eoml 0.9.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- eoml/__init__.py +74 -0
- eoml/automation/__init__.py +7 -0
- eoml/automation/configuration.py +105 -0
- eoml/automation/dag.py +233 -0
- eoml/automation/experience.py +618 -0
- eoml/automation/tasks.py +825 -0
- eoml/bin/__init__.py +6 -0
- eoml/bin/clean_checkpoint.py +146 -0
- eoml/bin/land_cover_mapping_toml.py +435 -0
- eoml/bin/mosaic_images.py +137 -0
- eoml/data/__init__.py +7 -0
- eoml/data/basic_geo_data.py +214 -0
- eoml/data/dataset_utils.py +98 -0
- eoml/data/persistence/__init__.py +7 -0
- eoml/data/persistence/generic.py +253 -0
- eoml/data/persistence/lmdb.py +379 -0
- eoml/data/persistence/serializer.py +82 -0
- eoml/raster/__init__.py +7 -0
- eoml/raster/band.py +141 -0
- eoml/raster/dataset/__init__.py +6 -0
- eoml/raster/dataset/extractor.py +604 -0
- eoml/raster/raster_reader.py +602 -0
- eoml/raster/raster_utils.py +116 -0
- eoml/torch/__init__.py +7 -0
- eoml/torch/cnn/__init__.py +7 -0
- eoml/torch/cnn/augmentation.py +150 -0
- eoml/torch/cnn/dataset_evaluator.py +68 -0
- eoml/torch/cnn/db_dataset.py +605 -0
- eoml/torch/cnn/map_dataset.py +579 -0
- eoml/torch/cnn/map_dataset_const_mem.py +135 -0
- eoml/torch/cnn/outputs_transformer.py +130 -0
- eoml/torch/cnn/torch_utils.py +404 -0
- eoml/torch/cnn/training_dataset.py +241 -0
- eoml/torch/cnn/windows_dataset.py +120 -0
- eoml/torch/dataset/__init__.py +6 -0
- eoml/torch/dataset/shade_dataset_tester.py +46 -0
- eoml/torch/dataset/shade_tree_dataset_creators.py +537 -0
- eoml/torch/model_low_use.py +507 -0
- eoml/torch/models.py +282 -0
- eoml/torch/resnet.py +437 -0
- eoml/torch/sample_statistic.py +260 -0
- eoml/torch/trainer.py +782 -0
- eoml/torch/trainer_v2.py +253 -0
- eoml-0.9.0.dist-info/METADATA +93 -0
- eoml-0.9.0.dist-info/RECORD +47 -0
- eoml-0.9.0.dist-info/WHEEL +4 -0
- eoml-0.9.0.dist-info/entry_points.txt +3 -0
|
@@ -0,0 +1,507 @@
|
|
|
1
|
+
"""Alternative CNN architectures for image classification.
|
|
2
|
+
|
|
3
|
+
This module provides various CNN architectures with different configurations
|
|
4
|
+
of convolutional and dense layers. Includes models with and without batch
|
|
5
|
+
normalization, dropout, and max pooling variations.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import logging
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn.functional as F
|
|
11
|
+
from eoml.torch.cnn.torch_utils import conv_out_sizes
|
|
12
|
+
from torch import nn
|
|
13
|
+
|
|
14
|
+
logger = logging.getLogger(__name__)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class Conv2NormPlanet(nn.Module):
|
|
18
|
+
def __init__(self, in_size, n_bands, n_out, p_drop=0.4):
|
|
19
|
+
self.in_size = in_size
|
|
20
|
+
self.n_bands = n_bands
|
|
21
|
+
|
|
22
|
+
self.conv = [7,5,3]
|
|
23
|
+
self.pad = 0
|
|
24
|
+
self.stride = [2,1,2]
|
|
25
|
+
|
|
26
|
+
self.n_filter = [256, 3*128]
|
|
27
|
+
|
|
28
|
+
self.input_sizes = conv_out_sizes(in_size, self.conv, self.stride, self.pad)
|
|
29
|
+
|
|
30
|
+
logger.debug(f"Conv2NormPlanet input sizes: {self.input_sizes}")
|
|
31
|
+
|
|
32
|
+
self.denses = [2*2048, 2*2048, 2048]
|
|
33
|
+
|
|
34
|
+
super().__init__()
|
|
35
|
+
self.conv1 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[0], kernel_size=self.conv[0],
|
|
36
|
+
padding=self.pad, stride= self.stride[0])
|
|
37
|
+
self.conv1_bn = nn.BatchNorm2d(self.n_filter[0])
|
|
38
|
+
self.conv2 = nn.Conv2d(in_channels=self.n_filter[0], out_channels=self.n_filter[1], kernel_size=self.conv[1],
|
|
39
|
+
padding=self.pad, stride= self.stride[1])
|
|
40
|
+
self.conv2_bn = nn.BatchNorm2d(self.n_filter[1])
|
|
41
|
+
self.pool1 = nn.MaxPool2d(self.conv[-1], stride= self.stride[2])
|
|
42
|
+
self.fc1 = nn.Linear(self.n_filter[-1] * self.input_sizes[-1] * self.input_sizes[-1], self.denses[0])
|
|
43
|
+
self.drop1 = nn.Dropout(p_drop)
|
|
44
|
+
self.fc2 = nn.Linear(self.denses[0], self.denses[1])
|
|
45
|
+
self.drop2 = nn.Dropout(p_drop)
|
|
46
|
+
self.fc3 = nn.Linear(self.denses[1], self.denses[2])
|
|
47
|
+
self.drop3 = nn.Dropout(p_drop)
|
|
48
|
+
self.fc4 = nn.Linear(self.denses[2], n_out)
|
|
49
|
+
|
|
50
|
+
def forward(self, x):
|
|
51
|
+
x = F.relu(self.conv1_bn(self.conv1(x)))
|
|
52
|
+
x = F.relu(self.conv2_bn(self.conv2(x)))
|
|
53
|
+
x = self.pool1(x)
|
|
54
|
+
x = torch.flatten(x, 1)
|
|
55
|
+
# flatten all dimensions except batch
|
|
56
|
+
x = F.relu(self.fc1(x))
|
|
57
|
+
x = self.drop1(x)
|
|
58
|
+
x = F.relu(self.fc2(x))
|
|
59
|
+
x = self.drop2(x)
|
|
60
|
+
x = F.relu(self.fc3(x))
|
|
61
|
+
x = self.drop3(x)
|
|
62
|
+
|
|
63
|
+
#F.softmax(
|
|
64
|
+
x = self.fc4(x)
|
|
65
|
+
|
|
66
|
+
return x
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
class AlexNetMod(nn.Module):
|
|
72
|
+
def __init__(self, num_classes: int, bands, dropout: float = 0.5) -> None:
|
|
73
|
+
super().__init__()
|
|
74
|
+
self.features = nn.Sequential(
|
|
75
|
+
nn.Conv2d(bands, 128, kernel_size=5, stride=2, padding=1),
|
|
76
|
+
nn.ReLU(inplace=True),
|
|
77
|
+
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
|
|
78
|
+
nn.Conv2d(64, 384, kernel_size=5, stride=1, padding=1),
|
|
79
|
+
nn.ReLU(inplace=True),
|
|
80
|
+
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
|
|
81
|
+
nn.Conv2d(384, 384, kernel_size=3, stride=1, padding=1),
|
|
82
|
+
nn.ReLU(inplace=True),
|
|
83
|
+
#nn.Conv2d(384, 256, kernel_size=3, padding=1),
|
|
84
|
+
#nn.ReLU(inplace=True),
|
|
85
|
+
#nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
|
86
|
+
#nn.ReLU(inplace=True),
|
|
87
|
+
#nn.MaxPool2d(kernel_size=3, stride=2),
|
|
88
|
+
)
|
|
89
|
+
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
|
|
90
|
+
self.classifier = nn.Sequential(
|
|
91
|
+
nn.Dropout(p=dropout),
|
|
92
|
+
nn.Linear(256 * 6 * 6, 4096),
|
|
93
|
+
nn.ReLU(inplace=True),
|
|
94
|
+
nn.Dropout(p=dropout),
|
|
95
|
+
nn.Linear(4096, 4096),
|
|
96
|
+
nn.ReLU(inplace=True),
|
|
97
|
+
nn.Linear(4096, num_classes),
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
101
|
+
x = self.features(x)
|
|
102
|
+
x = self.avgpool(x)
|
|
103
|
+
x = torch.flatten(x, 1)
|
|
104
|
+
x = self.classifier(x)
|
|
105
|
+
return x
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
class Conv3Dense3(nn.Module):
|
|
111
|
+
def __init__(self, in_size, n_bands, n_out, p_drop=0.4):
|
|
112
|
+
self.in_size = in_size
|
|
113
|
+
self.n_bands = n_bands
|
|
114
|
+
|
|
115
|
+
self.conv = [5, 5, 3]
|
|
116
|
+
self.pad = 0
|
|
117
|
+
self.stride = 1
|
|
118
|
+
|
|
119
|
+
self.n_filter = [128, 128, 256]
|
|
120
|
+
|
|
121
|
+
self.input_sizes = conv_out_sizes(in_size, self.conv, self.stride, self.pad)
|
|
122
|
+
|
|
123
|
+
self.denses = [2048, 2048, 2048]
|
|
124
|
+
|
|
125
|
+
super().__init__()
|
|
126
|
+
self.conv1 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[0], kernel_size=self.conv[0],
|
|
127
|
+
padding=self.pad)
|
|
128
|
+
# self.pool = nn.MaxPool2d(2, 2)
|
|
129
|
+
self.conv2 = nn.Conv2d(in_channels=self.n_filter[0], out_channels=self.n_filter[1], kernel_size=self.conv[1],
|
|
130
|
+
padding=self.pad)
|
|
131
|
+
self.conv3 = nn.Conv2d(in_channels=self.n_filter[1], out_channels=self.n_filter[2], kernel_size=self.conv[2],
|
|
132
|
+
padding=self.pad)
|
|
133
|
+
self.fc1 = nn.Linear(self.n_filter[-1] * self.input_sizes[-1] * self.input_sizes[-1], self.denses[0])
|
|
134
|
+
self.drop1 = nn.Dropout(p_drop)
|
|
135
|
+
self.fc2 = nn.Linear(self.denses[0], self.denses[1])
|
|
136
|
+
self.drop2 = nn.Dropout(p_drop)
|
|
137
|
+
self.fc3 = nn.Linear(self.denses[1], self.denses[2])
|
|
138
|
+
self.drop3 = nn.Dropout(p_drop)
|
|
139
|
+
self.fc4 = nn.Linear(self.denses[2], n_out)
|
|
140
|
+
|
|
141
|
+
class Conv3Dense3(nn.Module):
|
|
142
|
+
def __init__(self, in_size, n_bands, n_out, p_drop=0.4):
|
|
143
|
+
self.in_size = in_size
|
|
144
|
+
self.n_bands = n_bands
|
|
145
|
+
|
|
146
|
+
self.conv = [5, 5, 3]
|
|
147
|
+
self.pad = 0
|
|
148
|
+
self.stride = 1
|
|
149
|
+
|
|
150
|
+
self.n_filter = [128, 128, 256]
|
|
151
|
+
|
|
152
|
+
self.input_sizes = conv_out_sizes(in_size, self.conv, self.stride, self.pad)
|
|
153
|
+
|
|
154
|
+
self.denses = [2048, 2048, 2048]
|
|
155
|
+
|
|
156
|
+
super().__init__()
|
|
157
|
+
self.conv1 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[0], kernel_size=self.conv[0],
|
|
158
|
+
padding=self.pad)
|
|
159
|
+
# self.pool = nn.MaxPool2d(2, 2)
|
|
160
|
+
self.conv2 = nn.Conv2d(in_channels=self.n_filter[0], out_channels=self.n_filter[1],
|
|
161
|
+
kernel_size=self.conv[1],
|
|
162
|
+
padding=self.pad)
|
|
163
|
+
self.conv3 = nn.Conv2d(in_channels=self.n_filter[1], out_channels=self.n_filter[2],
|
|
164
|
+
kernel_size=self.conv[2],
|
|
165
|
+
padding=self.pad)
|
|
166
|
+
self.fc1 = nn.Linear(self.n_filter[-1] * self.input_sizes[-1] * self.input_sizes[-1], self.denses[0])
|
|
167
|
+
self.drop1 = nn.Dropout(p_drop)
|
|
168
|
+
self.fc2 = nn.Linear(self.denses[0], self.denses[1])
|
|
169
|
+
self.drop2 = nn.Dropout(p_drop)
|
|
170
|
+
self.fc3 = nn.Linear(self.denses[1], self.denses[2])
|
|
171
|
+
self.drop3 = nn.Dropout(p_drop)
|
|
172
|
+
self.fc4 = nn.Linear(self.denses[2], n_out)
|
|
173
|
+
|
|
174
|
+
def forward(self, x):
|
|
175
|
+
x = F.relu(self.conv1(x))
|
|
176
|
+
x = F.relu(self.conv2(x))
|
|
177
|
+
x = F.relu(self.conv3(x))
|
|
178
|
+
x = torch.flatten(x, 1)
|
|
179
|
+
# flatten all dimensions except batch
|
|
180
|
+
x = F.relu(self.fc1(x))
|
|
181
|
+
x = self.drop1(x)
|
|
182
|
+
x = F.relu(self.fc2(x))
|
|
183
|
+
x = self.drop2(x)
|
|
184
|
+
x = F.relu(self.fc3(x))
|
|
185
|
+
x = self.drop3(x)
|
|
186
|
+
|
|
187
|
+
x = self.fc4(x)
|
|
188
|
+
|
|
189
|
+
return x
|
|
190
|
+
|
|
191
|
+
class Conv3Dense3Norm(nn.Module):
|
|
192
|
+
def __init__(self, in_size, n_bands, n_out, p_drop=0.4):
|
|
193
|
+
self.in_size = in_size
|
|
194
|
+
self.n_bands = n_bands
|
|
195
|
+
|
|
196
|
+
self.conv = [5, 5, 3]
|
|
197
|
+
self.pad = 0
|
|
198
|
+
self.stride = 1
|
|
199
|
+
|
|
200
|
+
self.n_filter = [128, 128, 256]
|
|
201
|
+
|
|
202
|
+
self.input_sizes = conv_out_sizes(in_size, self.conv, self.stride, self.pad)
|
|
203
|
+
|
|
204
|
+
self.denses = [2048, 2048,2048]
|
|
205
|
+
|
|
206
|
+
super().__init__()
|
|
207
|
+
self.conv1 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[0], kernel_size=self.conv[0],
|
|
208
|
+
padding=self.pad)
|
|
209
|
+
self.conv1_bn = nn.BatchNorm2d(self.n_filter[0])
|
|
210
|
+
# self.pool = nn.MaxPool2d(2, 2)
|
|
211
|
+
self.conv2 = nn.Conv2d(in_channels=self.n_filter[0], out_channels=self.n_filter[1], kernel_size=self.conv[1],
|
|
212
|
+
padding=self.pad)
|
|
213
|
+
self.conv2_bn = nn.BatchNorm2d(self.n_filter[1])
|
|
214
|
+
self.conv3 = nn.Conv2d(in_channels=self.n_filter[1], out_channels=self.n_filter[2], kernel_size=self.conv[2],
|
|
215
|
+
padding=self.pad)
|
|
216
|
+
self.conv3_bn = nn.BatchNorm2d(self.n_filter[2])
|
|
217
|
+
self.fc1 = nn.Linear(self.n_filter[-1] * self.input_sizes[-1] * self.input_sizes[-1], self.denses[0])
|
|
218
|
+
self.drop1 = nn.Dropout(p_drop)
|
|
219
|
+
self.fc2 = nn.Linear(self.denses[0], self.denses[1])
|
|
220
|
+
self.drop2 = nn.Dropout(p_drop)
|
|
221
|
+
self.fc3 = nn.Linear(self.denses[1], self.denses[2])
|
|
222
|
+
self.drop3 = nn.Dropout(p_drop)
|
|
223
|
+
self.fc4 = nn.Linear(self.denses[2], n_out)
|
|
224
|
+
|
|
225
|
+
def forward(self, x):
|
|
226
|
+
|
|
227
|
+
x = F.relu(self.conv1_bn(self.conv1(x)))
|
|
228
|
+
x = F.relu(self.conv2_bn(self.conv2(x)))
|
|
229
|
+
x = F.relu(self.conv3_bn(self.conv3(x)))
|
|
230
|
+
x = torch.flatten(x, 1)
|
|
231
|
+
# flatten all dimensions except batch
|
|
232
|
+
x = F.relu(self.fc1(x))
|
|
233
|
+
x = self.drop1(x)
|
|
234
|
+
x = F.relu(self.fc2(x))
|
|
235
|
+
x = self.drop2(x)
|
|
236
|
+
x = F.relu(self.fc3(x))
|
|
237
|
+
x = self.drop3(x)
|
|
238
|
+
|
|
239
|
+
x = self.fc4(x)
|
|
240
|
+
|
|
241
|
+
return x
|
|
242
|
+
|
|
243
|
+
|
|
244
|
+
class Conv2Dense3(nn.Module):
|
|
245
|
+
def __init__(self, in_size, n_bands, n_out, p_drop=0.2):
|
|
246
|
+
self.in_size = in_size
|
|
247
|
+
self.n_bands = n_bands
|
|
248
|
+
|
|
249
|
+
self.conv = [4, 3]
|
|
250
|
+
self.pad = 0
|
|
251
|
+
self.stride = 1
|
|
252
|
+
|
|
253
|
+
self.n_filter = [64, 128]
|
|
254
|
+
|
|
255
|
+
self.input_sizes = conv_out_sizes(in_size, self.conv, self.stride, self.pad)
|
|
256
|
+
|
|
257
|
+
self.denses = [2048, 2048, 2048]
|
|
258
|
+
|
|
259
|
+
super().__init__()
|
|
260
|
+
self.conv1 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[0], kernel_size=self.conv[0],
|
|
261
|
+
padding=self.pad)
|
|
262
|
+
# self.pool = nn.MaxPool2d(2, 2)
|
|
263
|
+
self.conv2 = nn.Conv2d(in_channels=self.n_filter[0], out_channels=self.n_filter[1], kernel_size=self.conv[1],
|
|
264
|
+
padding=self.pad)
|
|
265
|
+
self.fc1 = nn.Linear(self.n_filter[-1] * self.input_sizes[-1] * self.input_sizes[-1], self.denses[0])
|
|
266
|
+
self.drop1 = nn.Dropout(p_drop)
|
|
267
|
+
self.fc2 = nn.Linear(self.denses[0], self.denses[1])
|
|
268
|
+
self.drop2 = nn.Dropout(p_drop)
|
|
269
|
+
self.fc3 = nn.Linear(self.denses[1], self.denses[2])
|
|
270
|
+
self.drop3 = nn.Dropout(p_drop)
|
|
271
|
+
self.fc4 = nn.Linear(self.denses[2], n_out)
|
|
272
|
+
|
|
273
|
+
def forward(self, x):
|
|
274
|
+
x = F.relu(self.conv1(x))
|
|
275
|
+
x = F.relu(self.conv2(x))
|
|
276
|
+
x = torch.flatten(x, 1)
|
|
277
|
+
# flatten all dimensions except batch
|
|
278
|
+
x = F.relu(self.fc1(x))
|
|
279
|
+
x = self.drop1(x)
|
|
280
|
+
x = F.relu(self.fc2(x))
|
|
281
|
+
x = self.drop2(x)
|
|
282
|
+
x = F.relu(self.fc3(x))
|
|
283
|
+
x = self.drop3(x)
|
|
284
|
+
|
|
285
|
+
x = self.fc4(x)
|
|
286
|
+
|
|
287
|
+
return x
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+
class Conv2DropDense3(nn.Module):
|
|
291
|
+
def __init__(self, in_size, n_bands, n_out, p_drop=0.2):
|
|
292
|
+
self.in_size = in_size
|
|
293
|
+
self.n_bands = n_bands
|
|
294
|
+
|
|
295
|
+
self.conv = [4, 3]
|
|
296
|
+
self.pad = 0
|
|
297
|
+
self.stride = 1
|
|
298
|
+
|
|
299
|
+
self.n_filter = [64, 128]
|
|
300
|
+
|
|
301
|
+
self.input_sizes = conv_out_sizes(in_size, self.conv, self.stride, self.pad)
|
|
302
|
+
|
|
303
|
+
self.denses = [2048, 2048, 2048]
|
|
304
|
+
|
|
305
|
+
super().__init__()
|
|
306
|
+
self.conv1 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[0], kernel_size=self.conv[0],
|
|
307
|
+
padding=self.pad)
|
|
308
|
+
# self.pool = nn.MaxPool2d(2, 2)
|
|
309
|
+
self.conv2 = nn.Conv2d(in_channels=self.n_filter[0], out_channels=self.n_filter[1], kernel_size=self.conv[1],
|
|
310
|
+
padding=self.pad)
|
|
311
|
+
self.fc1 = nn.Linear(self.n_filter[-1] * self.input_sizes[-1] * self.input_sizes[-1], self.denses[0])
|
|
312
|
+
self.drop1 = nn.Dropout(p_drop)
|
|
313
|
+
self.fc2 = nn.Linear(self.denses[0], self.denses[1])
|
|
314
|
+
self.drop2 = nn.Dropout(p_drop)
|
|
315
|
+
self.fc3 = nn.Linear(self.denses[1], self.denses[2])
|
|
316
|
+
self.drop3 = nn.Dropout(p_drop)
|
|
317
|
+
self.fc4 = nn.Linear(self.denses[2], n_out)
|
|
318
|
+
|
|
319
|
+
def forward(self, x):
|
|
320
|
+
x = F.relu(self.conv1(x))
|
|
321
|
+
x = F.relu(self.conv2(x))
|
|
322
|
+
x = torch.flatten(x, 1)
|
|
323
|
+
# flatten all dimensions except batch
|
|
324
|
+
x = F.relu(self.fc1(x))
|
|
325
|
+
x = self.drop1(x)
|
|
326
|
+
x = F.relu(self.fc2(x))
|
|
327
|
+
x = self.drop2(x)
|
|
328
|
+
x = F.relu(self.fc3(x))
|
|
329
|
+
x = self.drop3(x)
|
|
330
|
+
|
|
331
|
+
x = self.fc4(x)
|
|
332
|
+
|
|
333
|
+
return x
|
|
334
|
+
|
|
335
|
+
|
|
336
|
+
class ConvJavaSmall(nn.Module):
|
|
337
|
+
def __init__(self, in_size, n_bands, n_out, p_drop=0.4):
|
|
338
|
+
self.in_size = in_size
|
|
339
|
+
self.n_bands = n_bands
|
|
340
|
+
|
|
341
|
+
self.conv = [4,2]
|
|
342
|
+
self.pad = 0
|
|
343
|
+
self.stride = [1,2]
|
|
344
|
+
|
|
345
|
+
self.n_filter = [128]
|
|
346
|
+
|
|
347
|
+
self.input_sizes = conv_out_sizes(in_size, self.conv, self.stride, self.pad)
|
|
348
|
+
|
|
349
|
+
self.denses = [2048, 2048, 2048]
|
|
350
|
+
|
|
351
|
+
super().__init__()
|
|
352
|
+
self.conv1 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[0], kernel_size=self.conv[0],
|
|
353
|
+
padding=self.pad)
|
|
354
|
+
self.pool1 = nn.MaxPool2d(2)
|
|
355
|
+
self.fc1 = nn.Linear(self.n_filter[-1] * self.input_sizes[-1] * self.input_sizes[-1], self.denses[0])
|
|
356
|
+
self.drop1 = nn.Dropout(p_drop)
|
|
357
|
+
self.fc2 = nn.Linear(self.denses[0], self.denses[1])
|
|
358
|
+
self.drop2 = nn.Dropout(p_drop)
|
|
359
|
+
self.fc3 = nn.Linear(self.denses[1], self.denses[2])
|
|
360
|
+
self.drop3 = nn.Dropout(p_drop)
|
|
361
|
+
self.fc4 = nn.Linear(self.denses[2], n_out)
|
|
362
|
+
|
|
363
|
+
def forward(self, x):
|
|
364
|
+
x = F.relu(self.conv1(x))
|
|
365
|
+
x = self.pool1(x)
|
|
366
|
+
x = torch.flatten(x, 1)
|
|
367
|
+
# flatten all dimensions except batch
|
|
368
|
+
x = F.relu(self.fc1(x))
|
|
369
|
+
x = self.drop1(x)
|
|
370
|
+
x = F.relu(self.fc2(x))
|
|
371
|
+
x = self.drop2(x)
|
|
372
|
+
x = F.relu(self.fc3(x))
|
|
373
|
+
x = self.drop3(x)
|
|
374
|
+
|
|
375
|
+
#F.softmax(
|
|
376
|
+
x = self.fc4(x)
|
|
377
|
+
|
|
378
|
+
return x
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
class ConvJavaSmallNorm(nn.Module):
|
|
383
|
+
def __init__(self, in_size, n_bands, n_out, p_drop=0.4):
|
|
384
|
+
self.in_size = in_size
|
|
385
|
+
self.n_bands = n_bands
|
|
386
|
+
|
|
387
|
+
self.conv = [4,2]
|
|
388
|
+
self.pad = 0
|
|
389
|
+
self.stride = [1,2]
|
|
390
|
+
|
|
391
|
+
self.n_filter = [128]
|
|
392
|
+
|
|
393
|
+
self.input_sizes = conv_out_sizes(in_size, self.conv, self.stride, self.pad)
|
|
394
|
+
|
|
395
|
+
self.denses = [2048, 2048, 2048]
|
|
396
|
+
|
|
397
|
+
super().__init__()
|
|
398
|
+
self.conv1 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[0], kernel_size=self.conv[0],
|
|
399
|
+
padding=self.pad)
|
|
400
|
+
self.conv1_bn = nn.BatchNorm2d(self.n_filter[0])
|
|
401
|
+
self.pool1 = nn.MaxPool2d(2)
|
|
402
|
+
self.fc1 = nn.Linear(self.n_filter[-1] * self.input_sizes[-1] * self.input_sizes[-1], self.denses[0])
|
|
403
|
+
self.drop1 = nn.Dropout(p_drop)
|
|
404
|
+
self.fc2 = nn.Linear(self.denses[0], self.denses[1])
|
|
405
|
+
self.drop2 = nn.Dropout(p_drop)
|
|
406
|
+
self.fc3 = nn.Linear(self.denses[1], self.denses[2])
|
|
407
|
+
self.drop3 = nn.Dropout(p_drop)
|
|
408
|
+
self.fc4 = nn.Linear(self.denses[2], n_out)
|
|
409
|
+
|
|
410
|
+
def forward(self, x):
|
|
411
|
+
x = F.relu(self.conv1_bn(self.conv1(x)))
|
|
412
|
+
x = self.pool1(x)
|
|
413
|
+
x = torch.flatten(x, 1)
|
|
414
|
+
# flatten all dimensions except batch
|
|
415
|
+
x = F.relu(self.fc1(x))
|
|
416
|
+
x = self.drop1(x)
|
|
417
|
+
x = F.relu(self.fc2(x))
|
|
418
|
+
x = self.drop2(x)
|
|
419
|
+
x = F.relu(self.fc3(x))
|
|
420
|
+
x = self.drop3(x)
|
|
421
|
+
|
|
422
|
+
#F.softmax(
|
|
423
|
+
x = self.fc4(x)
|
|
424
|
+
|
|
425
|
+
return x
|
|
426
|
+
|
|
427
|
+
class Conv2Norm(nn.Module):
|
|
428
|
+
def __init__(self, in_size, n_bands, n_out, p_drop=0.4):
|
|
429
|
+
self.in_size = in_size
|
|
430
|
+
self.n_bands = n_bands
|
|
431
|
+
|
|
432
|
+
self.conv = [5,3,2]
|
|
433
|
+
self.pad = 0
|
|
434
|
+
self.stride = [1,1,2]
|
|
435
|
+
|
|
436
|
+
self.n_filter = [256, 384]
|
|
437
|
+
|
|
438
|
+
self.input_sizes = conv_out_sizes(in_size, self.conv, self.stride, self.pad)
|
|
439
|
+
|
|
440
|
+
self.denses = [2*2048, 2*2048, 2*2048]
|
|
441
|
+
|
|
442
|
+
super().__init__()
|
|
443
|
+
self.conv1 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[0], kernel_size=self.conv[0],
|
|
444
|
+
padding=self.pad)
|
|
445
|
+
self.conv1_bn = nn.BatchNorm2d(self.n_filter[0])
|
|
446
|
+
self.conv2 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[1], kernel_size=self.conv[1],
|
|
447
|
+
padding=self.pad)
|
|
448
|
+
self.conv2_bn = nn.BatchNorm2d(self.n_filter[1])
|
|
449
|
+
self.pool1 = nn.MaxPool2d(self.conv[-1])
|
|
450
|
+
self.fc1 = nn.Linear(self.n_filter[-1] * self.input_sizes[-1] * self.input_sizes[-1], self.denses[0])
|
|
451
|
+
self.drop1 = nn.Dropout(p_drop)
|
|
452
|
+
self.fc2 = nn.Linear(self.denses[0], self.denses[1])
|
|
453
|
+
self.drop2 = nn.Dropout(p_drop)
|
|
454
|
+
self.fc3 = nn.Linear(self.denses[1], self.denses[2])
|
|
455
|
+
self.drop3 = nn.Dropout(p_drop)
|
|
456
|
+
self.fc4 = nn.Linear(self.denses[2], n_out)
|
|
457
|
+
|
|
458
|
+
class Conv2NormV2(nn.Module):
|
|
459
|
+
def __init__(self, in_size, n_bands, n_out, p_drop=0.4):
|
|
460
|
+
self.in_size = in_size
|
|
461
|
+
self.n_bands = n_bands
|
|
462
|
+
|
|
463
|
+
self.conv = [5, 3, 2]
|
|
464
|
+
self.pad = 0
|
|
465
|
+
self.stride = [1, 1, 2]
|
|
466
|
+
|
|
467
|
+
self.n_filter = [256, 384]
|
|
468
|
+
|
|
469
|
+
self.input_sizes = conv_out_sizes(in_size, self.conv, self.stride, self.pad)
|
|
470
|
+
logger.debug(f"Input sizes: {self.input_sizes}")
|
|
471
|
+
self.denses = [2 * 2048, 2 * 2048, 2 * 2048]
|
|
472
|
+
|
|
473
|
+
super().__init__()
|
|
474
|
+
self.conv1 = nn.Conv2d(in_channels=n_bands, out_channels=self.n_filter[0], kernel_size=self.conv[0],
|
|
475
|
+
padding=self.pad)
|
|
476
|
+
self.conv1_bn = nn.BatchNorm2d(self.n_filter[0])
|
|
477
|
+
self.conv2 = nn.Conv2d(in_channels=self.n_filter[0], out_channels=self.n_filter[1], kernel_size=self.conv[1],
|
|
478
|
+
padding=self.pad)
|
|
479
|
+
self.conv2_bn = nn.BatchNorm2d(self.n_filter[1])
|
|
480
|
+
self.pool1 = nn.MaxPool2d(self.conv[-1], stride=self.stride[-1])
|
|
481
|
+
self.fc1 = nn.Linear(self.n_filter[-1] * self.input_sizes[-1] * self.input_sizes[-1], self.denses[0])
|
|
482
|
+
self.drop1 = nn.Dropout(p_drop)
|
|
483
|
+
self.fc2 = nn.Linear(self.denses[0], self.denses[1])
|
|
484
|
+
self.drop2 = nn.Dropout(p_drop)
|
|
485
|
+
self.fc3 = nn.Linear(self.denses[1], self.denses[2])
|
|
486
|
+
self.drop3 = nn.Dropout(p_drop)
|
|
487
|
+
self.fc4 = nn.Linear(self.denses[2], n_out)
|
|
488
|
+
|
|
489
|
+
|
|
490
|
+
|
|
491
|
+
def forward(self, x):
|
|
492
|
+
x = F.relu(self.conv1_bn(self.conv1(x)))
|
|
493
|
+
x = F.relu(self.conv2_bn(self.conv2(x)))
|
|
494
|
+
x = self.pool1(x)
|
|
495
|
+
x = torch.flatten(x, 1)
|
|
496
|
+
# flatten all dimensions except batch
|
|
497
|
+
x = F.relu(self.fc1(x))
|
|
498
|
+
x = self.drop1(x)
|
|
499
|
+
x = F.relu(self.fc2(x))
|
|
500
|
+
x = self.drop2(x)
|
|
501
|
+
x = F.relu(self.fc3(x))
|
|
502
|
+
x = self.drop3(x)
|
|
503
|
+
|
|
504
|
+
#F.softmax(
|
|
505
|
+
x = self.fc4(x)
|
|
506
|
+
|
|
507
|
+
return x
|