epyt-flow 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (131) hide show
  1. epyt_flow/EPANET/EPANET/SRC_engines/AUTHORS +28 -0
  2. epyt_flow/EPANET/EPANET/SRC_engines/LICENSE +21 -0
  3. epyt_flow/EPANET/EPANET/SRC_engines/Readme_SRC_Engines.txt +18 -0
  4. epyt_flow/EPANET/EPANET/SRC_engines/enumstxt.h +134 -0
  5. epyt_flow/EPANET/EPANET/SRC_engines/epanet.c +5578 -0
  6. epyt_flow/EPANET/EPANET/SRC_engines/epanet2.c +865 -0
  7. epyt_flow/EPANET/EPANET/SRC_engines/epanet2.def +131 -0
  8. epyt_flow/EPANET/EPANET/SRC_engines/errors.dat +73 -0
  9. epyt_flow/EPANET/EPANET/SRC_engines/funcs.h +193 -0
  10. epyt_flow/EPANET/EPANET/SRC_engines/genmmd.c +1000 -0
  11. epyt_flow/EPANET/EPANET/SRC_engines/hash.c +177 -0
  12. epyt_flow/EPANET/EPANET/SRC_engines/hash.h +28 -0
  13. epyt_flow/EPANET/EPANET/SRC_engines/hydcoeffs.c +1151 -0
  14. epyt_flow/EPANET/EPANET/SRC_engines/hydraul.c +1117 -0
  15. epyt_flow/EPANET/EPANET/SRC_engines/hydsolver.c +720 -0
  16. epyt_flow/EPANET/EPANET/SRC_engines/hydstatus.c +476 -0
  17. epyt_flow/EPANET/EPANET/SRC_engines/include/epanet2.h +431 -0
  18. epyt_flow/EPANET/EPANET/SRC_engines/include/epanet2_2.h +1786 -0
  19. epyt_flow/EPANET/EPANET/SRC_engines/include/epanet2_enums.h +468 -0
  20. epyt_flow/EPANET/EPANET/SRC_engines/inpfile.c +810 -0
  21. epyt_flow/EPANET/EPANET/SRC_engines/input1.c +707 -0
  22. epyt_flow/EPANET/EPANET/SRC_engines/input2.c +864 -0
  23. epyt_flow/EPANET/EPANET/SRC_engines/input3.c +2170 -0
  24. epyt_flow/EPANET/EPANET/SRC_engines/main.c +93 -0
  25. epyt_flow/EPANET/EPANET/SRC_engines/mempool.c +142 -0
  26. epyt_flow/EPANET/EPANET/SRC_engines/mempool.h +24 -0
  27. epyt_flow/EPANET/EPANET/SRC_engines/output.c +852 -0
  28. epyt_flow/EPANET/EPANET/SRC_engines/project.c +1359 -0
  29. epyt_flow/EPANET/EPANET/SRC_engines/quality.c +685 -0
  30. epyt_flow/EPANET/EPANET/SRC_engines/qualreact.c +743 -0
  31. epyt_flow/EPANET/EPANET/SRC_engines/qualroute.c +694 -0
  32. epyt_flow/EPANET/EPANET/SRC_engines/report.c +1489 -0
  33. epyt_flow/EPANET/EPANET/SRC_engines/rules.c +1362 -0
  34. epyt_flow/EPANET/EPANET/SRC_engines/smatrix.c +871 -0
  35. epyt_flow/EPANET/EPANET/SRC_engines/text.h +497 -0
  36. epyt_flow/EPANET/EPANET/SRC_engines/types.h +874 -0
  37. epyt_flow/EPANET/EPANET-MSX/MSX_Updates.txt +53 -0
  38. epyt_flow/EPANET/EPANET-MSX/Src/dispersion.h +27 -0
  39. epyt_flow/EPANET/EPANET-MSX/Src/hash.c +107 -0
  40. epyt_flow/EPANET/EPANET-MSX/Src/hash.h +28 -0
  41. epyt_flow/EPANET/EPANET-MSX/Src/include/epanetmsx.h +102 -0
  42. epyt_flow/EPANET/EPANET-MSX/Src/include/epanetmsx_export.h +42 -0
  43. epyt_flow/EPANET/EPANET-MSX/Src/mathexpr.c +937 -0
  44. epyt_flow/EPANET/EPANET-MSX/Src/mathexpr.h +39 -0
  45. epyt_flow/EPANET/EPANET-MSX/Src/mempool.c +204 -0
  46. epyt_flow/EPANET/EPANET-MSX/Src/mempool.h +24 -0
  47. epyt_flow/EPANET/EPANET-MSX/Src/msxchem.c +1285 -0
  48. epyt_flow/EPANET/EPANET-MSX/Src/msxcompiler.c +368 -0
  49. epyt_flow/EPANET/EPANET-MSX/Src/msxdict.h +42 -0
  50. epyt_flow/EPANET/EPANET-MSX/Src/msxdispersion.c +586 -0
  51. epyt_flow/EPANET/EPANET-MSX/Src/msxerr.c +116 -0
  52. epyt_flow/EPANET/EPANET-MSX/Src/msxfile.c +260 -0
  53. epyt_flow/EPANET/EPANET-MSX/Src/msxfuncs.c +175 -0
  54. epyt_flow/EPANET/EPANET-MSX/Src/msxfuncs.h +35 -0
  55. epyt_flow/EPANET/EPANET-MSX/Src/msxinp.c +1504 -0
  56. epyt_flow/EPANET/EPANET-MSX/Src/msxout.c +401 -0
  57. epyt_flow/EPANET/EPANET-MSX/Src/msxproj.c +791 -0
  58. epyt_flow/EPANET/EPANET-MSX/Src/msxqual.c +2010 -0
  59. epyt_flow/EPANET/EPANET-MSX/Src/msxrpt.c +400 -0
  60. epyt_flow/EPANET/EPANET-MSX/Src/msxtank.c +422 -0
  61. epyt_flow/EPANET/EPANET-MSX/Src/msxtoolkit.c +1164 -0
  62. epyt_flow/EPANET/EPANET-MSX/Src/msxtypes.h +551 -0
  63. epyt_flow/EPANET/EPANET-MSX/Src/msxutils.c +524 -0
  64. epyt_flow/EPANET/EPANET-MSX/Src/msxutils.h +56 -0
  65. epyt_flow/EPANET/EPANET-MSX/Src/newton.c +158 -0
  66. epyt_flow/EPANET/EPANET-MSX/Src/newton.h +34 -0
  67. epyt_flow/EPANET/EPANET-MSX/Src/rk5.c +287 -0
  68. epyt_flow/EPANET/EPANET-MSX/Src/rk5.h +39 -0
  69. epyt_flow/EPANET/EPANET-MSX/Src/ros2.c +293 -0
  70. epyt_flow/EPANET/EPANET-MSX/Src/ros2.h +35 -0
  71. epyt_flow/EPANET/EPANET-MSX/Src/smatrix.c +816 -0
  72. epyt_flow/EPANET/EPANET-MSX/Src/smatrix.h +29 -0
  73. epyt_flow/EPANET/EPANET-MSX/readme.txt +14 -0
  74. epyt_flow/EPANET/compile.sh +4 -0
  75. epyt_flow/VERSION +1 -0
  76. epyt_flow/__init__.py +24 -0
  77. epyt_flow/data/__init__.py +0 -0
  78. epyt_flow/data/benchmarks/__init__.py +11 -0
  79. epyt_flow/data/benchmarks/batadal.py +257 -0
  80. epyt_flow/data/benchmarks/batadal_data.py +28 -0
  81. epyt_flow/data/benchmarks/battledim.py +473 -0
  82. epyt_flow/data/benchmarks/battledim_data.py +51 -0
  83. epyt_flow/data/benchmarks/gecco_water_quality.py +267 -0
  84. epyt_flow/data/benchmarks/leakdb.py +592 -0
  85. epyt_flow/data/benchmarks/leakdb_data.py +18923 -0
  86. epyt_flow/data/benchmarks/water_usage.py +123 -0
  87. epyt_flow/data/networks.py +650 -0
  88. epyt_flow/gym/__init__.py +4 -0
  89. epyt_flow/gym/control_gyms.py +47 -0
  90. epyt_flow/gym/scenario_control_env.py +101 -0
  91. epyt_flow/metrics.py +404 -0
  92. epyt_flow/models/__init__.py +2 -0
  93. epyt_flow/models/event_detector.py +31 -0
  94. epyt_flow/models/sensor_interpolation_detector.py +118 -0
  95. epyt_flow/rest_api/__init__.py +4 -0
  96. epyt_flow/rest_api/base_handler.py +70 -0
  97. epyt_flow/rest_api/res_manager.py +95 -0
  98. epyt_flow/rest_api/scada_data_handler.py +476 -0
  99. epyt_flow/rest_api/scenario_handler.py +352 -0
  100. epyt_flow/rest_api/server.py +106 -0
  101. epyt_flow/serialization.py +438 -0
  102. epyt_flow/simulation/__init__.py +5 -0
  103. epyt_flow/simulation/events/__init__.py +6 -0
  104. epyt_flow/simulation/events/actuator_events.py +259 -0
  105. epyt_flow/simulation/events/event.py +81 -0
  106. epyt_flow/simulation/events/leakages.py +404 -0
  107. epyt_flow/simulation/events/sensor_faults.py +267 -0
  108. epyt_flow/simulation/events/sensor_reading_attack.py +185 -0
  109. epyt_flow/simulation/events/sensor_reading_event.py +170 -0
  110. epyt_flow/simulation/events/system_event.py +88 -0
  111. epyt_flow/simulation/parallel_simulation.py +147 -0
  112. epyt_flow/simulation/scada/__init__.py +3 -0
  113. epyt_flow/simulation/scada/advanced_control.py +134 -0
  114. epyt_flow/simulation/scada/scada_data.py +1589 -0
  115. epyt_flow/simulation/scada/scada_data_export.py +255 -0
  116. epyt_flow/simulation/scenario_config.py +608 -0
  117. epyt_flow/simulation/scenario_simulator.py +1897 -0
  118. epyt_flow/simulation/scenario_visualizer.py +61 -0
  119. epyt_flow/simulation/sensor_config.py +1289 -0
  120. epyt_flow/topology.py +290 -0
  121. epyt_flow/uncertainty/__init__.py +3 -0
  122. epyt_flow/uncertainty/model_uncertainty.py +302 -0
  123. epyt_flow/uncertainty/sensor_noise.py +73 -0
  124. epyt_flow/uncertainty/uncertainties.py +555 -0
  125. epyt_flow/uncertainty/utils.py +206 -0
  126. epyt_flow/utils.py +306 -0
  127. epyt_flow-0.1.0.dist-info/LICENSE +21 -0
  128. epyt_flow-0.1.0.dist-info/METADATA +139 -0
  129. epyt_flow-0.1.0.dist-info/RECORD +131 -0
  130. epyt_flow-0.1.0.dist-info/WHEEL +5 -0
  131. epyt_flow-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,267 @@
1
+ """
2
+ Module provides functions for loading different GECCO water quality data sets.
3
+
4
+ +------------------------------+---------------------------------------------------------------------------------------------+
5
+ | GECCO Water Quality 2017 | :func:`~epyt_flow.data.benchmarks.gecco_water_quality.load_gecco2017_water_quality_data` |
6
+ +------------------------------+---------------------------------------------------------------------------------------------+
7
+ | GECCO Water Quality 2018 | :func:`~epyt_flow.data.benchmarks.gecco_water_quality.load_gecco2018_water_quality_data` |
8
+ +------------------------------+---------------------------------------------------------------------------------------------+
9
+ | GECCO Water Quality 2019 | :func:`~epyt_flow.data.benchmarks.gecco_water_quality.load_gecco2019_water_quality_data` |
10
+ +------------------------------+---------------------------------------------------------------------------------------------+
11
+
12
+ Note that the scoring/evaluation algorithm is the same for all GECCO water quality benchmarks
13
+ and is implemented in
14
+ :func:`~epyt_flow.data.benchmarks.gecco_water_quality.compute_evaluation_score`.
15
+ """
16
+ import os
17
+ from typing import Union
18
+ import numpy as np
19
+ import pandas as pd
20
+
21
+ from ...utils import get_temp_folder, download_if_necessary
22
+ from ...metrics import f1_score
23
+
24
+
25
+ def compute_evaluation_score(y_pred: np.ndarray, y: np.ndarray) -> float:
26
+ """
27
+ Evaluates the performance of a detection method.
28
+
29
+ .. note::
30
+ All GECCO water quality challenges use the F1-score for evaluation.
31
+
32
+ Parameters
33
+ ----------
34
+ y_pred : `numpy.ndarray`
35
+ Event indication prediction over time
36
+ y : `numpy.ndarray`
37
+ Ground truth event indication over time.
38
+
39
+ Returns
40
+ -------
41
+ `float`
42
+ Evaluation score.
43
+ """
44
+ return f1_score(y_pred, y)
45
+
46
+
47
+ def load_gecco2017_water_quality_data(download_dir: str = None, return_X_y: bool = True,
48
+ verbose: bool = True
49
+ ) -> Union[pd.DataFrame, tuple[np.ndarray, np.ndarray]]:
50
+ """
51
+ GECCO Industrial Challenge 2017 Dataset: A water quality dataset for the
52
+ "Monitoring of drinking-water quality" competition organized by M. Friese, J. Stork,
53
+ A. Fischbach, M. Rebolledo, T. Bartz-Beielstein at the Genetic and Evolutionary
54
+ Computation Conference 2017, Berlin, Germany
55
+
56
+ This is a benchmark for anomaly detection algorithms on water quality. The data is provided by
57
+ the "Thüringer Fernwasserversorgung" (Germany) and constitutes a real-world data set. In this
58
+ data set, 9 numeric water quality features are given at a sampling rate of 1 min over approx.
59
+ 3 month. The goal is to predict the presence of an anomaly -- i.e. binary classification.
60
+
61
+ More information can be found at https://zenodo.org/records/3884465 and
62
+ http://www.spotseven.de/gecco-challenge/gecco-challenge-2017/
63
+
64
+ .. note::
65
+
66
+ Note that this is NOT a simulated scenario and therefore only the final
67
+ data set is provided.
68
+
69
+ Parameters
70
+ ----------
71
+ download_dir : `str`, optional
72
+ Path to the data files -- if None, the temp folder will be used.
73
+ If the path does not exist, the data files will be downloaded to the given path.
74
+
75
+ The default is None.
76
+ return_X_y : `bool`, optional
77
+ If True, the data is returned together with the labels as two Numpy arrays,
78
+ otherwise the data is returned as Pandas data frame.
79
+
80
+ The default is True.
81
+ verbose : `bool`, optional
82
+ If True, a progress bar is shown while downloading files.
83
+
84
+ The default is True.
85
+
86
+ Returns
87
+ -------
88
+ `pandas.DataFrame` or `tuple[numpy.ndarray, numpy.ndarray]`
89
+ The benchmark data set as either a Pandas data frame or as a pair of (X, y) Numpy arrays.
90
+ """
91
+ url_data = "https://zenodo.org/records/3884465/files/1_gecco2017_water_quality.csv?download=1"
92
+
93
+ download_dir = download_dir if download_dir is not None else get_temp_folder()
94
+ f_in = os.path.join(download_dir, "gecco2017_water_quality.csv")
95
+
96
+ download_if_necessary(f_in, url_data, verbose)
97
+
98
+ # Load and return data
99
+ df_data = pd.read_csv(f_in, index_col=0)
100
+
101
+ if return_X_y is False:
102
+ return df_data
103
+ else:
104
+ y = df_data["EVENT"].to_numpy().astype(np.int8)
105
+ del df_data["EVENT"]
106
+
107
+ del df_data["Time"]
108
+ X = df_data.to_numpy()
109
+
110
+ return X, y
111
+
112
+
113
+ def load_gecco2018_water_quality_data(download_dir: str = None, return_X_y: bool = True,
114
+ verbose: bool = True
115
+ ) -> Union[pd.DataFrame, tuple[np.ndarray, np.ndarray]]:
116
+ """
117
+ GECCO Industrial Challenge 2018 Dataset: A water quality dataset for the
118
+ "Internet of Things: Online Anomaly Detection for Drinking Water Quality" competition
119
+ organized by F. Rehbach, M. Rebolledo, S. Moritz, S. Chandrasekaran, T. Bartz-Beielstein at
120
+ the Genetic and Evolutionary Computation Conference 2018, Kyoto, Japan.
121
+
122
+ This is a benchmark
123
+ (based on
124
+ :func:`~epyt_flow.data.benchmarks.gecco_water_quality.load_gecco2017_water_quality_data`)
125
+ for anomaly detection algorithms on water quality. The data is provided by the
126
+ "Thüringer Fernwasserversorgung" (Germany) and constitutes a real-world data set. In this
127
+ data set, 9 numeric water quality features are given at a sampling rate of 1 min over approx.
128
+ 3 month. The goal is to predict the presence of an anomaly -- i.e. binary classification.
129
+
130
+ More information can be found at https://zenodo.org/records/3884398 and
131
+ http://www.spotseven.de/gecco/gecco-challenge/gecco-challenge-2018/
132
+
133
+ .. note::
134
+
135
+ Note that this is NOT a simulated scenario and therefore only the final
136
+ data set is provided.
137
+
138
+ Parameters
139
+ ----------
140
+ download_dir : `str`, optional
141
+ Path to the data files -- if None, the temp folder will be used.
142
+ If the path does not exist, the data files will be downloaded to the given path.
143
+
144
+ The default is None.
145
+ return_X_y : `bool`, optional
146
+ If True, the data is returned together with the labels as two Numpy arrays,
147
+ otherwise the data is returned as Pandas data frame.
148
+
149
+ The default is True.
150
+ verbose : `bool`, optional
151
+ If True, a progress bar is shown while downloading files.
152
+
153
+ The default is True.
154
+
155
+ Returns
156
+ -------
157
+ `pandas.DataFrame` or `tuple[numpy.ndarray, numpy.ndarray]`
158
+ The benchmark data set as either a Pandas data frame or as a pair of (X, y) Numpy arrays.
159
+ """
160
+ # Download data if necessary
161
+ url_data = "https://zenodo.org/records/3884398/files/1_gecco2018_water_quality.csv?download=1"
162
+
163
+ download_dir = download_dir if download_dir is not None else get_temp_folder()
164
+ f_in = os.path.join(download_dir, "gecco2018_water_quality.csv")
165
+
166
+ download_if_necessary(f_in, url_data, verbose)
167
+
168
+ # Load and return data
169
+ df_data = pd.read_csv(f_in, index_col=0)
170
+
171
+ if return_X_y is False:
172
+ return df_data
173
+ else:
174
+ y = df_data["EVENT"].to_numpy().astype(np.int8)
175
+ del df_data["EVENT"]
176
+
177
+ del df_data["Time"]
178
+ X = df_data.to_numpy()
179
+
180
+ return X, y
181
+
182
+
183
+ def load_gecco2019_water_quality_data(download_dir: str = None, return_X_y: bool = True,
184
+ verbose: bool = True) -> dict:
185
+ """
186
+ GECCO Industrial Challenge 2019 Dataset: A water quality dataset for the "Internet of Things:
187
+ Online Event Detection for Drinking Water Quality Control" competition organized by
188
+ F. Rehbach, S. Moritz, T. Bartz-Beielstein at the Genetic and Evolutionary Computation
189
+ Conference 2019, Prague, Czech Republic.
190
+
191
+ This is a benchmark
192
+ (based on
193
+ :func:`~epyt_flow.data.benchmarks.gecco_water_quality.load_gecco2018_water_quality_data`)
194
+ for anomaly detection algorithms on water quality. The data is provided by the
195
+ "Thüringer Fernwasserversorgung" (Germany) and constitutes a real-world data set. In this
196
+ data set, 6 numeric water quality features are given at a sampling rate of 1 min over approx.
197
+ 3 month. The goal is to predict the presence of an anomaly -- i.e. binary classification.
198
+ The data set itself comes in three splits: A train set, a validation set, and a test set.
199
+
200
+ More information can be found at https://zenodo.org/records/4304080 and
201
+ https://www.th-koeln.de/informatik-und-ingenieurwissenschaften/gecco-challenge-2019_63244.php
202
+
203
+ .. note::
204
+
205
+ Note that this is NOT a simulated scenario and therefore only the final
206
+ data set is provided.
207
+
208
+ Parameters
209
+ ----------
210
+ download_dir : `str`, optional
211
+ Path to the data files -- if None, the temp folder will be used.
212
+ If the path does not exist, the data files will be downloaded to the given path.
213
+
214
+ The default is None.
215
+ return_X_y : `bool`, optional
216
+ If True, the data is returned together with the labels as two Numpy arrays,
217
+ otherwise the data is returned as Pandas data frame.
218
+
219
+ The default is True.
220
+ verbose : `bool`, optional
221
+ If True, a progress bar is shown while downloading files.
222
+
223
+ The default is True.
224
+
225
+ Returns
226
+ -------
227
+ `dict`
228
+ The data set as a dictionary with entries "train", "validation", and "test" containing
229
+ the respective data.
230
+ """
231
+ # Download data if necessary
232
+ download_dir = download_dir if download_dir is not None else get_temp_folder()
233
+
234
+ base_url = "https://zenodo.org/records/4304080/files/"
235
+ url_train_data = base_url + "7_gecco2019_train_water_quality.csv?download=1"
236
+ url_valid_data = base_url + "8_gecco2019_valid_water_qulity.csv?download=1"
237
+ url_test_data = base_url + "6_gecco2019_test_water_quality.csv?download=1"
238
+
239
+ f_train_in = os.path.join(download_dir, "gecco2019_train_water_quality.csv")
240
+ f_valid_in = os.path.join(download_dir, "gecco2019_valid_water_qulity.csv")
241
+ f_test_in = os.path.join(download_dir, "gecco2019_test_water_quality.csv")
242
+
243
+ download_if_necessary(f_train_in, url_train_data, verbose)
244
+ download_if_necessary(f_valid_in, url_valid_data, verbose)
245
+ download_if_necessary(f_test_in, url_test_data, verbose)
246
+
247
+ # Load and return data
248
+ df_data_train = pd.read_csv(f_train_in, index_col=0)
249
+ df_data_valid = pd.read_csv(f_valid_in, index_col=0)
250
+ df_data_test = pd.read_csv(f_test_in, index_col=0)
251
+
252
+ if return_X_y is False:
253
+ return {"train": df_data_train, "validation": df_data_valid, "test": df_data_test}
254
+ else:
255
+ r = {"train": None, "validation": None, "test": None}
256
+
257
+ for k, df_data in zip(["train", "validation", "test"],
258
+ [df_data_train, df_data_valid, df_data_test]):
259
+ y = df_data["Event"].to_numpy().astype(np.int8)
260
+ del df_data["Event"]
261
+
262
+ del df_data["Time"]
263
+ X = df_data.to_numpy()
264
+
265
+ r[k] = (X, y)
266
+
267
+ return r