eqc-models 0.10.3__py3-none-any.whl → 0.11.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/base/__init__.py +3 -1
  2. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/base/polyeval.c +123 -123
  3. eqc_models-0.11.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
  4. eqc_models-0.11.0.data/platlib/eqc_models/base/results.py +94 -0
  5. eqc_models-0.11.0.data/platlib/eqc_models/sequence/scheduling.py +29 -0
  6. {eqc_models-0.10.3.dist-info → eqc_models-0.11.0.dist-info}/METADATA +1 -1
  7. eqc_models-0.11.0.dist-info/RECORD +61 -0
  8. eqc_models-0.10.3.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so +0 -0
  9. eqc_models-0.10.3.dist-info/RECORD +0 -59
  10. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/compile_extensions.py +0 -0
  11. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/__init__.py +0 -0
  12. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/algorithms/__init__.py +0 -0
  13. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/algorithms/base.py +0 -0
  14. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/algorithms/penaltymultiplier.py +0 -0
  15. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/allocation/__init__.py +0 -0
  16. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/allocation/allocation.py +0 -0
  17. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/allocation/portbase.py +0 -0
  18. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/allocation/portmomentum.py +0 -0
  19. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/assignment/__init__.py +0 -0
  20. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/assignment/qap.py +0 -0
  21. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/assignment/setpartition.py +0 -0
  22. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/base/base.py +0 -0
  23. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/base/constraints.py +0 -0
  24. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/base/operators.py +0 -0
  25. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/base/polyeval.pyx +0 -0
  26. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/base/polynomial.py +0 -0
  27. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/base/quadratic.py +0 -0
  28. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/combinatorics/__init__.py +0 -0
  29. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/combinatorics/setcover.py +0 -0
  30. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/combinatorics/setpartition.py +0 -0
  31. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/decoding.py +0 -0
  32. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/graph/__init__.py +0 -0
  33. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/graph/base.py +0 -0
  34. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/graph/hypergraph.py +0 -0
  35. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/graph/maxcut.py +0 -0
  36. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/graph/maxkcut.py +0 -0
  37. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/graph/partition.py +0 -0
  38. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/__init__.py +0 -0
  39. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/classifierbase.py +0 -0
  40. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/classifierqboost.py +0 -0
  41. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/classifierqsvm.py +0 -0
  42. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/clustering.py +0 -0
  43. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/clusteringbase.py +0 -0
  44. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx +0 -0
  45. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c +0 -0
  46. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h +0 -0
  47. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/decomposition.py +0 -0
  48. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/forecast.py +0 -0
  49. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/forecastbase.py +0 -0
  50. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/regressor.py +0 -0
  51. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/regressorbase.py +0 -0
  52. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/ml/reservoir.py +0 -0
  53. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/sequence/__init__.py +0 -0
  54. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/sequence/tsp.py +0 -0
  55. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/solvers/__init__.py +0 -0
  56. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/solvers/qciclient.py +0 -0
  57. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/utilities/__init__.py +0 -0
  58. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/utilities/fileio.py +0 -0
  59. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/utilities/polynomial.py +0 -0
  60. {eqc_models-0.10.3.data → eqc_models-0.11.0.data}/platlib/eqc_models/utilities/qplib.py +0 -0
  61. {eqc_models-0.10.3.dist-info → eqc_models-0.11.0.dist-info}/WHEEL +0 -0
  62. {eqc_models-0.10.3.dist-info → eqc_models-0.11.0.dist-info}/licenses/LICENSE.txt +0 -0
  63. {eqc_models-0.10.3.dist-info → eqc_models-0.11.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,94 @@
1
+ import dataclasses
2
+ import warnings
3
+ import numpy as np
4
+
5
+ @dataclasses.dataclass
6
+ class SolutionResults:
7
+ """
8
+ The class is meant to provide a uniform interface to results, no matter
9
+ the method of running the job.
10
+
11
+ """
12
+
13
+ solutions : np.ndarray
14
+ energies : np.ndarray
15
+ counts : np.array
16
+ objectives : np.ndarray
17
+ run_time : np.ndarray
18
+ preprocessing_time : np.ndarray
19
+ postprocessing_time : np.ndarray
20
+ penalties : np.ndarray = None
21
+ device : str = None
22
+ time_units : str = "ns"
23
+
24
+ @property
25
+ def device_time(self):
26
+ pre = self.preprocessing_time
27
+ runtime = np.sum(self.run_time)
28
+ post = np.sum(self.postprocessing_time)
29
+ return pre + runtime + post
30
+
31
+ @property
32
+ def total_samples(self):
33
+ return np.sum(self.counts)
34
+
35
+ @property
36
+ def best_energy(self):
37
+ return np.min(self.energies)
38
+
39
+ @classmethod
40
+ def determine_device_type(cls, device_config):
41
+ """
42
+ Use the device config object from a cloud response
43
+ to get the device info. It will have a device and job type
44
+ identifiers in it.
45
+
46
+ """
47
+ devices = [k for k in device_config.keys()]
48
+ # only one device type is supported at a time
49
+ return devices[0]
50
+
51
+ @classmethod
52
+ def from_cloud_response(cls, model, response, solver):
53
+ """ Fill in the details from the cloud """
54
+
55
+ solutions = np.array(response["results"]["solutions"])
56
+ energies = np.array(response["results"]["energies"])
57
+ if hasattr(model, "evaluateObjective"):
58
+ objectives = np.zeros((solutions.shape[0],), dtype=np.float32)
59
+ for i in range(solutions.shape[0]):
60
+ try:
61
+ objective = model.evaluateObjective(solutions[i])
62
+ except NotImplementedError:
63
+ warnings.warn(f"Cannot set objective value in results for {model.__class__}")
64
+ objectives = None
65
+ break
66
+ objectives[i] = objective
67
+ else:
68
+ objectives = None
69
+ if hasattr(model, "evaluatePenalties"):
70
+ penalties = np.zeros((solutions.shape[0],), dtype=np.float32)
71
+ for i in range(solutions.shape[0]):
72
+ penalties[i] = model.evaluatePenalty(solution[i]) + model.offset
73
+ else:
74
+ penalties = None
75
+ counts = np.array(response["results"]["counts"])
76
+ # interrogate to determine the device type
77
+ try:
78
+ device_type = cls.determine_device_type(response["job_info"]["job_submission"]["device_config"])
79
+ except KeyError:
80
+ print(response.keys())
81
+ raise
82
+ job_id = response["job_info"]["job_id"]
83
+ metrics = solver.client.get_job_metrics(job_id=job_id)
84
+ metrics = metrics["job_metrics"]
85
+ time_ns = metrics["time_ns"]
86
+ device = time_ns["device"][device_type]
87
+ runtime = device["samples"]["runtime"]
88
+ post = device["samples"]["postprocessing_time"]
89
+ pre = device["samples"]["preprocessing_time"]
90
+ results = SolutionResults(solutions, energies, counts, objectives,
91
+ runtime, pre, post, penalties=penalties,
92
+ device=device_type, time_units="ns")
93
+
94
+ return results
@@ -0,0 +1,29 @@
1
+ import numpy as np
2
+ from eqc_models.base.quadratic import ConstrainedQuadraticModel
3
+ from eqc_models.base.constraints import InequalitiesMixin
4
+
5
+ class CrewSchedulingModel(ConstrainedQuadraticModel):
6
+ """
7
+ Crew scheduling model
8
+
9
+ Parameters
10
+ ------------
11
+
12
+ crews : List
13
+ tasks : List
14
+
15
+ >>> crews = [{"name": "Maintenance Crew 1", "skills": ["A", "F"]},
16
+ ... {"name": "Baggage Crew 1", "skills": ["B"]},
17
+ ... {"name": "Maintenance Crew 2", "skills": ["A", "F"]}]
18
+ >>> tasks = [{"name": "Refuel", "skill_need": "F"},
19
+ ... {"name": "Baggage", "skill_need": "B"}]
20
+
21
+ """
22
+
23
+ def __init__(self, crews, tasks):
24
+ self.crews = crews
25
+ self.tasks = tasks
26
+
27
+ def decode(self, solution) -> np.ndarray:
28
+ """ Translate the solution into a list of tasks for each crew """
29
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: eqc-models
3
- Version: 0.10.3
3
+ Version: 0.11.0
4
4
  Summary: Optimization and ML modeling package targeting EQC devices
5
5
  Author: Quantum Computing Inc.
6
6
  Author-email: support@quantumcomputinginc.com
@@ -0,0 +1,61 @@
1
+ eqc_models-0.11.0.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
+ eqc_models-0.11.0.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
+ eqc_models-0.11.0.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
+ eqc_models-0.11.0.data/platlib/eqc_models/algorithms/__init__.py,sha256=lzQoMMSs2QTqp5suEYNvcQaSEN16d0LwIsZ1mRstumU,135
5
+ eqc_models-0.11.0.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
6
+ eqc_models-0.11.0.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=SndGxCZDS3JTaxFOPJpTBumFdIKcB0dKwSHwfl_BI6o,7845
7
+ eqc_models-0.11.0.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
8
+ eqc_models-0.11.0.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
9
+ eqc_models-0.11.0.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
10
+ eqc_models-0.11.0.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
11
+ eqc_models-0.11.0.data/platlib/eqc_models/assignment/__init__.py,sha256=CX_QYl8P1meajV8gcVs6hm07VhoLVe8uu436t7-1XQo,86
12
+ eqc_models-0.11.0.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
13
+ eqc_models-0.11.0.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
14
+ eqc_models-0.11.0.data/platlib/eqc_models/base/__init__.py,sha256=wKBppDk1lBiDvGOFnNpzu4lh7n4dQiyd_x3lNQJumTw,2952
15
+ eqc_models-0.11.0.data/platlib/eqc_models/base/base.py,sha256=tL6z0MW4ffMKWlozZ0CH4soTiKxSlMXqyVDctaA110U,6405
16
+ eqc_models-0.11.0.data/platlib/eqc_models/base/constraints.py,sha256=KMPyCdt_8GMWLnVEdpzw1T1WqXm2f7Lh629ClUH7XDY,8271
17
+ eqc_models-0.11.0.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
18
+ eqc_models-0.11.0.data/platlib/eqc_models/base/polyeval.c,sha256=xyZgxdE5DbBJP3Q8ol7t5651V7bjVZNKH24HAeADeNk,438431
19
+ eqc_models-0.11.0.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=gS8RuuiASVDgHRiexrTgQiydL-CtTAMUts7jPOAPpJ4,108672
20
+ eqc_models-0.11.0.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
21
+ eqc_models-0.11.0.data/platlib/eqc_models/base/polynomial.py,sha256=FQA26ihFlwfHz9k9XP3qDM0hl5Ko4rtUxiXloj3ail4,13056
22
+ eqc_models-0.11.0.data/platlib/eqc_models/base/quadratic.py,sha256=BHZKniUvSq30pZgzguVasdO39BCEYue_wi5AIklPGS8,8062
23
+ eqc_models-0.11.0.data/platlib/eqc_models/base/results.py,sha256=SPTDdlA2BOQjoaNvp7UGB1v5Veys8AGjQ3VDC1NpEQY,3301
24
+ eqc_models-0.11.0.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
25
+ eqc_models-0.11.0.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
26
+ eqc_models-0.11.0.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
27
+ eqc_models-0.11.0.data/platlib/eqc_models/graph/__init__.py,sha256=zlPE_c92wsuzz_wQLs0nxYi7tHCYxrPs-yOa9BhQAIo,162
28
+ eqc_models-0.11.0.data/platlib/eqc_models/graph/base.py,sha256=j48OwhorZ5jTlTysTmMiXCeiAdj6jylBREk3NxCpFLI,2072
29
+ eqc_models-0.11.0.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
30
+ eqc_models-0.11.0.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
31
+ eqc_models-0.11.0.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
32
+ eqc_models-0.11.0.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
33
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
34
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/classifierbase.py,sha256=1yXufiUGpaiBjI2evMiwfYn-Zr-SnWwCnvtREqprtJw,2184
35
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/classifierqboost.py,sha256=5Dcpd0DjpMmlUULyZFKKWm4UuZpeMaknWKViiIjwc0U,18978
36
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=b6TdwlghR84UoQpfUThwMwNF_wmkABbCqOn6T1uY2dA,6636
37
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/clustering.py,sha256=yhh6jlgwZiQVn9h2pnYBlzVTCocK7rzsEurSQxCn5FQ,9486
38
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/clusteringbase.py,sha256=AvQbt6jeocBAGCuAmXHKyr3wLWqYUtBDq9PbsEOSlSc,2632
39
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
40
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
41
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
42
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/decomposition.py,sha256=Nsnq0GmINpbGOszndgCHXqKdECNpiNiampBrHPU_Gjg,8943
43
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/forecast.py,sha256=fFcBxQK9ZryfEuyvlr9HXicHoZRzLFybimYYttzhI9E,7403
44
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/forecastbase.py,sha256=s-6nUMvtYqG07r7MmmkFVj8_QqgeGkD-HVoEEDTE2bk,3654
45
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/regressor.py,sha256=LA1woXCnefG0wfoOxilX1kszgCUmfNcbQgs_WZ4Ai0o,5683
46
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/regressorbase.py,sha256=H5E8-8pUji1oH5JRdS37LJQoHuKt2JU8eXCZp-ZaEM4,2109
47
+ eqc_models-0.11.0.data/platlib/eqc_models/ml/reservoir.py,sha256=cPRvpCaWLYTBkui35jCssHcOPQgSQZallrG6Ac9djVI,2827
48
+ eqc_models-0.11.0.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
49
+ eqc_models-0.11.0.data/platlib/eqc_models/sequence/scheduling.py,sha256=9gSD-L_n18NrE8K6CYTaIYRJ1JYI1ILhdEsk6xtsa68,841
50
+ eqc_models-0.11.0.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
51
+ eqc_models-0.11.0.data/platlib/eqc_models/solvers/__init__.py,sha256=hTjJI4F0FNDgQlK_oRHJxLIkg6of3I1-nEqU_3RL4Gk,542
52
+ eqc_models-0.11.0.data/platlib/eqc_models/solvers/qciclient.py,sha256=uZrtK03oA9ozTGD--hUicmu8zoHYkuIaJ924tOtGwzU,27269
53
+ eqc_models-0.11.0.data/platlib/eqc_models/utilities/__init__.py,sha256=SI2U7JKmPWSiq-F1WcSyfd7l9V6nbOZv_p8quMAZaT0,340
54
+ eqc_models-0.11.0.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
55
+ eqc_models-0.11.0.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
56
+ eqc_models-0.11.0.data/platlib/eqc_models/utilities/qplib.py,sha256=Do-MjmCFdI5HyDOAjfoz4_5lugySLMBlMAWDLUWx2OA,15796
57
+ eqc_models-0.11.0.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
58
+ eqc_models-0.11.0.dist-info/METADATA,sha256=6Ixla2-iQUpemI_tFaSn1vAeSR5c60n0XJX0kiFbk3I,7129
59
+ eqc_models-0.11.0.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
60
+ eqc_models-0.11.0.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
61
+ eqc_models-0.11.0.dist-info/RECORD,,
@@ -1,59 +0,0 @@
1
- eqc_models-0.10.3.data/platlib/compile_extensions.py,sha256=ivFZ87WFzBITU7IwK_72C41MDNMortJIF8tKevm2aW4,1946
2
- eqc_models-0.10.3.data/platlib/eqc_models/__init__.py,sha256=WPUijJz2-4UZU-ZTqBofDc-Yaah24geHdmF16SkwIj4,683
3
- eqc_models-0.10.3.data/platlib/eqc_models/decoding.py,sha256=G3JgbIFzvZ3DIKW0kZ1JeTMIZmrc8hy9kzdbX2Xv5Og,637
4
- eqc_models-0.10.3.data/platlib/eqc_models/algorithms/__init__.py,sha256=lzQoMMSs2QTqp5suEYNvcQaSEN16d0LwIsZ1mRstumU,135
5
- eqc_models-0.10.3.data/platlib/eqc_models/algorithms/base.py,sha256=qfQQTwuVyewn7Qpg1_SVoD_7TsdA8vdwSKGqOeZSmNI,204
6
- eqc_models-0.10.3.data/platlib/eqc_models/algorithms/penaltymultiplier.py,sha256=SndGxCZDS3JTaxFOPJpTBumFdIKcB0dKwSHwfl_BI6o,7845
7
- eqc_models-0.10.3.data/platlib/eqc_models/allocation/__init__.py,sha256=op_udrapTlWrakTuQId3M0ggo-Y1w4nGJLPcYKOQ-8I,239
8
- eqc_models-0.10.3.data/platlib/eqc_models/allocation/allocation.py,sha256=PAQn4M75Zegeoy0i6r3hycWs4TKeRglHk05TvwZOoLk,15506
9
- eqc_models-0.10.3.data/platlib/eqc_models/allocation/portbase.py,sha256=BTnYYduHydPbrE2yQr_Sgv3XJACH_GpIJstuMrfGqCU,3269
10
- eqc_models-0.10.3.data/platlib/eqc_models/allocation/portmomentum.py,sha256=oMod63rNDC-01dLZjmhUb24SN3_GVgfc6CItgQL_obI,3756
11
- eqc_models-0.10.3.data/platlib/eqc_models/assignment/__init__.py,sha256=CX_QYl8P1meajV8gcVs6hm07VhoLVe8uu436t7-1XQo,86
12
- eqc_models-0.10.3.data/platlib/eqc_models/assignment/qap.py,sha256=WMiQQmTORsgi2w7kbmMA1xo-93dESLECWqYTF-zkmTs,2963
13
- eqc_models-0.10.3.data/platlib/eqc_models/assignment/setpartition.py,sha256=5SQxF_ZlQk4ubWf5_3TgL83k01hAakUP-5AydlD-BvE,161
14
- eqc_models-0.10.3.data/platlib/eqc_models/base/__init__.py,sha256=RwZguuucmsuOSVqfPLBqj-wzinBOzcgO-2ifFU-DCqg,2885
15
- eqc_models-0.10.3.data/platlib/eqc_models/base/base.py,sha256=tL6z0MW4ffMKWlozZ0CH4soTiKxSlMXqyVDctaA110U,6405
16
- eqc_models-0.10.3.data/platlib/eqc_models/base/constraints.py,sha256=KMPyCdt_8GMWLnVEdpzw1T1WqXm2f7Lh629ClUH7XDY,8271
17
- eqc_models-0.10.3.data/platlib/eqc_models/base/operators.py,sha256=9nCeN6fRP-_YBfs-Gm57D-O_376qcOQiqGDuVlSlf00,7392
18
- eqc_models-0.10.3.data/platlib/eqc_models/base/polyeval.c,sha256=OHAMclzGp8GW6JPF2cANT8tTA4Wj0n82nucfJquMkO8,438431
19
- eqc_models-0.10.3.data/platlib/eqc_models/base/polyeval.cpython-310-darwin.so,sha256=EqawhkeRtBexOXXkt-k12SIN76LAlVCIW9taTWFn0GA,101136
20
- eqc_models-0.10.3.data/platlib/eqc_models/base/polyeval.pyx,sha256=76Bf99Jt1_rLh5byrZxAjavE2F4_yCysirViqOBFIXw,2547
21
- eqc_models-0.10.3.data/platlib/eqc_models/base/polynomial.py,sha256=FQA26ihFlwfHz9k9XP3qDM0hl5Ko4rtUxiXloj3ail4,13056
22
- eqc_models-0.10.3.data/platlib/eqc_models/base/quadratic.py,sha256=BHZKniUvSq30pZgzguVasdO39BCEYue_wi5AIklPGS8,8062
23
- eqc_models-0.10.3.data/platlib/eqc_models/combinatorics/__init__.py,sha256=BhzcVxwpWu2b4jIe0bmPzD5VmSyzwp0oW2q9iYx2IUs,167
24
- eqc_models-0.10.3.data/platlib/eqc_models/combinatorics/setcover.py,sha256=T5hXoE9Ecw3mTHPLmifBwTzpF_4MhoCUgo2rkSOWt5s,3396
25
- eqc_models-0.10.3.data/platlib/eqc_models/combinatorics/setpartition.py,sha256=ZD69kgEYSU3KWnx0b4MVCP8XSxbA_VCXOW22_Yssl_M,6254
26
- eqc_models-0.10.3.data/platlib/eqc_models/graph/__init__.py,sha256=zlPE_c92wsuzz_wQLs0nxYi7tHCYxrPs-yOa9BhQAIo,162
27
- eqc_models-0.10.3.data/platlib/eqc_models/graph/base.py,sha256=j48OwhorZ5jTlTysTmMiXCeiAdj6jylBREk3NxCpFLI,2072
28
- eqc_models-0.10.3.data/platlib/eqc_models/graph/hypergraph.py,sha256=ABvutT0NOdIEpUF4TjUzboE4Y_J5iUZyj6-AzKr4R28,13268
29
- eqc_models-0.10.3.data/platlib/eqc_models/graph/maxcut.py,sha256=o8xVsAwTa9jcpmsIoCQ5z7HSstVdraT8TENomdT519o,4132
30
- eqc_models-0.10.3.data/platlib/eqc_models/graph/maxkcut.py,sha256=rEDBjto2MbuPh4c0RwTOZoVffKgcriqHNOZAIuBlclQ,4654
31
- eqc_models-0.10.3.data/platlib/eqc_models/graph/partition.py,sha256=HMpRRipLp14x8pHucY-g6fU7v0PGoy1pf_KpzbanfD0,5800
32
- eqc_models-0.10.3.data/platlib/eqc_models/ml/__init__.py,sha256=CLfraacr0FrD5ynxlNB6cyNy0lpbavcQT45TvkDrNvY,369
33
- eqc_models-0.10.3.data/platlib/eqc_models/ml/classifierbase.py,sha256=1yXufiUGpaiBjI2evMiwfYn-Zr-SnWwCnvtREqprtJw,2184
34
- eqc_models-0.10.3.data/platlib/eqc_models/ml/classifierqboost.py,sha256=5Dcpd0DjpMmlUULyZFKKWm4UuZpeMaknWKViiIjwc0U,18978
35
- eqc_models-0.10.3.data/platlib/eqc_models/ml/classifierqsvm.py,sha256=b6TdwlghR84UoQpfUThwMwNF_wmkABbCqOn6T1uY2dA,6636
36
- eqc_models-0.10.3.data/platlib/eqc_models/ml/clustering.py,sha256=yhh6jlgwZiQVn9h2pnYBlzVTCocK7rzsEurSQxCn5FQ,9486
37
- eqc_models-0.10.3.data/platlib/eqc_models/ml/clusteringbase.py,sha256=AvQbt6jeocBAGCuAmXHKyr3wLWqYUtBDq9PbsEOSlSc,2632
38
- eqc_models-0.10.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian.pyx,sha256=3PMmEJ_xfmmWXGfire0t-WASnmKj6-CblufgQ2NTARo,2111
39
- eqc_models-0.10.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.c,sha256=ZoKgm_uGjTewhk4W6s-x8QoFuZO0KVkxILIFh6JKsoI,1851
40
- eqc_models-0.10.3.data/platlib/eqc_models/ml/cvqboost_hamiltonian_c_func.h,sha256=aOImMG5pziUnZxGpDXyWjLrvcY7ZdsczwwSQ2ay4T88,272
41
- eqc_models-0.10.3.data/platlib/eqc_models/ml/decomposition.py,sha256=Nsnq0GmINpbGOszndgCHXqKdECNpiNiampBrHPU_Gjg,8943
42
- eqc_models-0.10.3.data/platlib/eqc_models/ml/forecast.py,sha256=fFcBxQK9ZryfEuyvlr9HXicHoZRzLFybimYYttzhI9E,7403
43
- eqc_models-0.10.3.data/platlib/eqc_models/ml/forecastbase.py,sha256=s-6nUMvtYqG07r7MmmkFVj8_QqgeGkD-HVoEEDTE2bk,3654
44
- eqc_models-0.10.3.data/platlib/eqc_models/ml/regressor.py,sha256=LA1woXCnefG0wfoOxilX1kszgCUmfNcbQgs_WZ4Ai0o,5683
45
- eqc_models-0.10.3.data/platlib/eqc_models/ml/regressorbase.py,sha256=H5E8-8pUji1oH5JRdS37LJQoHuKt2JU8eXCZp-ZaEM4,2109
46
- eqc_models-0.10.3.data/platlib/eqc_models/ml/reservoir.py,sha256=cPRvpCaWLYTBkui35jCssHcOPQgSQZallrG6Ac9djVI,2827
47
- eqc_models-0.10.3.data/platlib/eqc_models/sequence/__init__.py,sha256=VXlYufO3GYFsM00oii9Cite2WsQEF8XTwRcjLPH_Zlg,92
48
- eqc_models-0.10.3.data/platlib/eqc_models/sequence/tsp.py,sha256=YM641FTyK5NkgRGxHrU1QmMkEU0gf77nEmIElTqa6Qw,7680
49
- eqc_models-0.10.3.data/platlib/eqc_models/solvers/__init__.py,sha256=hTjJI4F0FNDgQlK_oRHJxLIkg6of3I1-nEqU_3RL4Gk,542
50
- eqc_models-0.10.3.data/platlib/eqc_models/solvers/qciclient.py,sha256=uZrtK03oA9ozTGD--hUicmu8zoHYkuIaJ924tOtGwzU,27269
51
- eqc_models-0.10.3.data/platlib/eqc_models/utilities/__init__.py,sha256=SI2U7JKmPWSiq-F1WcSyfd7l9V6nbOZv_p8quMAZaT0,340
52
- eqc_models-0.10.3.data/platlib/eqc_models/utilities/fileio.py,sha256=alWPTfjGFx6Iio9HZAAWtYcLmZsBBifg6S6_YbFMQhk,1088
53
- eqc_models-0.10.3.data/platlib/eqc_models/utilities/polynomial.py,sha256=blXfu7Ehz9lT4nEmIinRzJOL27_qUHSbQ57zxmwDJCA,4735
54
- eqc_models-0.10.3.data/platlib/eqc_models/utilities/qplib.py,sha256=Do-MjmCFdI5HyDOAjfoz4_5lugySLMBlMAWDLUWx2OA,15796
55
- eqc_models-0.10.3.dist-info/licenses/LICENSE.txt,sha256=8eh0oqsNNVR1Jk-13gkqRRSo2axtUU5kp2KzH4f9u3U,11354
56
- eqc_models-0.10.3.dist-info/METADATA,sha256=FnNDJZMf48W-Xe09DRn9T4iEJjHoXJleIui-4Dy23nU,7129
57
- eqc_models-0.10.3.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
58
- eqc_models-0.10.3.dist-info/top_level.txt,sha256=9ZfFeKNEvkRlKWoUnfcZ9TzmTdgdsuPEnTPy11Hqf4Q,30
59
- eqc_models-0.10.3.dist-info/RECORD,,