eqc-models 0.11.0__py3-none-any.whl → 0.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. eqc_models-0.12.0.data/platlib/eqc_models/assignment/__init__.py +6 -0
  2. eqc_models-0.12.0.data/platlib/eqc_models/assignment/resource.py +165 -0
  3. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/base/polyeval.c +4208 -3435
  4. eqc_models-0.12.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
  5. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/base/quadratic.py +2 -2
  6. eqc_models-0.12.0.data/platlib/eqc_models/base/results.py +166 -0
  7. eqc_models-0.12.0.data/platlib/eqc_models/graph/__init__.py +9 -0
  8. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/graph/base.py +8 -4
  9. eqc_models-0.12.0.data/platlib/eqc_models/graph/shortestpath.py +157 -0
  10. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/classifierbase.py +31 -5
  11. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/classifierqboost.py +14 -1
  12. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/classifierqsvm.py +223 -19
  13. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/clustering.py +5 -5
  14. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/clusteringbase.py +1 -1
  15. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/decomposition.py +39 -16
  16. eqc_models-0.12.0.data/platlib/eqc_models/process/base.py +18 -0
  17. eqc_models-0.12.0.data/platlib/eqc_models/process/mpc.py +17 -0
  18. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/solvers/__init__.py +1 -5
  19. eqc_models-0.12.0.data/platlib/eqc_models/solvers/eqcdirect.py +71 -0
  20. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/solvers/qciclient.py +6 -3
  21. {eqc_models-0.11.0.dist-info → eqc_models-0.12.0.dist-info}/METADATA +2 -3
  22. eqc_models-0.12.0.dist-info/RECORD +65 -0
  23. {eqc_models-0.11.0.dist-info → eqc_models-0.12.0.dist-info}/WHEEL +1 -1
  24. eqc_models-0.11.0.data/platlib/eqc_models/assignment/__init__.py +0 -5
  25. eqc_models-0.11.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
  26. eqc_models-0.11.0.data/platlib/eqc_models/base/results.py +0 -94
  27. eqc_models-0.11.0.data/platlib/eqc_models/graph/__init__.py +0 -6
  28. eqc_models-0.11.0.data/platlib/eqc_models/sequence/scheduling.py +0 -29
  29. eqc_models-0.11.0.dist-info/RECORD +0 -61
  30. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/compile_extensions.py +0 -0
  31. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/__init__.py +0 -0
  32. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/algorithms/__init__.py +0 -0
  33. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/algorithms/base.py +0 -0
  34. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/algorithms/penaltymultiplier.py +0 -0
  35. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/allocation/__init__.py +0 -0
  36. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/allocation/allocation.py +0 -0
  37. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/allocation/portbase.py +0 -0
  38. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/allocation/portmomentum.py +0 -0
  39. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/assignment/qap.py +0 -0
  40. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/assignment/setpartition.py +0 -0
  41. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/base/__init__.py +0 -0
  42. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/base/base.py +0 -0
  43. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/base/constraints.py +0 -0
  44. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/base/operators.py +0 -0
  45. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/base/polyeval.pyx +0 -0
  46. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/base/polynomial.py +0 -0
  47. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/combinatorics/__init__.py +0 -0
  48. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/combinatorics/setcover.py +0 -0
  49. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/combinatorics/setpartition.py +0 -0
  50. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/decoding.py +0 -0
  51. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/graph/hypergraph.py +0 -0
  52. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/graph/maxcut.py +0 -0
  53. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/graph/maxkcut.py +0 -0
  54. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/graph/partition.py +0 -0
  55. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/__init__.py +0 -0
  56. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx +0 -0
  57. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c +0 -0
  58. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h +0 -0
  59. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/forecast.py +0 -0
  60. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/forecastbase.py +0 -0
  61. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/regressor.py +0 -0
  62. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/regressorbase.py +0 -0
  63. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/ml/reservoir.py +0 -0
  64. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/sequence/__init__.py +0 -0
  65. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/sequence/tsp.py +0 -0
  66. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/utilities/__init__.py +0 -0
  67. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/utilities/fileio.py +0 -0
  68. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/utilities/polynomial.py +0 -0
  69. {eqc_models-0.11.0.data → eqc_models-0.12.0.data}/platlib/eqc_models/utilities/qplib.py +0 -0
  70. {eqc_models-0.11.0.dist-info → eqc_models-0.12.0.dist-info}/licenses/LICENSE.txt +0 -0
  71. {eqc_models-0.11.0.dist-info → eqc_models-0.12.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,65 @@
1
+ eqc_models-0.12.0.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
+ eqc_models-0.12.0.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
+ eqc_models-0.12.0.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
+ eqc_models-0.12.0.data/platlib/eqc_models/algorithms/__init__.py,sha256=lzQoMMSs2QTqp5suEYNvcQaSEN16d0LwIsZ1mRstumU,135
5
+ eqc_models-0.12.0.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
6
+ eqc_models-0.12.0.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=SndGxCZDS3JTaxFOPJpTBumFdIKcB0dKwSHwfl_BI6o,7845
7
+ eqc_models-0.12.0.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
8
+ eqc_models-0.12.0.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
9
+ eqc_models-0.12.0.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
10
+ eqc_models-0.12.0.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
11
+ eqc_models-0.12.0.data/platlib/eqc_models/assignment/__init__.py,sha256=WDlTjWGu75UTxuNUPGNVGoMaYvYILWzZOuS-o72n054,160
12
+ eqc_models-0.12.0.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
13
+ eqc_models-0.12.0.data/platlib/eqc_models/assignment/resource.py,sha256=Ux9e3Badty6bFMqRaLKAGbVRUtb1k1r1_E_2ajOhgb4,6883
14
+ eqc_models-0.12.0.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
15
+ eqc_models-0.12.0.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
16
+ eqc_models-0.12.0.data/platlib/eqc_models/base/base.py,sha256=tL6z0MW4ffMKWlozZ0CH4soTiKxSlMXqyVDctaA110U,6405
17
+ eqc_models-0.12.0.data/platlib/eqc_models/base/constraints.py,sha256=KMPyCdt_8GMWLnVEdpzw1T1WqXm2f7Lh629ClUH7XDY,8271
18
+ eqc_models-0.12.0.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
19
+ eqc_models-0.12.0.data/platlib/eqc_models/base/polyeval.c,sha256=bocwtLflgApAjP2W67qZSJAXusFfeCANi3aj486rcPA,476034
20
+ eqc_models-0.12.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=nguZ04tigmotFBAmsz1DXha7X7G97pBSGoGDIXMOL5I,108736
21
+ eqc_models-0.12.0.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
22
+ eqc_models-0.12.0.data/platlib/eqc_models/base/polynomial.py,sha256=FQA26ihFlwfHz9k9XP3qDM0hl5Ko4rtUxiXloj3ail4,13056
23
+ eqc_models-0.12.0.data/platlib/eqc_models/base/quadratic.py,sha256=IKjd-tL6pQosl217knS_ul2BXpk5a8ZZiSUzvKPg8S8,8082
24
+ eqc_models-0.12.0.data/platlib/eqc_models/base/results.py,sha256=P7m88UBA1xir8BOYvA51Cnftrdu7hnWuFqt3lUIEVO8,5831
25
+ eqc_models-0.12.0.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
26
+ eqc_models-0.12.0.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
27
+ eqc_models-0.12.0.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
28
+ eqc_models-0.12.0.data/platlib/eqc_models/graph/__init__.py,sha256=PUSoVwzyZSHAbTEBfdakeRxWlkPeeGD1xfyY8OmMxYE,300
29
+ eqc_models-0.12.0.data/platlib/eqc_models/graph/base.py,sha256=K9d7hLgLuBtywEdK9Rz1dUV70Xtf-oVrwqtHyzXK7k4,2117
30
+ eqc_models-0.12.0.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
31
+ eqc_models-0.12.0.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
32
+ eqc_models-0.12.0.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
33
+ eqc_models-0.12.0.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
34
+ eqc_models-0.12.0.data/platlib/eqc_models/graph/shortestpath.py,sha256=5BIvPmYW43juxEDVtIAAlvK6hMP5Kj-fCB7SBKgY124,4988
35
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
36
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/classifierbase.py,sha256=6W1iMlcorNtOPLS7ui8ED9UQ-xgFBK1yh_besy4swyM,3117
37
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/classifierqboost.py,sha256=oxYnex7Z_iXglupqmMN9bK6gU1DxKcHOo03fLCmELfQ,19456
38
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=ELKAdOMExeNjJIJCHd28bf7xQYBI2TpQDGkifldThkU,12120
39
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/clustering.py,sha256=KD8mv_xY9-pRGKDRgeLDO3e38cjftzca4SUBvN4__-I,9522
40
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/clusteringbase.py,sha256=NSoOS_MJpiDrblJ3nQPSFXthJHsBWmTx8RJGhMexNUE,2642
41
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
42
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
43
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
44
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/decomposition.py,sha256=Cmw9P-Xv_lzbyD0f-zNjJFX9H0ah--ZLyXUSRYXdfw0,9509
45
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/forecast.py,sha256=fFcBxQK9ZryfEuyvlr9HXicHoZRzLFybimYYttzhI9E,7403
46
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/forecastbase.py,sha256=s-6nUMvtYqG07r7MmmkFVj8_QqgeGkD-HVoEEDTE2bk,3654
47
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/regressor.py,sha256=LA1woXCnefG0wfoOxilX1kszgCUmfNcbQgs_WZ4Ai0o,5683
48
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/regressorbase.py,sha256=H5E8-8pUji1oH5JRdS37LJQoHuKt2JU8eXCZp-ZaEM4,2109
49
+ eqc_models-0.12.0.data/platlib/eqc_models/ml/reservoir.py,sha256=cPRvpCaWLYTBkui35jCssHcOPQgSQZallrG6Ac9djVI,2827
50
+ eqc_models-0.12.0.data/platlib/eqc_models/process/base.py,sha256=QmwbPRc9w9Yr7cwPvdnV6LBdgajif_8WGYGfwApvO34,443
51
+ eqc_models-0.12.0.data/platlib/eqc_models/process/mpc.py,sha256=V7RlA6t08IayV-VKkpK4mC01Lvk3ZTD-HlFYk60snks,645
52
+ eqc_models-0.12.0.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
53
+ eqc_models-0.12.0.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
54
+ eqc_models-0.12.0.data/platlib/eqc_models/solvers/__init__.py,sha256=OLwg3lxMh2rali4lovIxnR-CA1CISNnD5LRgCv48cck,432
55
+ eqc_models-0.12.0.data/platlib/eqc_models/solvers/eqcdirect.py,sha256=VMMQzcW2VmalJ8__c_8hbygL0Kx0NDsL6HCi9l2T5-o,2115
56
+ eqc_models-0.12.0.data/platlib/eqc_models/solvers/qciclient.py,sha256=73m6TNqwxvtgeVHKcym87UXqkSAAj4UrVeDRKlr7ys0,27362
57
+ eqc_models-0.12.0.data/platlib/eqc_models/utilities/__init__.py,sha256=SI2U7JKmPWSiq-F1WcSyfd7l9V6nbOZv_p8quMAZaT0,340
58
+ eqc_models-0.12.0.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
59
+ eqc_models-0.12.0.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
60
+ eqc_models-0.12.0.data/platlib/eqc_models/utilities/qplib.py,sha256=Do-MjmCFdI5HyDOAjfoz4_5lugySLMBlMAWDLUWx2OA,15796
61
+ eqc_models-0.12.0.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
62
+ eqc_models-0.12.0.dist-info/METADATA,sha256=LlwLohomCtAUlHu7eVM5ZicCPxrgu0YI4r8NWfmGT2Q,7087
63
+ eqc_models-0.12.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
64
+ eqc_models-0.12.0.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
65
+ eqc_models-0.12.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (78.1.0)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,5 +0,0 @@
1
- # (C) Quantum Computing Inc., 2024.
2
-
3
- from .qap import QAPModel
4
-
5
- __all__ = ["QAPModel"]
@@ -1,94 +0,0 @@
1
- import dataclasses
2
- import warnings
3
- import numpy as np
4
-
5
- @dataclasses.dataclass
6
- class SolutionResults:
7
- """
8
- The class is meant to provide a uniform interface to results, no matter
9
- the method of running the job.
10
-
11
- """
12
-
13
- solutions : np.ndarray
14
- energies : np.ndarray
15
- counts : np.array
16
- objectives : np.ndarray
17
- run_time : np.ndarray
18
- preprocessing_time : np.ndarray
19
- postprocessing_time : np.ndarray
20
- penalties : np.ndarray = None
21
- device : str = None
22
- time_units : str = "ns"
23
-
24
- @property
25
- def device_time(self):
26
- pre = self.preprocessing_time
27
- runtime = np.sum(self.run_time)
28
- post = np.sum(self.postprocessing_time)
29
- return pre + runtime + post
30
-
31
- @property
32
- def total_samples(self):
33
- return np.sum(self.counts)
34
-
35
- @property
36
- def best_energy(self):
37
- return np.min(self.energies)
38
-
39
- @classmethod
40
- def determine_device_type(cls, device_config):
41
- """
42
- Use the device config object from a cloud response
43
- to get the device info. It will have a device and job type
44
- identifiers in it.
45
-
46
- """
47
- devices = [k for k in device_config.keys()]
48
- # only one device type is supported at a time
49
- return devices[0]
50
-
51
- @classmethod
52
- def from_cloud_response(cls, model, response, solver):
53
- """ Fill in the details from the cloud """
54
-
55
- solutions = np.array(response["results"]["solutions"])
56
- energies = np.array(response["results"]["energies"])
57
- if hasattr(model, "evaluateObjective"):
58
- objectives = np.zeros((solutions.shape[0],), dtype=np.float32)
59
- for i in range(solutions.shape[0]):
60
- try:
61
- objective = model.evaluateObjective(solutions[i])
62
- except NotImplementedError:
63
- warnings.warn(f"Cannot set objective value in results for {model.__class__}")
64
- objectives = None
65
- break
66
- objectives[i] = objective
67
- else:
68
- objectives = None
69
- if hasattr(model, "evaluatePenalties"):
70
- penalties = np.zeros((solutions.shape[0],), dtype=np.float32)
71
- for i in range(solutions.shape[0]):
72
- penalties[i] = model.evaluatePenalty(solution[i]) + model.offset
73
- else:
74
- penalties = None
75
- counts = np.array(response["results"]["counts"])
76
- # interrogate to determine the device type
77
- try:
78
- device_type = cls.determine_device_type(response["job_info"]["job_submission"]["device_config"])
79
- except KeyError:
80
- print(response.keys())
81
- raise
82
- job_id = response["job_info"]["job_id"]
83
- metrics = solver.client.get_job_metrics(job_id=job_id)
84
- metrics = metrics["job_metrics"]
85
- time_ns = metrics["time_ns"]
86
- device = time_ns["device"][device_type]
87
- runtime = device["samples"]["runtime"]
88
- post = device["samples"]["postprocessing_time"]
89
- pre = device["samples"]["preprocessing_time"]
90
- results = SolutionResults(solutions, energies, counts, objectives,
91
- runtime, pre, post, penalties=penalties,
92
- device=device_type, time_units="ns")
93
-
94
- return results
@@ -1,6 +0,0 @@
1
- # (C) Quantum Computing Inc., 2024.
2
-
3
- from .maxcut import MaxCutModel
4
- from .partition import GraphPartitionModel
5
-
6
- __all__ = ["MaxCutModel", "GraphPartitionModel"]
@@ -1,29 +0,0 @@
1
- import numpy as np
2
- from eqc_models.base.quadratic import ConstrainedQuadraticModel
3
- from eqc_models.base.constraints import InequalitiesMixin
4
-
5
- class CrewSchedulingModel(ConstrainedQuadraticModel):
6
- """
7
- Crew scheduling model
8
-
9
- Parameters
10
- ------------
11
-
12
- crews : List
13
- tasks : List
14
-
15
- >>> crews = [{"name": "Maintenance Crew 1", "skills": ["A", "F"]},
16
- ... {"name": "Baggage Crew 1", "skills": ["B"]},
17
- ... {"name": "Maintenance Crew 2", "skills": ["A", "F"]}]
18
- >>> tasks = [{"name": "Refuel", "skill_need": "F"},
19
- ... {"name": "Baggage", "skill_need": "B"}]
20
-
21
- """
22
-
23
- def __init__(self, crews, tasks):
24
- self.crews = crews
25
- self.tasks = tasks
26
-
27
- def decode(self, solution) -> np.ndarray:
28
- """ Translate the solution into a list of tasks for each crew """
29
-
@@ -1,61 +0,0 @@
1
- eqc_models-0.11.0.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
- eqc_models-0.11.0.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
- eqc_models-0.11.0.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
- eqc_models-0.11.0.data/platlib/eqc_models/algorithms/__init__.py,sha256=lzQoMMSs2QTqp5suEYNvcQaSEN16d0LwIsZ1mRstumU,135
5
- eqc_models-0.11.0.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
6
- eqc_models-0.11.0.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=SndGxCZDS3JTaxFOPJpTBumFdIKcB0dKwSHwfl_BI6o,7845
7
- eqc_models-0.11.0.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
8
- eqc_models-0.11.0.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
9
- eqc_models-0.11.0.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
10
- eqc_models-0.11.0.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
11
- eqc_models-0.11.0.data/platlib/eqc_models/assignment/__init__.py,sha256=CX_QYl8P1meajV8gcVs6hm07VhoLVe8uu436t7-1XQo,86
12
- eqc_models-0.11.0.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
13
- eqc_models-0.11.0.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
14
- eqc_models-0.11.0.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
15
- eqc_models-0.11.0.data/platlib/eqc_models/base/base.py,sha256=tL6z0MW4ffMKWlozZ0CH4soTiKxSlMXqyVDctaA110U,6405
16
- eqc_models-0.11.0.data/platlib/eqc_models/base/constraints.py,sha256=KMPyCdt_8GMWLnVEdpzw1T1WqXm2f7Lh629ClUH7XDY,8271
17
- eqc_models-0.11.0.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
18
- eqc_models-0.11.0.data/platlib/eqc_models/base/polyeval.c,sha256=xyZgxdE5DbBJP3Q8ol7t5651V7bjVZNKH24HAeADeNk,438431
19
- eqc_models-0.11.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=gS8RuuiASVDgHRiexrTgQiydL-CtTAMUts7jPOAPpJ4,108672
20
- eqc_models-0.11.0.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
21
- eqc_models-0.11.0.data/platlib/eqc_models/base/polynomial.py,sha256=FQA26ihFlwfHz9k9XP3qDM0hl5Ko4rtUxiXloj3ail4,13056
22
- eqc_models-0.11.0.data/platlib/eqc_models/base/quadratic.py,sha256=BHZKniUvSq30pZgzguVasdO39BCEYue_wi5AIklPGS8,8062
23
- eqc_models-0.11.0.data/platlib/eqc_models/base/results.py,sha256=SPTDdlA2BOQjoaNvp7UGB1v5Veys8AGjQ3VDC1NpEQY,3301
24
- eqc_models-0.11.0.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
25
- eqc_models-0.11.0.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
26
- eqc_models-0.11.0.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
27
- eqc_models-0.11.0.data/platlib/eqc_models/graph/__init__.py,sha256=zlPE_c92wsuzz_wQLs0nxYi7tHCYxrPs-yOa9BhQAIo,162
28
- eqc_models-0.11.0.data/platlib/eqc_models/graph/base.py,sha256=j48OwhorZ5jTlTysTmMiXCeiAdj6jylBREk3NxCpFLI,2072
29
- eqc_models-0.11.0.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
30
- eqc_models-0.11.0.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
31
- eqc_models-0.11.0.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
32
- eqc_models-0.11.0.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
33
- eqc_models-0.11.0.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
34
- eqc_models-0.11.0.data/platlib/eqc_models/ml/classifierbase.py,sha256=1yXufiUGpaiBjI2evMiwfYn-Zr-SnWwCnvtREqprtJw,2184
35
- eqc_models-0.11.0.data/platlib/eqc_models/ml/classifierqboost.py,sha256=5Dcpd0DjpMmlUULyZFKKWm4UuZpeMaknWKViiIjwc0U,18978
36
- eqc_models-0.11.0.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=b6TdwlghR84UoQpfUThwMwNF_wmkABbCqOn6T1uY2dA,6636
37
- eqc_models-0.11.0.data/platlib/eqc_models/ml/clustering.py,sha256=yhh6jlgwZiQVn9h2pnYBlzVTCocK7rzsEurSQxCn5FQ,9486
38
- eqc_models-0.11.0.data/platlib/eqc_models/ml/clusteringbase.py,sha256=AvQbt6jeocBAGCuAmXHKyr3wLWqYUtBDq9PbsEOSlSc,2632
39
- eqc_models-0.11.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
40
- eqc_models-0.11.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
41
- eqc_models-0.11.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
42
- eqc_models-0.11.0.data/platlib/eqc_models/ml/decomposition.py,sha256=Nsnq0GmINpbGOszndgCHXqKdECNpiNiampBrHPU_Gjg,8943
43
- eqc_models-0.11.0.data/platlib/eqc_models/ml/forecast.py,sha256=fFcBxQK9ZryfEuyvlr9HXicHoZRzLFybimYYttzhI9E,7403
44
- eqc_models-0.11.0.data/platlib/eqc_models/ml/forecastbase.py,sha256=s-6nUMvtYqG07r7MmmkFVj8_QqgeGkD-HVoEEDTE2bk,3654
45
- eqc_models-0.11.0.data/platlib/eqc_models/ml/regressor.py,sha256=LA1woXCnefG0wfoOxilX1kszgCUmfNcbQgs_WZ4Ai0o,5683
46
- eqc_models-0.11.0.data/platlib/eqc_models/ml/regressorbase.py,sha256=H5E8-8pUji1oH5JRdS37LJQoHuKt2JU8eXCZp-ZaEM4,2109
47
- eqc_models-0.11.0.data/platlib/eqc_models/ml/reservoir.py,sha256=cPRvpCaWLYTBkui35jCssHcOPQgSQZallrG6Ac9djVI,2827
48
- eqc_models-0.11.0.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
49
- eqc_models-0.11.0.data/platlib/eqc_models/sequence/scheduling.py,sha256=9gSD-L_n18NrE8K6CYTaIYRJ1JYI1ILhdEsk6xtsa68,841
50
- eqc_models-0.11.0.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
51
- eqc_models-0.11.0.data/platlib/eqc_models/solvers/__init__.py,sha256=hTjJI4F0FNDgQlK_oRHJxLIkg6of3I1-nEqU_3RL4Gk,542
52
- eqc_models-0.11.0.data/platlib/eqc_models/solvers/qciclient.py,sha256=uZrtK03oA9ozTGD--hUicmu8zoHYkuIaJ924tOtGwzU,27269
53
- eqc_models-0.11.0.data/platlib/eqc_models/utilities/__init__.py,sha256=SI2U7JKmPWSiq-F1WcSyfd7l9V6nbOZv_p8quMAZaT0,340
54
- eqc_models-0.11.0.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
55
- eqc_models-0.11.0.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
56
- eqc_models-0.11.0.data/platlib/eqc_models/utilities/qplib.py,sha256=Do-MjmCFdI5HyDOAjfoz4_5lugySLMBlMAWDLUWx2OA,15796
57
- eqc_models-0.11.0.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
58
- eqc_models-0.11.0.dist-info/METADATA,sha256=6Ixla2-iQUpemI_tFaSn1vAeSR5c60n0XJX0kiFbk3I,7129
59
- eqc_models-0.11.0.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
60
- eqc_models-0.11.0.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
61
- eqc_models-0.11.0.dist-info/RECORD,,