eodag 3.0.0b2__py3-none-any.whl → 3.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- eodag/__init__.py +6 -8
- eodag/api/core.py +295 -287
- eodag/api/product/__init__.py +10 -4
- eodag/api/product/_assets.py +2 -14
- eodag/api/product/_product.py +16 -30
- eodag/api/product/drivers/__init__.py +7 -2
- eodag/api/product/drivers/base.py +0 -3
- eodag/api/product/metadata_mapping.py +12 -31
- eodag/api/search_result.py +33 -12
- eodag/cli.py +35 -19
- eodag/config.py +455 -155
- eodag/plugins/apis/base.py +13 -7
- eodag/plugins/apis/ecmwf.py +16 -7
- eodag/plugins/apis/usgs.py +68 -16
- eodag/plugins/authentication/aws_auth.py +25 -7
- eodag/plugins/authentication/base.py +10 -1
- eodag/plugins/authentication/generic.py +14 -3
- eodag/plugins/authentication/header.py +12 -4
- eodag/plugins/authentication/keycloak.py +41 -22
- eodag/plugins/authentication/oauth.py +11 -1
- eodag/plugins/authentication/openid_connect.py +183 -167
- eodag/plugins/authentication/qsauth.py +12 -4
- eodag/plugins/authentication/sas_auth.py +19 -2
- eodag/plugins/authentication/token.py +59 -11
- eodag/plugins/authentication/token_exchange.py +19 -19
- eodag/plugins/crunch/base.py +7 -2
- eodag/plugins/crunch/filter_date.py +8 -11
- eodag/plugins/crunch/filter_latest_intersect.py +5 -7
- eodag/plugins/crunch/filter_latest_tpl_name.py +2 -5
- eodag/plugins/crunch/filter_overlap.py +9 -15
- eodag/plugins/crunch/filter_property.py +9 -14
- eodag/plugins/download/aws.py +84 -99
- eodag/plugins/download/base.py +36 -77
- eodag/plugins/download/creodias_s3.py +11 -2
- eodag/plugins/download/http.py +134 -109
- eodag/plugins/download/s3rest.py +37 -43
- eodag/plugins/manager.py +173 -41
- eodag/plugins/search/__init__.py +9 -9
- eodag/plugins/search/base.py +35 -35
- eodag/plugins/search/build_search_result.py +55 -64
- eodag/plugins/search/cop_marine.py +113 -32
- eodag/plugins/search/creodias_s3.py +20 -8
- eodag/plugins/search/csw.py +41 -1
- eodag/plugins/search/data_request_search.py +119 -14
- eodag/plugins/search/qssearch.py +619 -197
- eodag/plugins/search/static_stac_search.py +25 -23
- eodag/resources/ext_product_types.json +1 -1
- eodag/resources/product_types.yml +211 -56
- eodag/resources/providers.yml +1762 -1809
- eodag/resources/stac.yml +3 -163
- eodag/resources/user_conf_template.yml +134 -119
- eodag/rest/config.py +1 -2
- eodag/rest/constants.py +0 -1
- eodag/rest/core.py +70 -92
- eodag/rest/errors.py +181 -0
- eodag/rest/server.py +24 -330
- eodag/rest/stac.py +105 -630
- eodag/rest/types/eodag_search.py +17 -15
- eodag/rest/types/queryables.py +5 -14
- eodag/rest/types/stac_search.py +18 -13
- eodag/rest/utils/rfc3339.py +0 -1
- eodag/types/__init__.py +24 -6
- eodag/types/download_args.py +14 -5
- eodag/types/queryables.py +1 -2
- eodag/types/search_args.py +10 -11
- eodag/types/whoosh.py +0 -2
- eodag/utils/__init__.py +97 -136
- eodag/utils/constraints.py +0 -8
- eodag/utils/exceptions.py +23 -9
- eodag/utils/import_system.py +0 -4
- eodag/utils/logging.py +37 -80
- eodag/utils/notebook.py +4 -4
- eodag/utils/requests.py +13 -23
- eodag/utils/rest.py +0 -4
- eodag/utils/stac_reader.py +3 -15
- {eodag-3.0.0b2.dist-info → eodag-3.0.1.dist-info}/METADATA +41 -24
- eodag-3.0.1.dist-info/RECORD +109 -0
- {eodag-3.0.0b2.dist-info → eodag-3.0.1.dist-info}/WHEEL +1 -1
- {eodag-3.0.0b2.dist-info → eodag-3.0.1.dist-info}/entry_points.txt +1 -0
- eodag/resources/constraints/climate-dt.json +0 -13
- eodag/resources/constraints/extremes-dt.json +0 -8
- eodag-3.0.0b2.dist-info/RECORD +0 -110
- {eodag-3.0.0b2.dist-info → eodag-3.0.1.dist-info}/LICENSE +0 -0
- {eodag-3.0.0b2.dist-info → eodag-3.0.1.dist-info}/top_level.txt +0 -0
|
@@ -554,6 +554,30 @@ S1_SAR_GRD_JP2:
|
|
|
554
554
|
title: SENTINEL1 Level-1 Ground Range Detected
|
|
555
555
|
missionStartDate: "2014-04-03T00:00:00Z"
|
|
556
556
|
|
|
557
|
+
S1_SAR_GRD_COG:
|
|
558
|
+
abstract: |
|
|
559
|
+
Level-1 Ground Range Detected (GRD) products consist of focused SAR data that has been detected, multi-looked and
|
|
560
|
+
projected to ground range using an Earth ellipsoid model. Phase information is lost. The resulting product has
|
|
561
|
+
approximately square spatial resolution pixels and square pixel spacing with reduced speckle at the cost of worse
|
|
562
|
+
spatial resolution.
|
|
563
|
+
GRD products can be in one of three resolutions: |
|
|
564
|
+
Full Resolution (FR),
|
|
565
|
+
High Resolution (HR),
|
|
566
|
+
Medium Resolution (MR).
|
|
567
|
+
The resolution is dependent upon the amount of multi-looking performed. Level-1 GRD products are available in MR
|
|
568
|
+
and HR for IW and EW modes, MR for WV mode and MR, HR and FR for SM mode.
|
|
569
|
+
Product containing Cloud Optimized GeoTIFF images, without SAFE formatting.
|
|
570
|
+
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification
|
|
571
|
+
instrument: SAR
|
|
572
|
+
platform: SENTINEL1
|
|
573
|
+
platformSerialIdentifier: S1A,S1B
|
|
574
|
+
processingLevel: L1
|
|
575
|
+
keywords: SAR,SENTINEL,SENTINEL1,S1,S1A,S1B,L1,GRD,COG
|
|
576
|
+
sensorType: RADAR
|
|
577
|
+
license: proprietary
|
|
578
|
+
title: SENTINEL1 Level-1 Ground Range Detected
|
|
579
|
+
missionStartDate: "2014-04-03T00:00:00Z"
|
|
580
|
+
|
|
557
581
|
S1_SAR_SLC:
|
|
558
582
|
abstract: |
|
|
559
583
|
Level-1 Single Look Complex (SLC) products consist of focused SAR data geo-referenced using orbit and attitude
|
|
@@ -2842,7 +2866,7 @@ ERA5_LAND:
|
|
|
2842
2866
|
sensorType: ATMOSPHERIC
|
|
2843
2867
|
license: proprietary
|
|
2844
2868
|
title: ERA5-Land hourly data from 1950 to present
|
|
2845
|
-
missionStartDate: "1950-01-
|
|
2869
|
+
missionStartDate: "1950-01-01T01:00:00Z"
|
|
2846
2870
|
|
|
2847
2871
|
ERA5_LAND_MONTHLY:
|
|
2848
2872
|
abstract: |
|
|
@@ -3262,32 +3286,6 @@ SEASONAL_POSTPROCESSED_PL:
|
|
|
3262
3286
|
title: Seasonal forecast anomalies on pressure levels
|
|
3263
3287
|
missionStartDate: "2017-09-01T00:00:00Z"
|
|
3264
3288
|
|
|
3265
|
-
SATELLITE_SEA_LEVEL_BLACK_SEA:
|
|
3266
|
-
abstract: |
|
|
3267
|
-
Sea level anomaly is the height of water over the mean sea surface in a given time and region. Up-to-date
|
|
3268
|
-
altimeter standards are used to estimate the sea level anomalies with a mapping algorithm dedicated to the
|
|
3269
|
-
Black sea region. Anomalies are computed with respect to a twenty-year mean reference period (1993-2012).
|
|
3270
|
-
The steady number of reference satellite used in the production of this dataset contributes to the long-term
|
|
3271
|
-
stability of the sea level record. Improvements of the accuracy, sampling of meso-scale processes and of the
|
|
3272
|
-
high-latitude coverage were achieved by using a few additional satellite missions. New data are provided with
|
|
3273
|
-
a delay of about 4-5 months relatively to near-real time or interim sea level products. This delay is mainly
|
|
3274
|
-
due to the timeliness of the input data, the centred processing temporal window and the validation process.
|
|
3275
|
-
However, this processing and validation adds stability and accuracy to the sea level variables and make them
|
|
3276
|
-
adapted to climate applications. This dataset includes uncertainties for each grid cell. More details about
|
|
3277
|
-
the sea level retrieval, additional filters, optimisation procedures, and the error estimation are given in
|
|
3278
|
-
the Documentation section. Variables in the dataset/application are: Absolute dynamic topography, Absolute
|
|
3279
|
-
geostrophic velocity meridian component, Absolute geostrophic velocity zonal component, Geostrophic velocity
|
|
3280
|
-
anomalies meridian component, Geostrophic velocity anomalies zonal component, Sea level anomaly
|
|
3281
|
-
platform:
|
|
3282
|
-
instrument:
|
|
3283
|
-
platformSerialIdentifier:
|
|
3284
|
-
processingLevel:
|
|
3285
|
-
keywords: Climate,ECMWF,CDS,C3S,sea,level,Black Sea
|
|
3286
|
-
sensorType: HYDROLOGICAL
|
|
3287
|
-
license: proprietary
|
|
3288
|
-
title: Sea level daily gridded data from satellite observations for the Black Sea from 1993 to 2020
|
|
3289
|
-
missionStartDate: "1993-01-01T00:00:00Z"
|
|
3290
|
-
|
|
3291
3289
|
SATELLITE_SEA_LEVEL_GLOBAL:
|
|
3292
3290
|
abstract: |
|
|
3293
3291
|
This data set provides gridded daily global estimates of sea level anomaly based on satellite altimetry
|
|
@@ -3331,33 +3329,6 @@ SATELLITE_SEA_LEVEL_GLOBAL:
|
|
|
3331
3329
|
missionStartDate: "1993-01-01T00:00:00Z"
|
|
3332
3330
|
missionEndDate: "2022-08-04T23:59:59Z"
|
|
3333
3331
|
|
|
3334
|
-
SATELLITE_SEA_LEVEL_MEDITERRANEAN:
|
|
3335
|
-
abstract: |
|
|
3336
|
-
Sea level anomaly is the height of water over the mean sea surface in a given time and region. In this dataset sea
|
|
3337
|
-
level anomalies are computed with respect to a twenty-year mean reference period (1993-2012). Up-to-date altimeter
|
|
3338
|
-
standards are used to estimate the sea level anomalies with a mapping algorithm specifically dedicated to the
|
|
3339
|
-
Mediterranean Sea. The steady number of reference satellite used in the production of this dataset contributes to
|
|
3340
|
-
the long-term stability of the sea level record. Improvements of the accuracy, sampling of meso-scale processes and
|
|
3341
|
-
of the high-latitude coverage were achieved by using a few additional satellite missions. New data are provided with
|
|
3342
|
-
a delay of about 4-5 months relatively to near-real time or interim sea level products. This delay is mainly due to
|
|
3343
|
-
the timeliness of the input data, the centred processing temporal window and the validation process. However, this
|
|
3344
|
-
processing and validation adds stability and accuracy to the sea level variables and make them adapted to climate
|
|
3345
|
-
applications. This dataset includes uncertainties for each grid cell. More details about the sea level retrieval,
|
|
3346
|
-
additional filters, optimisation procedures, and the error estimation are given in the Documentation section.
|
|
3347
|
-
Variables in the dataset/application are: Absolute dynamic topography, Absolute geostrophic velocity meridian
|
|
3348
|
-
component, Absolute geostrophic velocity zonal component, Geostrophic velocity anomalies meridian component,
|
|
3349
|
-
Geostrophic velocity anomalies zonal component, Sea level anomaly
|
|
3350
|
-
platform:
|
|
3351
|
-
instrument:
|
|
3352
|
-
platformSerialIdentifier:
|
|
3353
|
-
processingLevel:
|
|
3354
|
-
keywords: Climate,ECMWF,CDS,C3S,sea,level,mediterranean
|
|
3355
|
-
sensorType: HYDROLOGICAL
|
|
3356
|
-
license: proprietary
|
|
3357
|
-
title: Sea level daily gridded data from satellite observations for the Mediterranean Sea
|
|
3358
|
-
missionStartDate: "1993-01-01T00:00:00Z"
|
|
3359
|
-
missionEndDate: "2018-11-01T23:59:59Z"
|
|
3360
|
-
|
|
3361
3332
|
SEASONAL_POSTPROCESSED_SL:
|
|
3362
3333
|
abstract: |
|
|
3363
3334
|
This entry covers single-level data post-processed for bias adjustment on a monthly time resolution.
|
|
@@ -3665,6 +3636,39 @@ FIRE_HISTORICAL:
|
|
|
3665
3636
|
title: Fire danger indices historical data from the Copernicus Emergency Management Service
|
|
3666
3637
|
missionStartDate: "1940-01-03T00:00:00Z"
|
|
3667
3638
|
|
|
3639
|
+
FIRE_SEASONAL:
|
|
3640
|
+
abstract: |
|
|
3641
|
+
This dataset offers modeled daily fire danger time series, driven by seasonal weather forecasts. It provides long-range
|
|
3642
|
+
predictions of meteorological conditions conducive to the initiation, spread, and persistence of fires. The fire danger
|
|
3643
|
+
metrics included in this dataset are part of an extensive dataset produced by the Copernicus Emergency Management Service (CEMS)
|
|
3644
|
+
for the European Forest Fire Information System (EFFIS) and the Global Wildfire Information System (GWIS). EFFIS and GWIS
|
|
3645
|
+
are used for monitoring and forecasting fire danger at both European and global scales. The dataset incorporates fire danger
|
|
3646
|
+
indices from the U.S. Forest Service National Fire-Danger Rating System (NFDRS), the Canadian Forest Service Fire Weather Index Rating System (FWI),
|
|
3647
|
+
and the Australian McArthur (Mark 5) rating systems.
|
|
3648
|
+
This dataset was generated by driving the Global ECMWF Fire Forecast (GEFF) model with seasonal weather ensemble forecasts
|
|
3649
|
+
from the European Centre for Medium-Range Weather Forecasts (ECMWF) System 5 (SEAS5) prediction system.These forecasts initially
|
|
3650
|
+
consist of 25 ensemble members until December 2016, referred to as re-forecasts. After that period, they consist of seasonal
|
|
3651
|
+
forecasts with 51 members. It is important to note that the re-forecast dataset was initialized using ERA-Interim analysis data,
|
|
3652
|
+
while forecast simulations from 2016 onward are initialized using ECMWF operational analysis. Therefore, it is suggested that
|
|
3653
|
+
the period 1981-2016 be used as a reference period, while the period 2017-to present as a real time forecast.
|
|
3654
|
+
For both the re-forecast (1981-2016) and forecast periods (2017-present), the temporal resolution is daily forecasts at 12:00
|
|
3655
|
+
local time, available once a month, with a prediction horizon of 216 days (equivalent to 7 months). The data records in this
|
|
3656
|
+
dataset will be extended over time as seasonal forcing data becomes available. Once the SEAS5 operation ceases, the dataset
|
|
3657
|
+
will be updated with the next ECMWF seasonal system (SEAS6). It is essential to note that this is not a real-time service,
|
|
3658
|
+
as real-time forecasts are accessible through the EFFIS web services.
|
|
3659
|
+
These seasonal forecasts can be used to assess the performance of the forecasting system or to develop tools for statistically
|
|
3660
|
+
correcting forecast errors. ECMWF produces this dataset as the computational center for fire danger forecasting within the
|
|
3661
|
+
Copernicus Emergency Management Service (CEMS) on behalf of the Joint Research Centre, which serves as the managing entity for this service.
|
|
3662
|
+
instrument:
|
|
3663
|
+
platform: CEMS
|
|
3664
|
+
platformSerialIdentifier: CEMS
|
|
3665
|
+
processingLevel:
|
|
3666
|
+
keywords: ECMWF,CEMS,EFFIS,GWIS,fire,danger,seasonal,GEFF
|
|
3667
|
+
sensorType:
|
|
3668
|
+
license: proprietary
|
|
3669
|
+
title: Seasonal forecast of fire danger indices from the Copernicus Emergency Management Service
|
|
3670
|
+
missionStartDate: "1981-02-01T00:00:00Z"
|
|
3671
|
+
|
|
3668
3672
|
GLOFAS_FORECAST:
|
|
3669
3673
|
abstract: |
|
|
3670
3674
|
This dataset contains global modelled daily data of river discharge forced with meteorological forecasts.
|
|
@@ -4758,6 +4762,157 @@ METOP_HIRSL1:
|
|
|
4758
4762
|
title: HIRS Level 1B - Metop - Global
|
|
4759
4763
|
missionStartDate: "2009-03-23T00:00:00Z"
|
|
4760
4764
|
|
|
4765
|
+
MSG_CLM:
|
|
4766
|
+
abstract: |
|
|
4767
|
+
The Cloud Mask product describes the scene type (either 'clear' or 'cloudy') on a pixel level. Each pixel is classified as one of the following four types: clear sky over water, clear sky over land, cloud, or not processed (off Earth disc). Applications & Uses: The main use is in support of Nowcasting applications, where it frequently serves as a basis for other cloud products, and the remote sensing of continental and ocean surfaces.
|
|
4768
|
+
instrument: SEVIRI
|
|
4769
|
+
platform: MSG
|
|
4770
|
+
platformSerialIdentifier: MSG
|
|
4771
|
+
processingLevel: L2
|
|
4772
|
+
keywords: MSG,SEVIRI,OPTICAL,WEATHER,CLOUDS,ATMOSPHERE,VISUALISATION,L2,MSGCLMK,CLM
|
|
4773
|
+
sensorType: OPTICAL
|
|
4774
|
+
license: proprietary
|
|
4775
|
+
title: Cloud Mask - MSG - 0 degree
|
|
4776
|
+
missionStartDate: "2020-09-01T00:00:00Z"
|
|
4777
|
+
|
|
4778
|
+
MSG_CLM_IODC:
|
|
4779
|
+
abstract: |
|
|
4780
|
+
The Cloud Mask product describes the scene type (either 'clear' or 'cloudy') on a pixel level. Each pixel is classified as one of the following four types: clear sky over water, clear sky over land, cloud, or not processed (off Earth disc). Applications & Uses: The main use is in support of Nowcasting applications, where it frequently serves as a basis for other cloud products, and the remote sensing of continental and ocean surfaces.
|
|
4781
|
+
|
|
4782
|
+
From 1 June 2022, Meteosat-9 at 45.5° E is the prime satellite for the IODC service, replacing Meteosat-8 (located at 41.5° E while in operation).
|
|
4783
|
+
instrument: SEVIRI
|
|
4784
|
+
platform: MSG
|
|
4785
|
+
platformSerialIdentifier: MSG
|
|
4786
|
+
processingLevel: L2
|
|
4787
|
+
keywords: MSG,SEVIRI,OPTICAL,WEATHER,CLOUDS,ATMOSPHERE,ATMOSPHERIC,COMPOSITION,VISUALISATION,L2,MSGCLMK,CLM
|
|
4788
|
+
sensorType: OPTICAL
|
|
4789
|
+
license: proprietary
|
|
4790
|
+
title: Cloud Mask - MSG - Indian Ocean
|
|
4791
|
+
missionStartDate: "2017-02-01T00:00:00Z"
|
|
4792
|
+
|
|
4793
|
+
MSG_GSAL2R02:
|
|
4794
|
+
abstract: |
|
|
4795
|
+
Release 2 of the Thematic Climate Data Record (TCDR) of the Meteosat First Generation (MFG) and Meteosat Second Generation (MSG) Level 2 land surface albedo. The variables estimated are black-sky albedo (BSA) and white-sky albedo (WSA) with the corresponding uncertainties as explained in the Product User Guide (PUM). The data record validation and limitations are provided in the Validation Report (VR). The products are available in netCDF4 format. This release contains products generated with Meteosat-2 to Meteosat-10.
|
|
4796
|
+
instrument: MVIRI,SEVIRI
|
|
4797
|
+
platform: MSG,MFG
|
|
4798
|
+
platformSerialIdentifier: MSG,MFG
|
|
4799
|
+
processingLevel: L2
|
|
4800
|
+
keywords: MSG,MFG,SEVIRI,MVIRI,OPTICAL,CLIMATE,L2,MxGGSA000200
|
|
4801
|
+
sensorType: OPTICAL
|
|
4802
|
+
license: proprietary
|
|
4803
|
+
title: GSA Level 2 Climate Data Record Release 2 - MFG and MSG - 0 degree
|
|
4804
|
+
missionStartDate: "1982-02-10T00:00:00Z"
|
|
4805
|
+
|
|
4806
|
+
MSG_HRSEVIRI:
|
|
4807
|
+
abstract: |
|
|
4808
|
+
Rectified (level 1.5) Meteosat SEVIRI image data. The data is transmitted as High Rate transmissions in 12 spectral channels. Level 1.5 image data corresponds to the geolocated and radiometrically pre-processed image data, ready for further processing, e.g. the extraction of meteorological products. Any spacecraft specific effects have been removed, and in particular, linearisation and equalisation of the image radiometry has been performed for all SEVIRI channels. The on-board blackbody data has been processed. Both radiometric and geometric quality control information is included. Images are made available with different timeliness according to their latency: quarter-hourly images if latency is more than 3 hours and hourly images if latency is less than 3 hours (for a total of 87 images per day). To enhance the perception for areas which are on the night side of the Earth a different mapping with increased contrast is applied for IR3.9 product. The greyscale mapping is based on the EBBT which allows to map the ranges 200 K to 300 K for the night and 250 K to 330 K for the day.
|
|
4809
|
+
instrument: SEVIRI
|
|
4810
|
+
platform: MSG
|
|
4811
|
+
platformSerialIdentifier: MSG
|
|
4812
|
+
processingLevel: L1
|
|
4813
|
+
keywords: MSG,SEVIRI,OPTICAL,OCEAN,ATMOSPHERE,VISUALISATION,L1,MSG15,HRSEVIRI
|
|
4814
|
+
sensorType: OPTICAL
|
|
4815
|
+
license: proprietary
|
|
4816
|
+
title: High Rate SEVIRI Level 1.5 Image Data - MSG - 0 degree
|
|
4817
|
+
missionStartDate: "2004-01-19T00:00:00Z"
|
|
4818
|
+
|
|
4819
|
+
MSG_HRSEVIRI_IODC:
|
|
4820
|
+
abstract: |
|
|
4821
|
+
Rectified (level 1.5) Meteosat SEVIRI image data. The data is transmitted as High Rate transmissions in 12 spectral channels. Level 1.5 image data corresponds to the geolocated and radiometrically pre-processed image data, ready for further processing, e.g. the extraction of meteorological products. Any spacecraft specific effects have been removed, and in particular, linearisation and equalisation of the image radiometry has been performed for all SEVIRI channels. The on-board blackbody data has been processed. Both radiometric and geometric quality control information is included. Images are made available with different timeliness according to the latency: quarter-hourly images with a latency of more than 3 hours and hourly images if latency is less than 3 hours (for a total of 87 images per day). To enhance the perception for areas which are on the night side of the Earth a different mapping with increased contrast is applied for IR3.9 product. The greyscale mapping is based on the EBBT which allows to map the ranges 200 K to 300 K for the night and 250 K to 330 K for the day.
|
|
4822
|
+
From 1 June 2022, Meteosat-9 at 45.5° E is the prime satellite for the IODC service, replacing Meteosat-8 (located at 41.5° E while in operation).
|
|
4823
|
+
instrument: SEVIRI
|
|
4824
|
+
platform: MSG
|
|
4825
|
+
platformSerialIdentifier: MSG
|
|
4826
|
+
processingLevel: L1
|
|
4827
|
+
keywords: MSG,SEVIRI,OPTICAL,OCEAN,ATMOSPHERE,VISUALISATION,L1,MSG15,HRSEVIRI,IODC
|
|
4828
|
+
sensorType: OPTICAL
|
|
4829
|
+
license: proprietary
|
|
4830
|
+
title: High Rate SEVIRI Level 1.5 Image Data - MSG - Indian Ocean
|
|
4831
|
+
missionStartDate: "2017-02-01T00:00:00Z"
|
|
4832
|
+
|
|
4833
|
+
MSG_RSS_CLM:
|
|
4834
|
+
abstract: |
|
|
4835
|
+
The Rapid Scanning Services (RSS) Cloud Mask product describes the scene type (either 'clear' or 'cloudy') on a pixel level. Each pixel is classified as one of the following four types: clear sky over water, clear sky over land, cloud, or not processed (off Earth disc). Applications & Uses: The main use is in support of Nowcasting applications, where it frequently serves as a basis for other cloud products, and the remote sensing of continental and ocean surfaces.
|
|
4836
|
+
instrument: SEVIRI
|
|
4837
|
+
platform: MSG
|
|
4838
|
+
platformSerialIdentifier: MSG
|
|
4839
|
+
processingLevel: L2
|
|
4840
|
+
keywords: RSS-CLM,MSGCLMK,MSG,SEVIRI,OPTICAL,CLOUDS,ATMOSPHERE,L2
|
|
4841
|
+
sensorType: OPTICAL
|
|
4842
|
+
license: proprietary
|
|
4843
|
+
title: Rapid Scan Cloud Mask - MSG
|
|
4844
|
+
missionStartDate: "2013-02-28T00:00:00Z"
|
|
4845
|
+
|
|
4846
|
+
MSG_MSG15_RSS:
|
|
4847
|
+
abstract: |
|
|
4848
|
+
Rectified (level 1.5) Meteosat SEVIRI Rapid Scan image data. The baseline scan region is a reduced area of the top 1/3 of a nominal repeat cycle, covering a latitude range from approximately 15 degrees to 70 degrees. The service generates repeat cycles at 5-minute intervals (the same as currently used for weather radars). The dissemination of RSS data is similar to the normal dissemination, with image segments based on 464 lines and compatible with the full disk level 1.5 data scans. Epilogue and prologue (L1.5 Header and L1.5 Trailer) have the same structure. Calibration is as in Full Earth Scan. Image rectification is to 9.5 degreesE. The scans start at 00:00, 00:05, 00:10, 00:15 ... etc. (5 min scan). The differences from the nominal Full Earth scan are that for channels 1 - 11, only segments 6 - 8 are disseminated and for the High Resolution Visible Channel only segments 16 - 24 are disseminated.
|
|
4849
|
+
instrument: SEVIRI
|
|
4850
|
+
platform: MSG
|
|
4851
|
+
platformSerialIdentifier: MSG
|
|
4852
|
+
processingLevel: L1
|
|
4853
|
+
keywords: MSG15-RSS,MSG15,MSG,SEVIRI,OPTICAL,OCEAN,ATMOSPHERE,LAND,L1
|
|
4854
|
+
sensorType: OPTICAL
|
|
4855
|
+
license: proprietary
|
|
4856
|
+
title: Rapid Scan High Rate SEVIRI Level 1.5 Image Data - MSG
|
|
4857
|
+
missionStartDate: "2008-05-13T00:00:00Z"
|
|
4858
|
+
|
|
4859
|
+
MSG_LSA_FRM:
|
|
4860
|
+
abstract: |
|
|
4861
|
+
Fire risk by merging NWP & remotely sensed (FRP) data. The product includes 24h, 48h, 72h, 96h and 120h forecasts of: risk of fire (5 classes) and the probability of ignitions reaching energy releases over 2000GJ (both covering Southern Europe); Fire Weather Index (FWI) and respective components estimated for the whole MSG disk.
|
|
4862
|
+
instrument: SEVIRI
|
|
4863
|
+
platform: MSG
|
|
4864
|
+
platformSerialIdentifier: MSG
|
|
4865
|
+
processingLevel: L2
|
|
4866
|
+
keywords: LSA-504.2,FRMV2,FIRE,VEGETATION,LAND,MSG,SEVIRI,OPTICAL,LAND,L2
|
|
4867
|
+
sensorType: OPTICAL
|
|
4868
|
+
license: proprietary
|
|
4869
|
+
title: Fire Risk Map - Released Energy Based - MSG
|
|
4870
|
+
# Note: There's a mismatch between the temporal extent mentioned on the
|
|
4871
|
+
# product description page (22/07/2021 to now) and the available time range
|
|
4872
|
+
# displayed on the download page (2023-09-21 - 2024-10-20).
|
|
4873
|
+
#
|
|
4874
|
+
# Using the available time range start date here.
|
|
4875
|
+
missionStartDate: "2023-09-21T00:00:00Z"
|
|
4876
|
+
|
|
4877
|
+
MSG_LSA_LST_CDR:
|
|
4878
|
+
abstract: |
|
|
4879
|
+
The full archive of MSG/SEVIRI data was reprocessed to provide the user community a consistent, homogeneous and continuous Data Record of the 15-min Land Surface Temperature (LST) for the period 2004-2015. This Data Record was obtained with the best version of its equivalent NRT product (MLST) which can also complement the time series from 2016 onwards.
|
|
4880
|
+
instrument: SEVIRI
|
|
4881
|
+
platform: MSG
|
|
4882
|
+
platformSerialIdentifier: MSG
|
|
4883
|
+
processingLevel: L3
|
|
4884
|
+
keywords: LSA-050,MLST-R,FIRE,VEGETATION,LAND,MSG,SEVIRI,OPTICAL,LAND,L3
|
|
4885
|
+
sensorType: OPTICAL
|
|
4886
|
+
license: proprietary
|
|
4887
|
+
title: Land Surface Temperature Climate Data Record - MSG
|
|
4888
|
+
missionStartDate: "2004-01-21T00:00:00Z"
|
|
4889
|
+
|
|
4890
|
+
MSG_LSA_LSTDE:
|
|
4891
|
+
abstract: |
|
|
4892
|
+
Land Surface Temperature (LST) is the radiative skin temperature over land. LST plays an important role in the physics of land surface as it is involved in the processes of energy and water exchange with the atmosphere. LST is useful for the scientific community, namely for those dealing with meteorological and climate models. Accurate values of LST are also of special interest in a wide range of areas related to land surface processes, including meteorology, hydrology, agrometeorology, climatology and environmental studies. Land Surface Emissivity (EM), a crucial parameter for LST retrieval from space, is independently estimated as a function of (satellite derived) Fraction of Vegetation Cover (FVC) and land cover classification. In the most recent version of the dataset, information on the expected deviation of LST estimates from SEVIRI/MSG with respect to a reference view – here considered to be nadir view – has been added to the original product (LSA-001) as an extra data layer (LSA-004).
|
|
4893
|
+
instrument: SEVIRI
|
|
4894
|
+
platform: MSG
|
|
4895
|
+
platformSerialIdentifier: MSG
|
|
4896
|
+
processingLevel: L2
|
|
4897
|
+
keywords: LSA-004,LSA-001,MLST_DIR,FIRE,VEGETATION,LAND,MSG,SEVIRI,OPTICAL,LAND,L2
|
|
4898
|
+
sensorType: OPTICAL
|
|
4899
|
+
license: proprietary
|
|
4900
|
+
title: Land Surface Temperature with Directional Effects - MSG
|
|
4901
|
+
missionStartDate: "2005-01-16T00:00:00Z"
|
|
4902
|
+
|
|
4903
|
+
MSG_AMVR02:
|
|
4904
|
+
abstract: |
|
|
4905
|
+
This is the second release of the reprocessed Meteosat First Generation (MFG) and Meteosat Second Generation (MSG) Atmospheric Motion Vectors (AMV) Thematic Climate Data Record (TCDR). It contains AMV at all heights below the tropopause, derived from images in 2 channels (Water Vapour 6.2, Infrared 10.8) of the instrument MVIRI on board MFG and SEVIRI on board MSG. Vectors are retrieved by tracking the motion of clouds and other atmospheric constituents such as water vapour patterns. The height assignment of the AMVs is calculated using the Cross-Correlation Contribution (CCC) function to determine the height using the pixels that contribute the most to the vectors. The final vector is estimated averaging the speed and height over 4 consecutive images. A quality indicator is derived for each vector to assess the reliability of the retrieval. Products are stored in netCDF4 format and generated from Meteosat-2 to Meteosat-11 satellites, covering the period from September 1981 to August 2019. This is a Thematic Climate Data Record (TCDR).
|
|
4906
|
+
instrument: SEVIRI,MVIRI
|
|
4907
|
+
platform: MSG,MFG
|
|
4908
|
+
platformSerialIdentifier: MSG,MFG
|
|
4909
|
+
processingLevel: L2
|
|
4910
|
+
keywords: WIND,CLIMATE,ATMOSPHERE,OBSERVATION,THEMATIC,OPTICAL,MXGAMV000200,AMVR20000,L2
|
|
4911
|
+
sensorType: OPTICAL
|
|
4912
|
+
license: proprietary
|
|
4913
|
+
title: Atmospheric Motion Vectors Climate Data Record Release 2 - MFG and MSG - 0 degree
|
|
4914
|
+
missionStartDate: "1981-09-03"
|
|
4915
|
+
|
|
4761
4916
|
# Copernicus Marine
|
|
4762
4917
|
MO_GLOBAL_ANALYSISFORECAST_PHY_001_024:
|
|
4763
4918
|
abstract: |
|
|
@@ -5494,7 +5649,7 @@ MO_OCEANCOLOUR_GLO_BGC_L3_MY_009_107:
|
|
|
5494
5649
|
platformSerialIdentifier:
|
|
5495
5650
|
processingLevel: Level 3
|
|
5496
5651
|
keywords: CMEMS,Mercator,ocean,global,L3,bio-geo-chemical,BGC,chlorophyll,phytoplankton,reflectance
|
|
5497
|
-
sensorType:
|
|
5652
|
+
sensorType: multi
|
|
5498
5653
|
license: proprietary
|
|
5499
5654
|
title: Global Ocean Colour Plankton and Reflectances MY L3 daily observations
|
|
5500
5655
|
missionStartDate: "1997-09-04T00:00:00Z"
|
|
@@ -5598,7 +5753,7 @@ MO_OCEANCOLOUR_GLO_BGC_L4_MY_009_108:
|
|
|
5598
5753
|
platformSerialIdentifier:
|
|
5599
5754
|
processingLevel: L4
|
|
5600
5755
|
keywords: CMEMS,Mercator,ocean,global,colour,L4,bio-geo-chemical,BGC,chlorophyll,MY,multi-years,monthly
|
|
5601
|
-
sensorType:
|
|
5756
|
+
sensorType: multi
|
|
5602
5757
|
license: proprietary
|
|
5603
5758
|
title: Global Ocean Colour Plankton MY L4 monthly observations
|
|
5604
5759
|
missionStartDate: "1997-09-01T00:00:00Z"
|