eodag 3.9.1__py3-none-any.whl → 3.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- eodag/api/core.py +8 -2
- eodag/api/product/_product.py +9 -13
- eodag/api/product/metadata_mapping.py +7 -4
- eodag/plugins/authentication/aws_auth.py +36 -1
- eodag/plugins/authentication/base.py +17 -0
- eodag/plugins/authentication/sas_auth.py +15 -0
- eodag/plugins/crunch/filter_latest_intersect.py +1 -0
- eodag/plugins/crunch/filter_overlap.py +3 -7
- eodag/plugins/download/aws.py +1 -1
- eodag/plugins/download/creodias_s3.py +7 -0
- eodag/plugins/search/build_search_result.py +41 -14
- eodag/plugins/search/cop_marine.py +6 -0
- eodag/resources/ext_collections.json +1 -0
- eodag/resources/ext_product_types.json +1 -1
- eodag/resources/product_types.yml +81 -36
- eodag/resources/providers.yml +50 -33
- eodag/types/queryables.py +1 -0
- eodag/utils/__init__.py +44 -2
- eodag/utils/dates.py +12 -0
- {eodag-3.9.1.dist-info → eodag-3.10.1.dist-info}/METADATA +13 -2
- {eodag-3.9.1.dist-info → eodag-3.10.1.dist-info}/RECORD +25 -24
- {eodag-3.9.1.dist-info → eodag-3.10.1.dist-info}/WHEEL +0 -0
- {eodag-3.9.1.dist-info → eodag-3.10.1.dist-info}/entry_points.txt +0 -0
- {eodag-3.9.1.dist-info → eodag-3.10.1.dist-info}/licenses/LICENSE +0 -0
- {eodag-3.9.1.dist-info → eodag-3.10.1.dist-info}/top_level.txt +0 -0
|
@@ -1552,19 +1552,16 @@ MFG_GSA_63:
|
|
|
1552
1552
|
|
|
1553
1553
|
HIRS_FDR_1_MULTI:
|
|
1554
1554
|
abstract: |
|
|
1555
|
-
This is Release
|
|
1556
|
-
|
|
1557
|
-
|
|
1558
|
-
|
|
1559
|
-
|
|
1560
|
-
|
|
1561
|
-
|
|
1562
|
-
|
|
1563
|
-
|
|
1564
|
-
|
|
1565
|
-
data. Some polygons of the HIRS data record are found to be incorrect.
|
|
1566
|
-
However, this does not affect the correctness of the data itself. This is a
|
|
1567
|
-
Fundamental Data Record (FDR).
|
|
1555
|
+
This is Release 2 of the Fundamental Data Record (FDR) brightness temperatures
|
|
1556
|
+
from the High Resolution Infrared Radiation Sounder (HIRS) on board NOAA and Metop
|
|
1557
|
+
satellites. The data record covers more than 40 years from 29 October 1978 to 31
|
|
1558
|
+
December 2022. Release 2 provides recalibrated Level 1c brightness temperatures
|
|
1559
|
+
based on the V4.0 calibration method developed by Cao et al. (2007). This method
|
|
1560
|
+
was implemented into the NWP-SAF software ATOVS and AVHRR processing Package (AAPP).
|
|
1561
|
+
This software was consistently used to recalibrate and reprocess data from all HIRS
|
|
1562
|
+
instruments on board TIROS-N, NOAA-06 to NOAA-19, Metop-A, and Metop-B. Input HIRS
|
|
1563
|
+
data were collected from NOAA/CLASS and ECMWF archives and merged to produce a
|
|
1564
|
+
longer time series of some of the satellites.
|
|
1568
1565
|
instrument: HIRS
|
|
1569
1566
|
platform: Metop,TIROS,NOAA
|
|
1570
1567
|
platformSerialIdentifier: Metop,TIROS,NOAA
|
|
@@ -1572,7 +1569,7 @@ HIRS_FDR_1_MULTI:
|
|
|
1572
1569
|
keywords: HIRS,L1C,HIRS,TIROS,Metop,NOAA,Sounder,FDR
|
|
1573
1570
|
sensorType: Sounder
|
|
1574
1571
|
license: other
|
|
1575
|
-
title: HIRS Level 1C Fundamental Data Record Release
|
|
1572
|
+
title: HIRS Level 1C Fundamental Data Record Release 2 - Multimission - Global
|
|
1576
1573
|
missionStartDate: "1978-10-29T00:00:00Z"
|
|
1577
1574
|
missionEndDate: "2020-12-31T23:59:59Z"
|
|
1578
1575
|
|
|
@@ -4687,28 +4684,6 @@ EEA_DAILY_SSM_1KM:
|
|
|
4687
4684
|
title: "Surface Soil Moisture: continental Europe daily (raster 1km) - version 1, Apr 2019"
|
|
4688
4685
|
missionStartDate: "2015-01-01T00:00:00Z"
|
|
4689
4686
|
|
|
4690
|
-
EEA_DAILY_VI:
|
|
4691
|
-
abstract: |
|
|
4692
|
-
Vegetation Indices (VI) comprises four daily vegetation indices (PPI, NDVI, LAI and FAPAR) and quality information,
|
|
4693
|
-
that are part of the Copernicus Land Monitoring Service (CLMS) HR-VPP product suite. The 10m resolution, daily updated
|
|
4694
|
-
Plant Phenology Index (PPI), Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and Fraction of Absorbed
|
|
4695
|
-
Photosynthetically Active Radiation (fAPAR) are derived from Copernicus Sentinel-2 satellite observations. They are
|
|
4696
|
-
provided together with a related quality indicator (QFLAG2) that flags clouds, shadows, snow, open water and other areas
|
|
4697
|
-
where the VI retrieval is less reliable. These Vegetation Indices are made available as a set of raster files with 10 x 10m
|
|
4698
|
-
resolution, in UTM/WGS84 projection corresponding to the Sentinel-2 tiling grid, for those tiles that cover the EEA38
|
|
4699
|
-
countries and the United Kingdom and for the period from 2017 until today, with daily updates. The Vegetation Indices
|
|
4700
|
-
are part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus
|
|
4701
|
-
Land Monitoring Service (CLMS).
|
|
4702
|
-
instrument:
|
|
4703
|
-
platform: Sentinel-2
|
|
4704
|
-
platformSerialIdentifier: S2A,S2B,S2C
|
|
4705
|
-
processingLevel:
|
|
4706
|
-
keywords: Land,Plant-phenology-index,Phenology,Vegetation,Sentinel-2,S2A,S2B,S2C
|
|
4707
|
-
sensorType: RADAR
|
|
4708
|
-
license: other
|
|
4709
|
-
title: Vegetation Indices, daily, UTM projection
|
|
4710
|
-
missionStartDate:
|
|
4711
|
-
|
|
4712
4687
|
EEA_HRL_TCF:
|
|
4713
4688
|
abstract: |
|
|
4714
4689
|
Tree Cover Fraction (TCF) is defined as the percentage of ground covered by tree canopy when viewed from above.
|
|
@@ -4726,6 +4701,76 @@ EEA_HRL_TCF:
|
|
|
4726
4701
|
title: Tree Cover Fraction, UTM projection
|
|
4727
4702
|
missionStartDate: "2017-01-01T00:00:00Z"
|
|
4728
4703
|
|
|
4704
|
+
CLMS_HRVPP_ST:
|
|
4705
|
+
abstract: |
|
|
4706
|
+
The Seasonal Trajectories product is a filtered time series of Plant Phenology Index (PPI), with regular time step, part of the Copernicus Land Monitoring Service (CLMS) HR-VPP product suite.
|
|
4707
|
+
Plant Phenology Index (PPI) is a physically based vegetation index that is optimized for monitoring vegetation phenology and has a linear relationship with green leaf area index.
|
|
4708
|
+
The Seasonal Trajectories (ST) products are derived from a function fitting of the time series of the PPI vegetation index and hence provide a filtered PPI time series, with regular 10-day time step, together with related quality information (QFLAG).
|
|
4709
|
+
The PPI Seasonal Trajectories are derived from the PPI vegetation index and hence based on Copernicus Sentinel-2 satellite observations.
|
|
4710
|
+
The ST products are made available as a set of raster files with 10m and 100m resolution, in ETRS89/LAEA projection corresponding to the High Resolution Layers tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom, and for the period from 2017 until today, with yearly updates.
|
|
4711
|
+
These Seasonal Trajectories are part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS).
|
|
4712
|
+
instrument:
|
|
4713
|
+
platform: Sentinel-2
|
|
4714
|
+
platformSerialIdentifier: S2A,S2B,S2C
|
|
4715
|
+
processingLevel:
|
|
4716
|
+
keywords: Land,Plant-phenology-index,Phenology,Vegetation,Sentinel-2,S2A,S2B,S2C
|
|
4717
|
+
sensorType:
|
|
4718
|
+
license: other
|
|
4719
|
+
title: Seasonal Trajectories, 10-daily, ST projection
|
|
4720
|
+
missionStartDate:
|
|
4721
|
+
|
|
4722
|
+
CLMS_HRVPP_ST_LAEA:
|
|
4723
|
+
abstract: |
|
|
4724
|
+
The Seasonal Trajectories product is a filtered time series of Plant Phenology Index (PPI), with regular time step, part of the Copernicus Land Monitoring Service (CLMS) HR-VPP product suite.
|
|
4725
|
+
Plant Phenology Index (PPI) is a physically based vegetation index that is optimized for monitoring vegetation phenology and has a linear relationship with green leaf area index.
|
|
4726
|
+
The Seasonal Trajectories (ST) products are derived from a function fitting of the time series of the PPI vegetation index and hence provide a filtered PPI time series, with regular 10-day time step, together with related quality information (QFLAG).
|
|
4727
|
+
The PPI Seasonal Trajectories are derived from the PPI vegetation index and hence based on Copernicus Sentinel-2 satellite observations.
|
|
4728
|
+
The ST products are made available as a set of raster files with 10m and 100m resolution, in ETRS89/LAEA projection corresponding to the High Resolution Layers tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom, and for the period from 2017 until today, with yearly updates.
|
|
4729
|
+
These Seasonal Trajectories are part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS).
|
|
4730
|
+
instrument:
|
|
4731
|
+
platform: Sentinel-2
|
|
4732
|
+
platformSerialIdentifier: S2A,S2B,S2C
|
|
4733
|
+
processingLevel:
|
|
4734
|
+
keywords: Land,Plant-phenology-index,Phenology,Vegetation,Sentinel-2,S2A,S2B,S2C
|
|
4735
|
+
sensorType:
|
|
4736
|
+
license: other
|
|
4737
|
+
title: Seasonal Trajectories, 10-daily, LAEA projection
|
|
4738
|
+
missionStartDate:
|
|
4739
|
+
|
|
4740
|
+
CLMS_HRVPP_VPP:
|
|
4741
|
+
abstract: |
|
|
4742
|
+
Vegetation Phenology and Productivity (VPP) comprise 13 parameters up to 2 seasons that characterize the vegetation growth cycle. It is part of the Copernicus Land Monitoring Service (CLMS) HR-VPP product suite.
|
|
4743
|
+
A set of 13 Vegetation Phenology and Productivity parameters are derived, for up to two growing seasons. These parameters include the start, end and length of the growing season, the dates when the vegetation index reaches its minimum and maximum values, the maximum value itself and its distance to the minimum (amplitude), the slopes of the green-up and green-down periods and the seasonal and total productivity.
|
|
4744
|
+
The Vegetation and Productivity parameters are extracted from the filtered PPI time-series, the HR-VPP Seasonal Trajectories, and hence based on Copernicus Sentinel-2 satellite observations.
|
|
4745
|
+
The VPP parameters are made available as a set of raster files with 10m and 100m resolution, in ETRS89/LAEA projection corresponding to the High Resolution Layers tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for the period from 2017 until today, with yearly updates.
|
|
4746
|
+
This VPP product is part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS).
|
|
4747
|
+
instrument:
|
|
4748
|
+
platform: Sentinel-2
|
|
4749
|
+
platformSerialIdentifier: S2A,S2B,S2C
|
|
4750
|
+
processingLevel:
|
|
4751
|
+
keywords: Land,Plant-phenology-index,Phenology,Vegetation,Sentinel-2,S2A,S2B,S2C
|
|
4752
|
+
sensorType:
|
|
4753
|
+
license: other
|
|
4754
|
+
title: Vegetation Phenology and Productivity, yearly, UTM projection
|
|
4755
|
+
missionStartDate:
|
|
4756
|
+
|
|
4757
|
+
CLMS_HRVPP_VPP_LAEA:
|
|
4758
|
+
abstract: |
|
|
4759
|
+
Vegetation Phenology and Productivity (VPP) comprise 13 parameters up to 2 seasons that characterize the vegetation growth cycle. It is part of the Copernicus Land Monitoring Service (CLMS) HR-VPP product suite.
|
|
4760
|
+
A set of 13 Vegetation Phenology and Productivity parameters are derived, for up to two growing seasons. These parameters include the start, end and length of the growing season, the dates when the vegetation index reaches its minimum and maximum values, the maximum value itself and its distance to the minimum (amplitude), the slopes of the green-up and green-down periods and the seasonal and total productivity.
|
|
4761
|
+
The Vegetation and Productivity parameters are extracted from the filtered PPI time-series, the HR-VPP Seasonal Trajectories, and hence based on Copernicus Sentinel-2 satellite observations.
|
|
4762
|
+
The VPP parameters are made available as a set of raster files with 10m and 100m resolution, in ETRS89/LAEA projection corresponding to the High Resolution Layers tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for the period from 2017 until today, with yearly updates.
|
|
4763
|
+
This VPP product is part of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS).
|
|
4764
|
+
instrument:
|
|
4765
|
+
platform: Sentinel-2
|
|
4766
|
+
platformSerialIdentifier: S2A,S2B,S2C
|
|
4767
|
+
processingLevel:
|
|
4768
|
+
keywords: Land,Plant-phenology-index,Phenology,Vegetation,Sentinel-2,S2A,S2B,S2C
|
|
4769
|
+
sensorType:
|
|
4770
|
+
license: other
|
|
4771
|
+
title: Vegetation Phenology and Productivity, yearly, LAEA projection
|
|
4772
|
+
missionStartDate:
|
|
4773
|
+
|
|
4729
4774
|
# MARK: AERIS --------------------------------------------------------------------------
|
|
4730
4775
|
AERIS_IAGOS:
|
|
4731
4776
|
abstract: |
|
eodag/resources/providers.yml
CHANGED
|
@@ -1498,6 +1498,7 @@
|
|
|
1498
1498
|
type: AwsAuth
|
|
1499
1499
|
matching_url: s3://
|
|
1500
1500
|
s3_endpoint: https://storage.googleapis.com
|
|
1501
|
+
support_presign_url: False
|
|
1501
1502
|
matching_conf:
|
|
1502
1503
|
s3_endpoint: https://storage.googleapis.com
|
|
1503
1504
|
---
|
|
@@ -2078,6 +2079,14 @@
|
|
|
2078
2079
|
period: 1_5_c
|
|
2079
2080
|
CMIP6_CLIMATE_PROJECTIONS:
|
|
2080
2081
|
dataset: projections-cmip6
|
|
2082
|
+
experiment: historical
|
|
2083
|
+
variable: air_temperature
|
|
2084
|
+
model: access_cm2
|
|
2085
|
+
level: ["1"]
|
|
2086
|
+
year: ["1850"]
|
|
2087
|
+
month: ["01"]
|
|
2088
|
+
metadata_mapping:
|
|
2089
|
+
<<: *month_year
|
|
2081
2090
|
GENERIC_PRODUCT_TYPE:
|
|
2082
2091
|
dataset: '{productType}'
|
|
2083
2092
|
---
|
|
@@ -3424,25 +3433,6 @@
|
|
|
3424
3433
|
productType: EO:ESA:DAT:SENTINEL-5P
|
|
3425
3434
|
processingLevel: L2
|
|
3426
3435
|
metadata_mapping_from_product: S5P_L1B_IR_ALL
|
|
3427
|
-
EEA_DAILY_VI:
|
|
3428
|
-
productType: EO:EEA:DAT:CLMS_HRVPP_VI
|
|
3429
|
-
metadata_mapping:
|
|
3430
|
-
id:
|
|
3431
|
-
- '{{"uid": "{id}"}}'
|
|
3432
|
-
- '$.id'
|
|
3433
|
-
relativeOrbitNumber:
|
|
3434
|
-
- '{{"relativeOrbitNumber": "{relativeOrbitNumber}"}}'
|
|
3435
|
-
- '$.null'
|
|
3436
|
-
version:
|
|
3437
|
-
- '{{"productVersion": "{version}"}}'
|
|
3438
|
-
- '$.null'
|
|
3439
|
-
platformSerialIdentifier:
|
|
3440
|
-
- '{{"platformSerialIdentifier": "{platformSerialIdentifier}"}}'
|
|
3441
|
-
- '$.id.`sub(/^[^_]+_[^_]+_([^_]+)_.*/, \\1)`'
|
|
3442
|
-
tileIdentifier:
|
|
3443
|
-
- '{{"tileId": "{tileIdentifier}"}}'
|
|
3444
|
-
- '$.null'
|
|
3445
|
-
orderLink: 'https://gateway.prod.wekeo2.eu/hda-broker/api/v1/dataaccess/download?{{"location": "{downloadLink}","product_id":"{id}", "dataset_id": "EO:EEA:DAT:CLMS_HRVPP_VI"}}'
|
|
3446
3436
|
EEA_HRL_TCF:
|
|
3447
3437
|
productType: EO:EEA:DAT:HRL:TCF
|
|
3448
3438
|
metadata_mapping:
|
|
@@ -3532,6 +3522,34 @@
|
|
|
3532
3522
|
metadata_mapping_from_product: CLMS_GLO_FCOVER_333M
|
|
3533
3523
|
metadata_mapping:
|
|
3534
3524
|
orderLink: 'https://gateway.prod.wekeo2.eu/hda-broker/api/v1/dataaccess/download?{{"location": "{downloadLink}","product_id":"{id}", "dataset_id": "EO:CLMS:DAT:CLMS_GLOBAL_LAI_300M_V1_10DAILY_NETCDF"}}'
|
|
3525
|
+
CLMS_HRVPP_ST:
|
|
3526
|
+
_collection: EO:EEA:DAT:CLMS_HRVPP_ST
|
|
3527
|
+
metadata_mapping:
|
|
3528
|
+
id:
|
|
3529
|
+
- '{{"uid": "{id}"}}'
|
|
3530
|
+
- '$.id'
|
|
3531
|
+
orderLink: 'https://gateway.prod.wekeo2.eu/hda-broker/api/v1/dataaccess/download?{{"location": "{downloadLink}","product_id":"{id}", "dataset_id": "EO:EEA:DAT:CLMS_HRVPP_ST"}}'
|
|
3532
|
+
CLMS_HRVPP_ST_LAEA:
|
|
3533
|
+
_collection: EO:EEA:DAT:CLMS_HRVPP_ST-LAEA
|
|
3534
|
+
metadata_mapping:
|
|
3535
|
+
id:
|
|
3536
|
+
- '{{"uid": "{id}"}}'
|
|
3537
|
+
- '$.id'
|
|
3538
|
+
orderLink: 'https://gateway.prod.wekeo2.eu/hda-broker/api/v1/dataaccess/download?{{"location": "{downloadLink}","product_id":"{id}", "dataset_id": "EO:EEA:DAT:CLMS_HRVPP_ST-LAEA"}}'
|
|
3539
|
+
CLMS_HRVPP_VPP:
|
|
3540
|
+
_collection: EO:EEA:DAT:CLMS_HRVPP_VPP
|
|
3541
|
+
metadata_mapping:
|
|
3542
|
+
id:
|
|
3543
|
+
- '{{"uid": "{id}"}}'
|
|
3544
|
+
- '$.id'
|
|
3545
|
+
orderLink: 'https://gateway.prod.wekeo2.eu/hda-broker/api/v1/dataaccess/download?{{"location": "{downloadLink}","product_id":"{id}", "dataset_id": "EO:EEA:DAT:CLMS_HRVPP_VPP"}}'
|
|
3546
|
+
CLMS_HRVPP_VPP_LAEA:
|
|
3547
|
+
_collection: EO:EEA:DAT:CLMS_HRVPP_VPP-LAEA
|
|
3548
|
+
metadata_mapping:
|
|
3549
|
+
id:
|
|
3550
|
+
- '{{"uid": "{id}"}}'
|
|
3551
|
+
- '$.id'
|
|
3552
|
+
orderLink: 'https://gateway.prod.wekeo2.eu/hda-broker/api/v1/dataaccess/download?{{"location": "{downloadLink}","product_id":"{id}", "dataset_id": "EO:EEA:DAT:CLMS_HRVPP_VPP-LAEA"}}'
|
|
3535
3553
|
auth: !plugin
|
|
3536
3554
|
type: TokenAuth
|
|
3537
3555
|
matching_url: https://[-\w\.]+.wekeo2.eu
|
|
@@ -4295,7 +4313,7 @@
|
|
|
4295
4313
|
quicklook: '$.Assets[?(@.Type="QUICKLOOK")].DownloadLink'
|
|
4296
4314
|
thumbnail: '$.Assets[?(@.Type="QUICKLOOK")].DownloadLink'
|
|
4297
4315
|
download: !plugin
|
|
4298
|
-
type:
|
|
4316
|
+
type: AwsDownload
|
|
4299
4317
|
s3_endpoint: 'https://eodata.cloudferro.com'
|
|
4300
4318
|
s3_bucket: 'eodata'
|
|
4301
4319
|
ssl_verify: true
|
|
@@ -4303,6 +4321,7 @@
|
|
|
4303
4321
|
type: AwsAuth
|
|
4304
4322
|
auth_error_code: 403
|
|
4305
4323
|
s3_endpoint: 'https://eodata.cloudferro.com'
|
|
4324
|
+
support_presign_url: False
|
|
4306
4325
|
matching_conf:
|
|
4307
4326
|
s3_endpoint: 'https://eodata.cloudferro.com'
|
|
4308
4327
|
products:
|
|
@@ -5211,8 +5230,6 @@
|
|
|
5211
5230
|
productType: EO.CLMS.DAT.GLO.NDVI_1KM_V2
|
|
5212
5231
|
CLMS_GLO_NDVI_333M:
|
|
5213
5232
|
productType: EO.CLMS.DAT.GLO.NDVI300_V1
|
|
5214
|
-
EEA_DAILY_VI:
|
|
5215
|
-
productType: EO.CLMS.DAT.SENTINEL-2.HRVPP.VI
|
|
5216
5233
|
# Landsat data
|
|
5217
5234
|
LANDSAT_C2L1:
|
|
5218
5235
|
productType: EO.NASA.DAT.LANDSAT.C2_L1
|
|
@@ -5748,7 +5765,7 @@
|
|
|
5748
5765
|
MSG_CTH_IODC:
|
|
5749
5766
|
parentIdentifier: EO:EUM:DAT:MSG:CTH-IODC
|
|
5750
5767
|
HIRS_FDR_1_MULTI:
|
|
5751
|
-
parentIdentifier: EO:EUM:DAT:
|
|
5768
|
+
parentIdentifier: EO:EUM:DAT:0961
|
|
5752
5769
|
MSG_OCA_CDR:
|
|
5753
5770
|
parentIdentifier: EO:EUM:DAT:0617
|
|
5754
5771
|
S6_RADIO_OCCULTATION:
|
|
@@ -5998,8 +6015,8 @@
|
|
|
5998
6015
|
limit: 10000
|
|
5999
6016
|
pagination:
|
|
6000
6017
|
total_items_nb_key_path: '$.context.matched'
|
|
6001
|
-
#
|
|
6002
|
-
max_items_per_page:
|
|
6018
|
+
# As of 2025/11/21 the geodes API documentation (https://geodes.cnes.fr/support/api/) states that pagination must be limited to 80.
|
|
6019
|
+
max_items_per_page: 80
|
|
6003
6020
|
sort:
|
|
6004
6021
|
sort_by_tpl: '{{"sortBy": [ {{"field": "{sort_param}", "direction": "{sort_order}" }} ] }}'
|
|
6005
6022
|
sort_by_default:
|
|
@@ -6079,11 +6096,11 @@
|
|
|
6079
6096
|
S2_MSI_L1C:
|
|
6080
6097
|
productType: PEPS_S2_L1C
|
|
6081
6098
|
S2_MSI_L2A_MAJA:
|
|
6082
|
-
productType:
|
|
6099
|
+
productType: THEIA_REFLECTANCE_SENTINEL2_L2A
|
|
6083
6100
|
S2_MSI_L2B_MAJA_SNOW:
|
|
6084
|
-
productType:
|
|
6101
|
+
productType: THEIA_SNOW_SENTINEL2_L2B
|
|
6085
6102
|
S2_MSI_L2B_MAJA_WATER:
|
|
6086
|
-
productType:
|
|
6103
|
+
productType: THEIA_WATERQUAL_SENTINEL2_L2B
|
|
6087
6104
|
GENERIC_PRODUCT_TYPE:
|
|
6088
6105
|
productType: '{productType}'
|
|
6089
6106
|
download: !plugin
|
|
@@ -6123,8 +6140,8 @@
|
|
|
6123
6140
|
limit: 10000
|
|
6124
6141
|
pagination:
|
|
6125
6142
|
total_items_nb_key_path: '$.context.matched'
|
|
6126
|
-
#
|
|
6127
|
-
max_items_per_page:
|
|
6143
|
+
# As of 2025/11/21 the geodes API documentation (https://geodes.cnes.fr/support/api/) states that pagination must be limited to 80.
|
|
6144
|
+
max_items_per_page: 80
|
|
6128
6145
|
sort:
|
|
6129
6146
|
sort_by_tpl: '{{"sortBy": [ {{"field": "{sort_param}", "direction": "{sort_order}" }} ] }}'
|
|
6130
6147
|
sort_by_default:
|
|
@@ -6204,11 +6221,11 @@
|
|
|
6204
6221
|
S2_MSI_L1C:
|
|
6205
6222
|
productType: PEPS_S2_L1C
|
|
6206
6223
|
S2_MSI_L2A_MAJA:
|
|
6207
|
-
productType:
|
|
6224
|
+
productType: THEIA_REFLECTANCE_SENTINEL2_L2A
|
|
6208
6225
|
S2_MSI_L2B_MAJA_SNOW:
|
|
6209
|
-
productType:
|
|
6226
|
+
productType: THEIA_SNOW_SENTINEL2_L2B
|
|
6210
6227
|
S2_MSI_L2B_MAJA_WATER:
|
|
6211
|
-
productType:
|
|
6228
|
+
productType: THEIA_WATERQUAL_SENTINEL2_L2B
|
|
6212
6229
|
GENERIC_PRODUCT_TYPE:
|
|
6213
6230
|
productType: '{productType}'
|
|
6214
6231
|
download: !plugin
|
eodag/types/queryables.py
CHANGED
eodag/utils/__init__.py
CHANGED
|
@@ -77,7 +77,7 @@ from jsonpath_ng import jsonpath
|
|
|
77
77
|
from jsonpath_ng.ext import parse
|
|
78
78
|
from jsonpath_ng.jsonpath import Child, Fields, Index, Root, Slice
|
|
79
79
|
from requests import HTTPError, Response
|
|
80
|
-
from shapely.geometry import Polygon, shape
|
|
80
|
+
from shapely.geometry import Polygon, box, shape
|
|
81
81
|
from shapely.geometry.base import GEOMETRY_TYPES, BaseGeometry
|
|
82
82
|
from tqdm.auto import tqdm
|
|
83
83
|
|
|
@@ -132,6 +132,9 @@ DEFAULT_MAX_ITEMS_PER_PAGE = 50
|
|
|
132
132
|
# default product-types start date
|
|
133
133
|
DEFAULT_MISSION_START_DATE = "2015-01-01T00:00:00.000Z"
|
|
134
134
|
|
|
135
|
+
# default geometry / whole world bounding box
|
|
136
|
+
DEFAULT_SHAPELY_GEOMETRY = box(-180, -90, 180, 90)
|
|
137
|
+
|
|
135
138
|
# default token expiration margin in seconds
|
|
136
139
|
DEFAULT_TOKEN_EXPIRATION_MARGIN = 60
|
|
137
140
|
|
|
@@ -1052,7 +1055,7 @@ def nested_pairs2dict(pairs: Union[list[Any], Any]) -> Union[Any, dict[Any, Any]
|
|
|
1052
1055
|
|
|
1053
1056
|
def get_geometry_from_various(
|
|
1054
1057
|
locations_config: list[dict[str, Any]] = [], **query_args: Any
|
|
1055
|
-
) -> BaseGeometry:
|
|
1058
|
+
) -> Optional[BaseGeometry]:
|
|
1056
1059
|
"""Creates a ``shapely.geometry`` using given query kwargs arguments
|
|
1057
1060
|
|
|
1058
1061
|
:param locations_config: (optional) EODAG locations configuration
|
|
@@ -1137,6 +1140,45 @@ def get_geometry_from_various(
|
|
|
1137
1140
|
return geom
|
|
1138
1141
|
|
|
1139
1142
|
|
|
1143
|
+
def get_geometry_from_ecmwf_feature(geom: dict[str, Any]) -> BaseGeometry:
|
|
1144
|
+
"""
|
|
1145
|
+
Creates a ``shapely.geometry`` from ECMWF Polytope shape.
|
|
1146
|
+
|
|
1147
|
+
:param geom: ECMWF Polytope shape.
|
|
1148
|
+
:returns: A Shapely polygon.
|
|
1149
|
+
"""
|
|
1150
|
+
if not isinstance(geom, dict):
|
|
1151
|
+
raise TypeError(
|
|
1152
|
+
"Geometry must be a dictionary, instead it's {}".format(type(geom))
|
|
1153
|
+
)
|
|
1154
|
+
if "type" not in geom or geom["type"] != "polygon":
|
|
1155
|
+
raise TypeError("Geometry type must be 'polygon'")
|
|
1156
|
+
if "shape" not in geom:
|
|
1157
|
+
raise TypeError("Missing shape in the geometry")
|
|
1158
|
+
if not isinstance(geom["shape"], list):
|
|
1159
|
+
raise TypeError("Geometry shape must be a list")
|
|
1160
|
+
|
|
1161
|
+
shape: list = geom["shape"]
|
|
1162
|
+
polygon_args = [(p[1], p[0]) for p in shape]
|
|
1163
|
+
return Polygon(polygon_args)
|
|
1164
|
+
|
|
1165
|
+
|
|
1166
|
+
def get_geometry_from_ecmwf_area(area: list[float]) -> Optional[BaseGeometry]:
|
|
1167
|
+
"""
|
|
1168
|
+
Creates a ``shapely.geometry`` from bounding box in area format.
|
|
1169
|
+
|
|
1170
|
+
area format: [max_lat,min_lon,min_lat,max_lon]
|
|
1171
|
+
|
|
1172
|
+
:param area: bounding box in area format.
|
|
1173
|
+
:returns: A Shapely polygon.
|
|
1174
|
+
"""
|
|
1175
|
+
if len(area) != 4:
|
|
1176
|
+
raise ValueError("The area must be a list of 4 values")
|
|
1177
|
+
max_lat, min_lon, min_lat, max_lon = area
|
|
1178
|
+
bbox = [min_lon, min_lat, max_lon, max_lat]
|
|
1179
|
+
return get_geometry_from_various(geometry=bbox)
|
|
1180
|
+
|
|
1181
|
+
|
|
1140
1182
|
class MockResponse:
|
|
1141
1183
|
"""Fake requests response"""
|
|
1142
1184
|
|
eodag/utils/dates.py
CHANGED
|
@@ -35,6 +35,18 @@ RFC3339_PATTERN = (
|
|
|
35
35
|
r"(Z|([+-])(\d{2}):(\d{2}))?)?$"
|
|
36
36
|
)
|
|
37
37
|
|
|
38
|
+
# yyyy-mm-dd
|
|
39
|
+
DATE_PATTERN = r"\d{4}-(0[1-9]|1[1,2])-(0[1-9]|[12][0-9]|3[01])"
|
|
40
|
+
|
|
41
|
+
# yyyymmdd
|
|
42
|
+
COMPACT_DATE_PATTERN = r"\d{4}(0[1-9]|1[1,2])(0[1-9]|[12][0-9]|3[01])"
|
|
43
|
+
|
|
44
|
+
# yyyy-mm-dd/yyyy-mm-dd, yyyy-mm-dd/to/yyyy-mm-dd
|
|
45
|
+
DATE_RANGE_PATTERN = DATE_PATTERN + r"(/to/|/)" + DATE_PATTERN
|
|
46
|
+
|
|
47
|
+
# yyyymmdd/yyyymmdd, yyyymmdd/to/yyyymmdd
|
|
48
|
+
COMPACT_DATE_RANGE_PATTERN = COMPACT_DATE_PATTERN + r"(/to/|/)" + COMPACT_DATE_PATTERN
|
|
49
|
+
|
|
38
50
|
|
|
39
51
|
def get_timestamp(date_time: str) -> float:
|
|
40
52
|
"""Return the Unix timestamp of an ISO8601 date/datetime in seconds.
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: eodag
|
|
3
|
-
Version: 3.
|
|
3
|
+
Version: 3.10.1
|
|
4
4
|
Summary: Earth Observation Data Access Gateway
|
|
5
5
|
Home-page: https://github.com/CS-SI/eodag
|
|
6
6
|
Author: CS GROUP - France
|
|
@@ -23,6 +23,7 @@ Classifier: Programming Language :: Python :: 3.10
|
|
|
23
23
|
Classifier: Programming Language :: Python :: 3.11
|
|
24
24
|
Classifier: Programming Language :: Python :: 3.12
|
|
25
25
|
Classifier: Programming Language :: Python :: 3.13
|
|
26
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
26
27
|
Classifier: Programming Language :: Python :: Implementation :: CPython
|
|
27
28
|
Classifier: Topic :: Internet :: WWW/HTTP :: Indexing/Search
|
|
28
29
|
Classifier: Topic :: Scientific/Engineering :: GIS
|
|
@@ -115,6 +116,7 @@ Requires-Dist: types-requests; extra == "stubs"
|
|
|
115
116
|
Requires-Dist: types-python-dateutil; extra == "stubs"
|
|
116
117
|
Requires-Dist: types-PyYAML; extra == "stubs"
|
|
117
118
|
Requires-Dist: types-setuptools; extra == "stubs"
|
|
119
|
+
Requires-Dist: types-shapely; extra == "stubs"
|
|
118
120
|
Requires-Dist: types-tqdm; extra == "stubs"
|
|
119
121
|
Requires-Dist: types-urllib3; extra == "stubs"
|
|
120
122
|
Provides-Extra: docs
|
|
@@ -317,7 +319,7 @@ An eodag instance can be exposed through a STAC compliant REST api from the comm
|
|
|
317
319
|
|
|
318
320
|
.. code-block:: bash
|
|
319
321
|
|
|
320
|
-
docker run -p 5000:5000 --rm csspace/eodag-server:3.
|
|
322
|
+
docker run -p 5000:5000 --rm csspace/eodag-server:3.10.1
|
|
321
323
|
|
|
322
324
|
You can also browse over your STAC API server using `STAC Browser <https://github.com/radiantearth/stac-browser>`_.
|
|
323
325
|
Simply run:
|
|
@@ -377,6 +379,15 @@ Start playing with the CLI:
|
|
|
377
379
|
|
|
378
380
|
- To print log messages, add ``-v`` to eodag master command. e.g. ``eodag -v list``. The more ``v`` given (up to 3), the more verbose the tool is. For a full verbose output, do for example: ``eodag -vvv list``
|
|
379
381
|
|
|
382
|
+
Docker image
|
|
383
|
+
------------
|
|
384
|
+
|
|
385
|
+
A Docker image is available via the `GitHub Container Registry <https://github.com/CS-SI/eodag/pkgs/container/eodag>`_:
|
|
386
|
+
|
|
387
|
+
.. code-block:: bash
|
|
388
|
+
|
|
389
|
+
docker pull ghcr.io/cs-si/eodag:v3.10.x
|
|
390
|
+
|
|
380
391
|
Contribute
|
|
381
392
|
==========
|
|
382
393
|
|
|
@@ -4,12 +4,12 @@ eodag/config.py,sha256=-Ub-sAdJRhTQTrK23AZcYANtoZp-xQdB0M_FZorRLVg,48557
|
|
|
4
4
|
eodag/crunch.py,sha256=fLVAPGVPw31N_DrnFk4gkCpQZLMY8oBhK6NUSYmdr24,1099
|
|
5
5
|
eodag/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
6
|
eodag/api/__init__.py,sha256=ytr30NUVmEtmJTsp3QCwkCIhS1nF6UlFCv0vmySHN7g,735
|
|
7
|
-
eodag/api/core.py,sha256=
|
|
7
|
+
eodag/api/core.py,sha256=JHsK8p481Ak7SCYByqodGUqznF6y9Qks6NaLcFvK8UI,109445
|
|
8
8
|
eodag/api/search_result.py,sha256=2Y2W3xDUyainwcyYBQljGRi6oyOqTTspgCgIlNG4kCc,14383
|
|
9
9
|
eodag/api/product/__init__.py,sha256=k5iNHxXX6wDLsUo725W4U_Jz8CVbZTbfE8R9s1YQwKA,2508
|
|
10
10
|
eodag/api/product/_assets.py,sha256=9bWIe_SYvsQO-q_lQFd7SxhUIWv7feze2-wnXOe8hhs,7570
|
|
11
|
-
eodag/api/product/_product.py,sha256=
|
|
12
|
-
eodag/api/product/metadata_mapping.py,sha256=
|
|
11
|
+
eodag/api/product/_product.py,sha256=JbBxl_J5kJH_8RK3H-lLOoPE9ajry8vc7uvKH20YK24,26708
|
|
12
|
+
eodag/api/product/metadata_mapping.py,sha256=FiRhb23hO1g00Jj7ck4VUnhWafcZ9r3Hy1i05kGuOAg,79313
|
|
13
13
|
eodag/api/product/drivers/__init__.py,sha256=Sy9bGmDhWCAxvxRUf3QGijjQoQvzS1LSUMN34Usq6fM,3357
|
|
14
14
|
eodag/api/product/drivers/base.py,sha256=iPAE5Jx3isxmHHFPP-jysdUylYbsbIq6UejU3qsMROE,4111
|
|
15
15
|
eodag/api/product/drivers/generic.py,sha256=obwH8paf2TP7afnjfx4GxSZPSrTs3suTYJWQvebmigY,2207
|
|
@@ -23,44 +23,45 @@ eodag/plugins/apis/base.py,sha256=oCEKVtIbOjzNgM3lzaCCtO-DhU2PvGfKaATG6OxR-V8,28
|
|
|
23
23
|
eodag/plugins/apis/ecmwf.py,sha256=TTlxTt93B3c1KxDkwjQiwgnZnjBVlFSro6pov3fgcCA,11455
|
|
24
24
|
eodag/plugins/apis/usgs.py,sha256=M1JcIBIGxbSvDNomy3g-G0OcoegghpFleRiZ8xJDXIQ,19686
|
|
25
25
|
eodag/plugins/authentication/__init__.py,sha256=_LVw42Bb1IhGAZH5xHRaS4b1iFoF9e27KDZOyoSoJHY,1039
|
|
26
|
-
eodag/plugins/authentication/aws_auth.py,sha256=
|
|
27
|
-
eodag/plugins/authentication/base.py,sha256=
|
|
26
|
+
eodag/plugins/authentication/aws_auth.py,sha256=A0sr5mVmCkAwCldlGSGFcZqnthusbcB52THthja77cw,12651
|
|
27
|
+
eodag/plugins/authentication/base.py,sha256=U04WwX3rUHD5BoqhcYonttVLwdAF00gQAzce3X1SYkc,3568
|
|
28
28
|
eodag/plugins/authentication/generic.py,sha256=z-u4WMixeG4nKwc70cUGVBXt3IVheDPA6tQWs2iDH4Q,2673
|
|
29
29
|
eodag/plugins/authentication/header.py,sha256=U_KnUqgZTLHXM5OKdGbH6jRqoQ0uIfOoxO6krUeAAcQ,4284
|
|
30
30
|
eodag/plugins/authentication/keycloak.py,sha256=m5c6Os_T8UGfdXS9SemhuUBhwsC4foxmrVA6VXEXamU,7358
|
|
31
31
|
eodag/plugins/authentication/oauth.py,sha256=KEnC6CKmntuZPKUtsgvh0L-_AO244f1FC6blYWHR_LQ,2113
|
|
32
32
|
eodag/plugins/authentication/openid_connect.py,sha256=lj-9RPz2BADU-1ckawLmuSi3TSexABsDDPCHLp8Frsc,27084
|
|
33
33
|
eodag/plugins/authentication/qsauth.py,sha256=bkepO_sFRIhYm3Dzecx3VJP0Ap37vUuJSRmEY8HrV1U,3947
|
|
34
|
-
eodag/plugins/authentication/sas_auth.py,sha256
|
|
34
|
+
eodag/plugins/authentication/sas_auth.py,sha256=-ye_Bgarni91V7B7XWzMyJwekFhujyRbw1seTa1Xi8w,5777
|
|
35
35
|
eodag/plugins/authentication/token.py,sha256=f2SossIJ_XlnBuOw_OprLNrF1p-uolL_KEX71_BhzKw,15798
|
|
36
36
|
eodag/plugins/authentication/token_exchange.py,sha256=raFIN8UnO9MpqQukDJg4Pog-LJLzq8Bk54_6k9cCwFc,4963
|
|
37
37
|
eodag/plugins/crunch/__init__.py,sha256=58D7kJhEpHJWobIKaNFPynfbSqAWgS90BiHzitqS5Ds,746
|
|
38
38
|
eodag/plugins/crunch/base.py,sha256=XW4HISgR0UswiEZmE4t42HxnSxknZBtVpuK8XVLYHzU,1415
|
|
39
39
|
eodag/plugins/crunch/filter_date.py,sha256=dTpUg43KkGU81K2-BO7pL0VbbQbZiwweE2RRWKtXpyw,4356
|
|
40
|
-
eodag/plugins/crunch/filter_latest_intersect.py,sha256=
|
|
40
|
+
eodag/plugins/crunch/filter_latest_intersect.py,sha256=Yeu1AtKsSW4O8HX2tP4IOttn0DrKJe5HWb5-8lrmFjI,4462
|
|
41
41
|
eodag/plugins/crunch/filter_latest_tpl_name.py,sha256=pP4EDP73mQg1zvkVm1Uo4nGAgwhNsMWe7_ecOBDbA0E,3679
|
|
42
|
-
eodag/plugins/crunch/filter_overlap.py,sha256=
|
|
42
|
+
eodag/plugins/crunch/filter_overlap.py,sha256=tU3h15jyfePOQPgGvowHFm2ZuckEbAo6lgLQNaPiJ2Q,7142
|
|
43
43
|
eodag/plugins/crunch/filter_property.py,sha256=2BKb7wxw1Yi2NTtnPCBtdZ-caJXxlVUUS2ps4LHXOMI,3187
|
|
44
44
|
eodag/plugins/download/__init__.py,sha256=zqszaeNgYP0YHlZDkLMf6odcwNw0KrAahGpcA-l0kAw,740
|
|
45
|
-
eodag/plugins/download/aws.py,sha256=
|
|
45
|
+
eodag/plugins/download/aws.py,sha256=Zapv1l5V-g9qxFU59HT-kPmypKEBvHqiaar3_Oyzu7s,46707
|
|
46
46
|
eodag/plugins/download/base.py,sha256=ub217oE_IarzfrSk8DFN6Sfj9aE3VcCENjVGt9xjzKA,30899
|
|
47
|
-
eodag/plugins/download/creodias_s3.py,sha256=
|
|
47
|
+
eodag/plugins/download/creodias_s3.py,sha256=iSS2iqyvzW_SaxYvq2SeFshzHQKv94-NOgqLJsiyL-4,2998
|
|
48
48
|
eodag/plugins/download/http.py,sha256=b5od-j28B0dYxIXoOSNz1OmVgPVqLPD-eO9vfrrUorM,58532
|
|
49
49
|
eodag/plugins/download/s3rest.py,sha256=9gNoCf9UPr8XffuPrZeyf2B67IXoibmOIhSeiH1PIOA,15215
|
|
50
50
|
eodag/plugins/search/__init__.py,sha256=dShNJxU5NzF27aW-PgYtpyKimCibTlgf38PFsf_Rqa8,2086
|
|
51
51
|
eodag/plugins/search/base.py,sha256=LBS7K9zx86uzItuYFwWzznaByooYWFHnbQ5o4OrfNHM,20084
|
|
52
|
-
eodag/plugins/search/build_search_result.py,sha256=
|
|
53
|
-
eodag/plugins/search/cop_marine.py,sha256
|
|
52
|
+
eodag/plugins/search/build_search_result.py,sha256=Dr3VRMTvAfzhgkJL5wD_K3ok5gXcSkjDR0vaQ7dIrhs,58777
|
|
53
|
+
eodag/plugins/search/cop_marine.py,sha256=LpbkGKa-SsHXLqBiRIgFy-AgwAZsxuJuaAFDd7hKHYo,20725
|
|
54
54
|
eodag/plugins/search/creodias_s3.py,sha256=q-fzgKIp9hPgcxZ1fQz8N7veDdqZVZuVvygGOIA9zf0,3845
|
|
55
55
|
eodag/plugins/search/csw.py,sha256=de8CNjz4bjEny27V0RXC7V8LRz0Ik3yqQVjTAc_JlyA,12548
|
|
56
56
|
eodag/plugins/search/data_request_search.py,sha256=m38kpTXJT2fC8Mk894KlxKb14dz-nhAs_71-5kpnehU,27461
|
|
57
57
|
eodag/plugins/search/qssearch.py,sha256=X4U9VYcHkCj_EGwXbQ9G6iRe97_u3cbatQ0ZSgG4sL4,94886
|
|
58
58
|
eodag/plugins/search/stac_list_assets.py,sha256=OOCMyjD8XD-m39k0SyKMrRi4K8Ii5mOQsA6zSAeQDGI,3435
|
|
59
59
|
eodag/plugins/search/static_stac_search.py,sha256=CPynjpNw0gXa6g6hA2zSkbwhfgU-9IBCmJtknuhnFKk,10515
|
|
60
|
-
eodag/resources/
|
|
60
|
+
eodag/resources/ext_collections.json,sha256=q_XP7evZIdYZJvjucMlDqMBERJnlggcqCeAUmJbw1gU,2586798
|
|
61
|
+
eodag/resources/ext_product_types.json,sha256=5AHQ6O8BqilEQBoXWDdb12FZHJW1CHEfHJPe-RmPKzI,2526068
|
|
61
62
|
eodag/resources/locations_conf_template.yml,sha256=_eBv-QKHYMIKhY0b0kp4Ee33RsayxN8LWH3kDXxfFSk,986
|
|
62
|
-
eodag/resources/product_types.yml,sha256=
|
|
63
|
-
eodag/resources/providers.yml,sha256=
|
|
63
|
+
eodag/resources/product_types.yml,sha256=Cj6DvEA3GIRmbWOfR6W4qac2OVs6l0SCMXqx1_2yw-8,427234
|
|
64
|
+
eodag/resources/providers.yml,sha256=0zEGBfyZSZLDg4WgaLnoxQgqvwRntff9QZPdn93uTUY,232731
|
|
64
65
|
eodag/resources/stac.yml,sha256=QnrBulL2pHZrPH4pI7rQtKDxmgP2ZbBcufFqFJPCL7A,10473
|
|
65
66
|
eodag/resources/stac_api.yml,sha256=2FdQL_qBTIUlu6KH836T4CXBKO9AvVxA_Ub3J1RP81A,68881
|
|
66
67
|
eodag/resources/stac_provider.yml,sha256=0nldbieF2CGf6QyqjEa-R96V3H1pV-jJwzRmaS2VzaQ,6804
|
|
@@ -92,11 +93,11 @@ eodag/rest/utils/rfc3339.py,sha256=28I4IGoXq6NCnc5s5YVgOMMl_xfbGZqnX40qKDbglqo,2
|
|
|
92
93
|
eodag/types/__init__.py,sha256=CCNBBM1NTq5UkN7s5zdl-uZdT8nOGX0z9Y8g7kwEyAw,16150
|
|
93
94
|
eodag/types/bbox.py,sha256=jbfX58KOKIl0OoGZc93kAYhG_mEOjuBQGJtR2hl3-_Y,4354
|
|
94
95
|
eodag/types/download_args.py,sha256=urSl5KbLRN1XetMa2XzxYltny8CCFmHpjxU3j3BEGO8,1565
|
|
95
|
-
eodag/types/queryables.py,sha256=
|
|
96
|
+
eodag/types/queryables.py,sha256=H4OHOvalH3j64_u6hV1ubikxjeCsLKUX-5KO4cJvQT0,10581
|
|
96
97
|
eodag/types/search_args.py,sha256=EtG8nXnApBnYrFo5FVvsvvEqRlqTxJ0lrmIem9Wtg8c,5649
|
|
97
|
-
eodag/utils/__init__.py,sha256=
|
|
98
|
+
eodag/utils/__init__.py,sha256=ZU4Wmf3ldURFwWnpd7vJNj7rsyFjTm_hfnKVlIZZd8I,55875
|
|
98
99
|
eodag/utils/cache.py,sha256=UNvnzhJnNBuKLdH_0KnhuTMlBvz4GS3nr2IH2Lj6Swc,2580
|
|
99
|
-
eodag/utils/dates.py,sha256=
|
|
100
|
+
eodag/utils/dates.py,sha256=nUIcGo1i9o2Lwv2A44vaAPh7V2ml_uEzw_6FdO9zOCQ,7876
|
|
100
101
|
eodag/utils/env.py,sha256=_sgCzDmaJnMnCv1qk9xe9jBhBKqqXbEYmsyGYwYw4NI,1085
|
|
101
102
|
eodag/utils/exceptions.py,sha256=64M6xNsWWThEspIrZvxPYCS47wBH4PL7YXXw8fcPCbo,4588
|
|
102
103
|
eodag/utils/free_text_search.py,sha256=et6nn5qmzbUq0T9tup6M2kMCwn2CvQgwVq6M6XOKEpg,8057
|
|
@@ -107,9 +108,9 @@ eodag/utils/repr.py,sha256=o6NhScogBPI69m83GsHh3hXONb9-byPfuWgJ1U39Kfw,5463
|
|
|
107
108
|
eodag/utils/requests.py,sha256=avNHKrOZ7Kp6lUA7u4kqupIth9MoirLzDsMrrmQDt4s,4560
|
|
108
109
|
eodag/utils/s3.py,sha256=eESanPLVv-Luqo_o1WgUuO7YLqiXg_iEzHZ15fu-ugY,30063
|
|
109
110
|
eodag/utils/stac_reader.py,sha256=8r6amio5EtwGF9iu9zHaGDz4oUPKKeXRuyTzPNakrO4,9406
|
|
110
|
-
eodag-3.
|
|
111
|
-
eodag-3.
|
|
112
|
-
eodag-3.
|
|
113
|
-
eodag-3.
|
|
114
|
-
eodag-3.
|
|
115
|
-
eodag-3.
|
|
111
|
+
eodag-3.10.1.dist-info/licenses/LICENSE,sha256=4MAecetnRTQw5DlHtiikDSzKWO1xVLwzM5_DsPMYlnE,10172
|
|
112
|
+
eodag-3.10.1.dist-info/METADATA,sha256=NKPU9iy7L5Y99awIn7rtGxlo24xLRA86ICfmcxGMo4A,15835
|
|
113
|
+
eodag-3.10.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
114
|
+
eodag-3.10.1.dist-info/entry_points.txt,sha256=4b6l049qcMbT60_9GebzhtCOVWLGa66_-sesZWqzLQg,2519
|
|
115
|
+
eodag-3.10.1.dist-info/top_level.txt,sha256=025IMTmVe5eDjIPP4KEFQKespOPMQdne4U4jOy8nftM,6
|
|
116
|
+
eodag-3.10.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|