epanet-plus 0.0.1__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of epanet-plus might be problematic. Click here for more details.

Files changed (105) hide show
  1. docs/conf.py +67 -0
  2. epanet-msx-src/dispersion.h +27 -0
  3. epanet-msx-src/hash.c +107 -0
  4. epanet-msx-src/hash.h +28 -0
  5. epanet-msx-src/include/epanetmsx.h +104 -0
  6. epanet-msx-src/include/epanetmsx_export.h +42 -0
  7. epanet-msx-src/mathexpr.c +937 -0
  8. epanet-msx-src/mathexpr.h +39 -0
  9. epanet-msx-src/mempool.c +204 -0
  10. epanet-msx-src/mempool.h +24 -0
  11. epanet-msx-src/msxchem.c +1285 -0
  12. epanet-msx-src/msxcompiler.c +368 -0
  13. epanet-msx-src/msxdict.h +42 -0
  14. epanet-msx-src/msxdispersion.c +586 -0
  15. epanet-msx-src/msxerr.c +116 -0
  16. epanet-msx-src/msxfile.c +260 -0
  17. epanet-msx-src/msxfuncs.c +175 -0
  18. epanet-msx-src/msxfuncs.h +35 -0
  19. epanet-msx-src/msxinp.c +1504 -0
  20. epanet-msx-src/msxout.c +398 -0
  21. epanet-msx-src/msxproj.c +791 -0
  22. epanet-msx-src/msxqual.c +2011 -0
  23. epanet-msx-src/msxrpt.c +400 -0
  24. epanet-msx-src/msxtank.c +422 -0
  25. epanet-msx-src/msxtoolkit.c +1164 -0
  26. epanet-msx-src/msxtypes.h +551 -0
  27. epanet-msx-src/msxutils.c +524 -0
  28. epanet-msx-src/msxutils.h +56 -0
  29. epanet-msx-src/newton.c +158 -0
  30. epanet-msx-src/newton.h +34 -0
  31. epanet-msx-src/rk5.c +287 -0
  32. epanet-msx-src/rk5.h +39 -0
  33. epanet-msx-src/ros2.c +293 -0
  34. epanet-msx-src/ros2.h +35 -0
  35. epanet-msx-src/smatrix.c +816 -0
  36. epanet-msx-src/smatrix.h +29 -0
  37. epanet-src/AUTHORS +60 -0
  38. epanet-src/LICENSE +21 -0
  39. epanet-src/enumstxt.h +151 -0
  40. epanet-src/epanet.c +5937 -0
  41. epanet-src/epanet2.c +961 -0
  42. epanet-src/epanet2.def +131 -0
  43. epanet-src/errors.dat +79 -0
  44. epanet-src/flowbalance.c +186 -0
  45. epanet-src/funcs.h +219 -0
  46. epanet-src/genmmd.c +1000 -0
  47. epanet-src/hash.c +177 -0
  48. epanet-src/hash.h +28 -0
  49. epanet-src/hydcoeffs.c +1303 -0
  50. epanet-src/hydraul.c +1164 -0
  51. epanet-src/hydsolver.c +781 -0
  52. epanet-src/hydstatus.c +442 -0
  53. epanet-src/include/epanet2.h +466 -0
  54. epanet-src/include/epanet2_2.h +1962 -0
  55. epanet-src/include/epanet2_enums.h +518 -0
  56. epanet-src/inpfile.c +884 -0
  57. epanet-src/input1.c +672 -0
  58. epanet-src/input2.c +970 -0
  59. epanet-src/input3.c +2265 -0
  60. epanet-src/leakage.c +527 -0
  61. epanet-src/mempool.c +146 -0
  62. epanet-src/mempool.h +24 -0
  63. epanet-src/output.c +853 -0
  64. epanet-src/project.c +1691 -0
  65. epanet-src/quality.c +695 -0
  66. epanet-src/qualreact.c +800 -0
  67. epanet-src/qualroute.c +696 -0
  68. epanet-src/report.c +1559 -0
  69. epanet-src/rules.c +1500 -0
  70. epanet-src/smatrix.c +871 -0
  71. epanet-src/text.h +508 -0
  72. epanet-src/types.h +928 -0
  73. epanet-src/util/cstr_helper.c +59 -0
  74. epanet-src/util/cstr_helper.h +38 -0
  75. epanet-src/util/errormanager.c +92 -0
  76. epanet-src/util/errormanager.h +39 -0
  77. epanet-src/util/filemanager.c +212 -0
  78. epanet-src/util/filemanager.h +81 -0
  79. epanet-src/validate.c +408 -0
  80. epanet.cp39-win_amd64.pyd +0 -0
  81. epanet_plus/VERSION +1 -0
  82. epanet_plus/__init__.py +8 -0
  83. epanet_plus/epanet_plus.c +118 -0
  84. epanet_plus/epanet_toolkit.py +2730 -0
  85. epanet_plus/epanet_wrapper.py +2414 -0
  86. epanet_plus/include/epanet_plus.h +9 -0
  87. epanet_plus-0.0.1.dist-info/METADATA +152 -0
  88. epanet_plus-0.0.1.dist-info/RECORD +105 -0
  89. epanet_plus-0.0.1.dist-info/WHEEL +5 -0
  90. epanet_plus-0.0.1.dist-info/licenses/LICENSE +21 -0
  91. epanet_plus-0.0.1.dist-info/top_level.txt +11 -0
  92. examples/basic_usage.py +35 -0
  93. python-extension/ext.c +344 -0
  94. python-extension/pyepanet.c +2133 -0
  95. python-extension/pyepanet.h +143 -0
  96. python-extension/pyepanet2.c +1823 -0
  97. python-extension/pyepanet2.h +141 -0
  98. python-extension/pyepanet_plus.c +37 -0
  99. python-extension/pyepanet_plus.h +4 -0
  100. python-extension/pyepanetmsx.c +388 -0
  101. python-extension/pyepanetmsx.h +35 -0
  102. tests/test_epanet.py +16 -0
  103. tests/test_epanetmsx.py +36 -0
  104. tests/test_epyt.py +114 -0
  105. tests/test_load_inp_from_buffer.py +18 -0
epanet-msx-src/ros2.c ADDED
@@ -0,0 +1,293 @@
1
+ /*******************************************************************************
2
+ ** MODULE: ROS2.C
3
+ ** PROJECT: EPANET-MSX
4
+ ** DESCRIPTION: a second order Rosenbrock 2(1) method for solving stiff sets of
5
+ ** ordinary differential equations.
6
+ ** AUTHOR: L. Rossman, US EPA - NRMRL
7
+ ** VERSION: 2.0.00
8
+ ** LAST UPDATE: 04/14/2021
9
+ **
10
+ ** This code is based on material presented in:
11
+ ** Verwer, J.G., Spee, E.J., Blom, J.G. and Hundsdorfer, W.H.,
12
+ ** "A second order Rosenbrock method applied to photochemical dispersion
13
+ ** problems", SIAM J. Sci. Comput., 20:1456-1480, July 1999.
14
+ *******************************************************************************/
15
+
16
+ #include <stdlib.h>
17
+ #include <math.h>
18
+ #include "msxutils.h"
19
+ #include "ros2.h"
20
+
21
+ #define fmin(x,y) (((x)<=(y)) ? (x) : (y)) /* minimum of x and y */
22
+ #define fmax(x,y) (((x)>=(y)) ? (x) : (y)) /* maximum of x and y */
23
+
24
+ // Local variables
25
+ //-----------------
26
+ MSXRosenbrock MSXRosenbrockSolver;
27
+
28
+ #pragma omp threadprivate(MSXRosenbrockSolver)
29
+
30
+ //=============================================================================
31
+
32
+ int ros2_open(int n, int adjust)
33
+ /*
34
+ ** Purpose:
35
+ ** Opens the ROS2 integrator.
36
+ **
37
+ ** Input:
38
+ ** n = number of equations to be solved
39
+ ** adjust = 1 if step size adjustment used, 0 if not
40
+ **
41
+ ** Returns:
42
+ ** 1 if successful, 0 if not.
43
+ */
44
+ {
45
+ int errorcode = 1;
46
+ int n1 = n + 1;
47
+
48
+ #pragma omp parallel
49
+ {
50
+ MSXRosenbrockSolver.Nmax = n;
51
+ MSXRosenbrockSolver.Adjust = adjust;
52
+ MSXRosenbrockSolver.K1 = NULL;
53
+ MSXRosenbrockSolver.K2 = NULL;
54
+ MSXRosenbrockSolver.Jindx = NULL;
55
+ MSXRosenbrockSolver.Ynew = NULL;
56
+ MSXRosenbrockSolver.A = NULL;
57
+ MSXRosenbrockSolver.K1 = (double*)calloc(n1, sizeof(double));
58
+ MSXRosenbrockSolver.K2 = (double*)calloc(n1, sizeof(double));
59
+ MSXRosenbrockSolver.Jindx = (int*)calloc(n1, sizeof(int));
60
+ MSXRosenbrockSolver.Ynew = (double*)calloc(n1, sizeof(double));
61
+ MSXRosenbrockSolver.A = createMatrix(n1, n1);
62
+ #pragma omp critical
63
+ {
64
+ if (!MSXRosenbrockSolver.Jindx || !MSXRosenbrockSolver.Ynew ||
65
+ !MSXRosenbrockSolver.K1 || !MSXRosenbrockSolver.K2) errorcode = 0;
66
+ if (!MSXRosenbrockSolver.A) errorcode = 0;
67
+ }
68
+ }
69
+
70
+ return errorcode;
71
+ }
72
+
73
+ //=============================================================================
74
+
75
+ void ros2_close()
76
+ /*
77
+ ** Purpose:
78
+ ** closes the ROS2 integrator.
79
+ **
80
+ ** Input:
81
+ ** none.
82
+ */
83
+ {
84
+
85
+ #pragma omp parallel
86
+ {
87
+
88
+ if (MSXRosenbrockSolver.Jindx) { free(MSXRosenbrockSolver.Jindx); MSXRosenbrockSolver.Jindx = NULL; }
89
+ if (MSXRosenbrockSolver.Ynew) { free(MSXRosenbrockSolver.Ynew); MSXRosenbrockSolver.Ynew = NULL; }
90
+ if (MSXRosenbrockSolver.K1) { free(MSXRosenbrockSolver.K1); MSXRosenbrockSolver.K1 = NULL; }
91
+ if (MSXRosenbrockSolver.K2) { free(MSXRosenbrockSolver.K2); MSXRosenbrockSolver.K2 = NULL; }
92
+ freeMatrix(MSXRosenbrockSolver.A);
93
+ MSXRosenbrockSolver.A = NULL;
94
+ }
95
+
96
+ }
97
+
98
+ //=============================================================================
99
+
100
+ int ros2_integrate(double y[], int n, double t, double tnext,
101
+ double* htry, double atol[], double rtol[],
102
+ void (*func)(double, double*, int, double*))
103
+ /*
104
+ ** Purpose:
105
+ ** integrates a system of ODEs over a specified time interval.
106
+ **
107
+ ** Input:
108
+ ** y[1..n] = vector of dependent variable values at the start
109
+ ** of the integration interval
110
+ ** n = number of dependent variables
111
+ ** t = time value at the start of the interval
112
+ ** tnext = time value at the end of the interval
113
+ ** htry = initial step size to be taken
114
+ ** atol[1..n] = vector of absolute tolerances on the variables y
115
+ ** rtol[1..n] = vector of relative tolerances on the variables y
116
+ ** func = name of the function that computes dy/dt for each y
117
+ **
118
+ ** Output:
119
+ ** htry = size of the last full time step taken.
120
+ **
121
+ ** Returns:
122
+ ** the number of times that func() was called, -1 if
123
+ ** the Jacobian is singular, or -2 if the step size
124
+ ** shrinks to 0.
125
+ **
126
+ ** Notes:
127
+ ** 1. The arguments to the function func() are:
128
+ ** t = current time
129
+ ** y[1..n] = vector of dependent variable values
130
+ ** n = number of dependent variables
131
+ ** dfdy[1..n] = vector of derivative values computed.
132
+ **
133
+ ** 2. The arrays used in this function are 1-based, so
134
+ ** they must have been sized to n+1 when first created.
135
+ */
136
+ {
137
+ double UROUND = 2.3e-16;
138
+ double g, ghinv, ghinv1, dghinv, ytol;
139
+ double h, hold, hmin, hmax, tplus;
140
+ double ej, err, factor, facmax;
141
+ int nfcn, njac, naccept, nreject, j;
142
+ int isReject;
143
+ int adjust = MSXRosenbrockSolver.Adjust;
144
+
145
+ // --- Initialize counters, etc.
146
+
147
+ g = 1.0 + 1.0 / sqrt(2.0);
148
+ ghinv1 = 0.0;
149
+ tplus = t;
150
+ isReject = 0;
151
+ naccept = 0;
152
+ nreject = 0;
153
+ nfcn = 0;
154
+ njac = 0;
155
+
156
+ // --- Initial step size
157
+
158
+ hmax = tnext - t;
159
+ hmin = 1.e-8;
160
+ h = *htry;
161
+ if ( h == 0.0 )
162
+ {
163
+ func(t, y, n, MSXRosenbrockSolver.K1);
164
+ nfcn += 1;
165
+ adjust = 1;
166
+ h = tnext - t;
167
+ for (j=1; j<=n; j++)
168
+ {
169
+ ytol = atol[j] + rtol[j]*fabs(y[j]);
170
+ if (MSXRosenbrockSolver.K1[j] != 0.0) h = fmin(h, (ytol/fabs(MSXRosenbrockSolver.K1[j])));
171
+ }
172
+ }
173
+ h = fmax(hmin, h);
174
+ h = fmin(hmax, h);
175
+
176
+ // --- Start the time loop
177
+
178
+ while ( t < tnext )
179
+ {
180
+ // --- check for zero step size
181
+
182
+ if (0.10*fabs(h) <= fabs(t)*UROUND) return -2;
183
+
184
+ // --- adjust step size if interval exceeded
185
+
186
+ tplus = t + h;
187
+ if ( tplus > tnext )
188
+ {
189
+ h = tnext - t;
190
+ tplus = tnext;
191
+ }
192
+
193
+ // --- Re-compute the Jacobian if step size accepted
194
+
195
+ if ( isReject == 0 )
196
+ {
197
+ jacobian(y, n, MSXRosenbrockSolver.K1, MSXRosenbrockSolver.K2, MSXRosenbrockSolver.A, func);
198
+ njac++;
199
+ nfcn += 2*n;
200
+ ghinv1 = 0.0;
201
+ }
202
+
203
+ // --- Update the Jacobian to reflect new step size
204
+
205
+ ghinv = -1.0 / (g*h);
206
+ dghinv = ghinv - ghinv1;
207
+ for (j=1; j<=n; j++)
208
+ {
209
+ MSXRosenbrockSolver.A[j][j] += dghinv;
210
+ }
211
+ ghinv1 = ghinv;
212
+ if ( !factorize(MSXRosenbrockSolver.A, n, MSXRosenbrockSolver.K1, MSXRosenbrockSolver.Jindx) ) return -1;
213
+
214
+ // --- Stage 1 solution
215
+
216
+ func(t, y, n, MSXRosenbrockSolver.K1);
217
+ nfcn += 1;
218
+ for (j=1; j<=n; j++) MSXRosenbrockSolver.K1[j] *= ghinv;
219
+ solve(MSXRosenbrockSolver.A, n, MSXRosenbrockSolver.Jindx, MSXRosenbrockSolver.K1);
220
+
221
+ // --- Stage 2 solution
222
+
223
+ for (j=1; j<=n; j++)
224
+ {
225
+ MSXRosenbrockSolver.Ynew[j] = y[j] + h* MSXRosenbrockSolver.K1[j];
226
+ }
227
+ func(t, MSXRosenbrockSolver.Ynew, n, MSXRosenbrockSolver.K2);
228
+ nfcn += 1;
229
+ for (j=1; j<=n; j++)
230
+ {
231
+ MSXRosenbrockSolver.K2[j] = (MSXRosenbrockSolver.K2[j] - 2.0* MSXRosenbrockSolver.K1[j])*ghinv;
232
+ }
233
+ solve(MSXRosenbrockSolver.A, n, MSXRosenbrockSolver.Jindx, MSXRosenbrockSolver.K2);
234
+
235
+ // --- Overall solution
236
+
237
+ for (j=1; j<=n; j++)
238
+ {
239
+ MSXRosenbrockSolver.Ynew[j] = y[j] + 1.5*h* MSXRosenbrockSolver.K1[j] + 0.5*h* MSXRosenbrockSolver.K2[j];
240
+ }
241
+
242
+ // --- Error estimation
243
+
244
+ hold = h;
245
+ err = 0.0;
246
+ if ( adjust )
247
+ {
248
+ for (j=1; j<=n; j++)
249
+ {
250
+ ytol = atol[j] + rtol[j]*fabs(MSXRosenbrockSolver.Ynew[j]);
251
+ ej = fabs(MSXRosenbrockSolver.Ynew[j] - y[j] - h* MSXRosenbrockSolver.K1[j])/ytol;
252
+ err = err + ej*ej;
253
+ }
254
+ err = sqrt(err/n);
255
+ err = fmax(UROUND, err);
256
+
257
+ // --- Choose the step size
258
+
259
+ factor = 0.9 / sqrt(err);
260
+ if (isReject) facmax = 1.0;
261
+ else facmax = 10.0;
262
+ factor = fmin(factor, facmax);
263
+ factor = fmax(factor, 1.0e-1);
264
+ h = factor*h;
265
+ h = fmin(hmax, h);
266
+ }
267
+
268
+ // --- Reject/accept the step
269
+
270
+ if ( err > 1.0 )
271
+ {
272
+ isReject = 1;
273
+ nreject++;
274
+ h = 0.5*h;
275
+ }
276
+ else
277
+ {
278
+ isReject = 0;
279
+ for (j=1; j<=n; j++)
280
+ {
281
+ y[j] = MSXRosenbrockSolver.Ynew[j];
282
+ if ( y[j] <= UROUND ) y[j] = 0.0;
283
+ }
284
+ if ( adjust ) *htry = h;
285
+ t = tplus;
286
+ naccept++;
287
+ }
288
+
289
+ // --- End of the time loop
290
+
291
+ }
292
+ return nfcn;
293
+ }
epanet-msx-src/ros2.h ADDED
@@ -0,0 +1,35 @@
1
+ /************************************************************************
2
+ ** MODULE: ROS2.H
3
+ ** PROJECT: EPANET-MSX
4
+ ** DESCRIPTION: Header file for the stiff ODE solver ROS2.C.
5
+ ** AUTHOR: L. Rossman, US EPA - NRMRL
6
+ ** VERSION: 2.0.00
7
+ ** LAST UPDATE: 04/14/2021
8
+ ***********************************************************************/
9
+
10
+ #ifndef ROS2_H
11
+ #define ROS2_H
12
+
13
+ typedef struct {
14
+
15
+ double** A; // Jacobian matrix
16
+ double* K1; // Intermediate solutions
17
+ double* K2;
18
+ double* Ynew; // Updated function values
19
+ int* Jindx; // Jacobian column indexes
20
+ int Nmax; // Max. number of equations
21
+ int Adjust; // use adjustable step size
22
+ }MSXRosenbrock;
23
+
24
+ // Opens the ODE solver system
25
+ int ros2_open(int n, int adjust);
26
+
27
+ // Closes the ODE solver system
28
+ void ros2_close(void);
29
+
30
+ // Applies the solver to integrate a specific system of ODEs
31
+ int ros2_integrate(double y[], int n, double t, double tnext,
32
+ double* htry, double atol[], double rtol[],
33
+ void (*func)(double, double*, int, double*));
34
+
35
+ #endif