.0.dist-info/RECORD,,