eo-tides 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
eo_tides/validation.py ADDED
@@ -0,0 +1,334 @@
1
+ import datetime
2
+ import warnings
3
+ from math import sqrt
4
+ from numbers import Number
5
+
6
+ import geopandas as gpd
7
+ import pandas as pd
8
+ import tqdm
9
+ from odc.geo.geom import BoundingBox
10
+ from pandas.tseries.offsets import MonthBegin, MonthEnd, YearBegin, YearEnd
11
+ from scipy import stats
12
+ from shapely.geometry import Point
13
+ from sklearn.metrics import mean_absolute_error, mean_squared_error
14
+
15
+
16
+ def eval_metrics(x, y, round=3, all_regress=False):
17
+ """
18
+ Calculate a set of common statistical metrics
19
+ based on two input actual and predicted vectors.
20
+
21
+ These include:
22
+
23
+ * Pearson correlation
24
+ * Root Mean Squared Error
25
+ * Mean Absolute Error
26
+ * R-squared
27
+ * Bias
28
+ * Linear regression parameters (slope, p-value, intercept, standard error)
29
+
30
+ Parameters
31
+ ----------
32
+ x : numpy.array
33
+ An array providing "actual" variable values.
34
+ y : numpy.array
35
+ An array providing "predicted" variable values.
36
+ round : int
37
+ Number of decimal places to round each metric
38
+ to. Defaults to 3.
39
+ all_regress : bool
40
+ Whether to return linear regression p-value,
41
+ intercept and standard error (in addition to
42
+ only regression slope). Defaults to False.
43
+
44
+ Returns
45
+ -------
46
+ pandas.Series
47
+ A `pd.Series` containing all calculated metrics.
48
+ """
49
+
50
+ # Create dataframe to drop na
51
+ xy_df = pd.DataFrame({"x": x, "y": y}).dropna()
52
+
53
+ # Compute linear regression
54
+ lin_reg = stats.linregress(x=xy_df.x, y=xy_df.y)
55
+
56
+ # Calculate statistics
57
+ stats_dict = {
58
+ "Correlation": xy_df.corr().iloc[0, 1],
59
+ "RMSE": sqrt(mean_squared_error(xy_df.x, xy_df.y)),
60
+ "MAE": mean_absolute_error(xy_df.x, xy_df.y),
61
+ "R-squared": lin_reg.rvalue**2,
62
+ "Bias": (xy_df.y - xy_df.x).mean(),
63
+ "Regression slope": lin_reg.slope,
64
+ }
65
+
66
+ # Additional regression params
67
+ if all_regress:
68
+ stats_dict.update({
69
+ "Regression p-value": lin_reg.pvalue,
70
+ "Regression intercept": lin_reg.intercept,
71
+ "Regression standard error": lin_reg.stderr,
72
+ })
73
+
74
+ # Return as
75
+ return pd.Series(stats_dict).round(round)
76
+
77
+
78
+ def _round_date_strings(date, round_type="end"):
79
+ """
80
+ Round a date string up or down to the start or end of a given time
81
+ period.
82
+
83
+ Parameters
84
+ ----------
85
+ date : str
86
+ Date string of variable precision (e.g. "2020", "2020-01",
87
+ "2020-01-01").
88
+ round_type : str, optional
89
+ Type of rounding to perform. Valid options are "start" or "end".
90
+ If "start", date is rounded down to the start of the time period.
91
+ If "end", date is rounded up to the end of the time period.
92
+ Default is "end".
93
+
94
+ Returns
95
+ -------
96
+ date_rounded : str
97
+ The rounded date string.
98
+
99
+ Examples
100
+ --------
101
+ >>> round_date_strings('2020')
102
+ '2020-12-31 00:00:00'
103
+
104
+ >>> round_date_strings('2020-01', round_type='start')
105
+ '2020-01-01 00:00:00'
106
+
107
+ >>> round_date_strings('2020-01', round_type='end')
108
+ '2020-01-31 00:00:00'
109
+ """
110
+
111
+ # Determine precision of input date string
112
+ date_segments = len(date.split("-"))
113
+
114
+ # If provided date has no "-", treat it as having year precision
115
+ if date_segments == 1 and round_type == "start":
116
+ date_rounded = str(pd.to_datetime(date) + YearBegin(0))
117
+ elif date_segments == 1 and round_type == "end":
118
+ date_rounded = str(pd.to_datetime(date) + YearEnd(0))
119
+
120
+ # If provided date has one "-", treat it as having month precision
121
+ elif date_segments == 2 and round_type == "start":
122
+ date_rounded = str(pd.to_datetime(date) + MonthBegin(0))
123
+ elif date_segments == 2 and round_type == "end":
124
+ date_rounded = str(pd.to_datetime(date) + MonthEnd(0))
125
+
126
+ # If more than one "-", then return date as-is
127
+ elif date_segments > 2:
128
+ date_rounded = date
129
+
130
+ return date_rounded
131
+
132
+
133
+ def _load_gauge_metadata(metadata_path):
134
+ # Load metadata
135
+ metadata_df = pd.read_csv(metadata_path)
136
+ metadata_df.columns = (
137
+ metadata_df.columns.str.replace(" ", "_", regex=False)
138
+ .str.replace("(", "", regex=False)
139
+ .str.replace(")", "", regex=False)
140
+ .str.replace("/", "_", regex=False)
141
+ .str.lower()
142
+ )
143
+ metadata_df = metadata_df.set_index("site_code")
144
+
145
+ # Convert metadata to GeoDataFrame
146
+ metadata_gdf = gpd.GeoDataFrame(
147
+ data=metadata_df,
148
+ geometry=gpd.points_from_xy(metadata_df.longitude, metadata_df.latitude),
149
+ crs="EPSG:4326",
150
+ )
151
+
152
+ return metadata_df, metadata_gdf
153
+
154
+
155
+ def _load_gesla_dataset(site, path, na_value):
156
+ # Read dataset
157
+ gesla_df = pd.read_csv(
158
+ path,
159
+ skiprows=41,
160
+ names=["date", "time", "sea_level", "qc_flag", "use_flag"],
161
+ sep=r"\s+",
162
+ na_values=na_value,
163
+ )
164
+
165
+ # Combine two date fields
166
+ gesla_df = (
167
+ gesla_df.assign(
168
+ time=pd.to_datetime(gesla_df["date"] + " " + gesla_df["time"]),
169
+ site_code=site,
170
+ )
171
+ .drop(columns=["date"])
172
+ .set_index("time")
173
+ )
174
+
175
+ return gesla_df
176
+
177
+
178
+ def _nearest_row(gdf, x, y, max_distance=None):
179
+ # Create a point to find the nearest neighbor for
180
+ target_point = gpd.GeoDataFrame({"geometry": [Point(x, y)]}, crs="EPSG:4326")
181
+
182
+ # Use sjoin_nearest to find the closest point
183
+ return gpd.sjoin_nearest(target_point, gdf, how="left", max_distance=max_distance)
184
+
185
+
186
+ def load_gauge_gesla(
187
+ x=None,
188
+ y=None,
189
+ site_code=None,
190
+ time=("2018", "2020"),
191
+ max_distance=None,
192
+ correct_mean=False,
193
+ filter_use_flag=True,
194
+ site_metadata=True,
195
+ data_path="/gdata1/data/sea_level/gesla/",
196
+ metadata_path="/gdata1/data/sea_level/GESLA3_ALL 2.csv",
197
+ ):
198
+ """
199
+ Load Global Extreme Sea Level Analysis (GESLA) tide gauge data.
200
+
201
+ Load and process all available GESLA measured sea-level data
202
+ with an `x, y, time` spatio-temporal query, or from a list of
203
+ specific tide gauges. Can optionally filter by gauge quality
204
+ and append detailed gauge metadata.
205
+
206
+ Modified from original code in <https://github.com/philiprt/GeslaDataset>.
207
+
208
+ Parameters
209
+ ----------
210
+ x, y : numeric or list/tuple, optional
211
+ Coordinates (in degrees longitude, latitude) used to load GESLA
212
+ tide gauge observations. If provided as singular values
213
+ (e.g. `x=150, y=-32`), then the nearest tide gauge will be returned.
214
+ If provided as a list or tuple (e.g. `x=(150, 152), y=(-32, -30)`),
215
+ then all gauges within the provided bounding box will be loaded.
216
+ Leave as `None` to return all available gauges, or if providing a
217
+ list of site codes using `site_code`.
218
+ site_code : str or list of str, optional
219
+ GESLA site code(s) for which to load data (e.g. `site_code="62650"`).
220
+ If `site_code` is provided, `x` and `y` will be ignored.
221
+ time : tuple or list of str, optional
222
+ Time range to consider, given as a tuple of start and end dates,
223
+ e.g. `time=("2020", "2021")`. The default of None will return all
224
+ tide observations from the year 1800 onward.
225
+ max_distance : numeric, optional
226
+ Optional max distance within which to return the nearest tide gauge
227
+ when `x` and `y` are provided as singular coordinates. Defaults to
228
+ None, which will always return a tide gauge no matter how far away
229
+ it is located from `x` and `y`.
230
+ correct_mean : bool, optional
231
+ Whether to correct sea level measurements to a standardised mean
232
+ sea level by subtracting the mean of all observed sea level
233
+ observations. This can be useful when GESLA tide heights come
234
+ from different or unknown tide datums. Note: the observed mean
235
+ sea level calculated here may differ from true long-term/
236
+ astronomical Mean Sea Level (MSL) datum.
237
+ filter_use_flag : bool, optional
238
+ Whether to filter out low quality observations with a "use_flag"
239
+ value of 0 (do not use). Defaults to True.
240
+ site_metadata : bool, optional
241
+ Whether to add tide gauge station metadata as additional columns
242
+ in the output DataFrame. Defaults to True.
243
+ data_path : str, optional
244
+ Path to the raw GESLA data files. Default is
245
+ `/gdata1/data/sea_level/gesla/`.
246
+ metadata_path : str, optional
247
+ Path to the GESLA station metadata file.
248
+ Default is `/gdata1/data/sea_level/GESLA3_ALL 2.csv`.
249
+
250
+ Returns
251
+ -------
252
+ pd.DataFrame
253
+ Processed GESLA data as a DataFrame with columns including:
254
+
255
+ - "time": Timestamps,
256
+ - "sea_level": Observed sea level (m),
257
+ - "qc_flag": Observed sea level QC flag,
258
+ - "use_flag": Use-in-analysis flag (1 = use, 0 = do not use),
259
+
260
+ ...and additional columns from station metadata.
261
+ """
262
+ # Load tide gauge metadata
263
+ metadata_df, metadata_gdf = _load_gauge_metadata(metadata_path)
264
+
265
+ # Use supplied site codes if available
266
+ if site_code is not None:
267
+ site_code = [site_code] if not isinstance(site_code, list) else site_code
268
+
269
+ # If x and y are tuples, use xy bounds to identify sites
270
+ elif isinstance(x, (tuple, list)) & isinstance(y, (tuple, list)):
271
+ bbox = BoundingBox.from_xy(x, y)
272
+ site_code = metadata_gdf.cx[bbox.left : bbox.right, bbox.top : bbox.bottom].index
273
+
274
+ # If x and y are single numbers, select nearest row
275
+ elif isinstance(x, Number) & isinstance(y, Number):
276
+ with warnings.catch_warnings():
277
+ warnings.simplefilter("ignore")
278
+ site_code = (
279
+ _nearest_row(metadata_gdf, x, y, max_distance).rename({"index_right": "site_code"}, axis=1).site_code
280
+ )
281
+ # site_code = _nearest_row(metadata_gdf, x, y, max_distance).site_code
282
+
283
+ # Raise exception if no valid tide gauges are found
284
+ if site_code.isnull().all():
285
+ raise Exception(f"No tide gauge found within {max_distance} degrees of {x}, {y}.")
286
+
287
+ # Otherwise if all are None, return all available site codes
288
+ elif (site_code is None) & (x is None) & (y is None):
289
+ site_code = metadata_df.index.to_list()
290
+
291
+ else:
292
+ raise TypeError(
293
+ "`x` and `y` must be provided as either singular coordinates (e.g. `x=150`), or as a tuple bounding box (e.g. `x=(150, 152)`)."
294
+ )
295
+
296
+ # Prepare times
297
+ if time is None:
298
+ time = ["1800", str(datetime.datetime.now().year)]
299
+ time = [time] if not isinstance(time, (list, tuple)) else time
300
+ start_time = _round_date_strings(time[0], round_type="start")
301
+ end_time = _round_date_strings(time[-1], round_type="end")
302
+
303
+ # Identify paths to load and nodata values for each site
304
+ metadata_df["file_name"] = data_path + metadata_df["file_name"]
305
+ paths_na = metadata_df.loc[site_code, ["file_name", "null_value"]]
306
+
307
+ # Load and combine into a single dataframe
308
+ gauge_list = [
309
+ _load_gesla_dataset(s, p, na_value=na)
310
+ for s, p, na in tqdm.tqdm(paths_na.itertuples(), total=len(paths_na), desc="Loading GESLA gauges")
311
+ ]
312
+ data_df = pd.concat(gauge_list).sort_index().loc[slice(start_time, end_time)].reset_index().set_index("site_code")
313
+
314
+ # Optionally filter by use flag column
315
+ if filter_use_flag:
316
+ data_df = data_df.loc[data_df.use_flag == 1]
317
+
318
+ # Optionally insert metadata into dataframe
319
+ if site_metadata:
320
+ data_df[metadata_df.columns] = metadata_df.loc[site_code]
321
+
322
+ # Add time to index and remove duplicates
323
+ data_df = data_df.set_index("time", append=True)
324
+ duplicates = data_df.index.duplicated()
325
+ if duplicates.sum() > 0:
326
+ warnings.warn("Duplicate timestamps were removed.")
327
+ data_df = data_df.loc[~duplicates]
328
+
329
+ # Remove observed mean sea level if requested
330
+ if correct_mean:
331
+ data_df["sea_level"] = data_df["sea_level"].sub(data_df.groupby("site_code")["sea_level"].transform("mean"))
332
+
333
+ # Return data
334
+ return data_df
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2024 Geoscience Australia
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,118 @@
1
+ Metadata-Version: 2.2
2
+ Name: eo-tides
3
+ Version: 0.5.0
4
+ Summary: Tide modelling tools for large-scale satellite earth observation analysis
5
+ Author: Robbi Bishop-Taylor, Stephen Sagar, Claire Phillips, Vanessa Newey
6
+ Author-email: Robbi.BishopTaylor@ga.gov.au
7
+ Project-URL: Homepage, https://GeoscienceAustralia.github.io/eo-tides/
8
+ Project-URL: Repository, https://github.com/GeoscienceAustralia/eo-tides
9
+ Project-URL: Documentation, https://GeoscienceAustralia.github.io/eo-tides/
10
+ Keywords: earth observation,tide modelling,tide modeling,satellite data,coastal analysis,oceanography,remote sensing
11
+ Classifier: Development Status :: 3 - Alpha
12
+ Classifier: Intended Audience :: Science/Research
13
+ Classifier: Topic :: Scientific/Engineering
14
+ Classifier: Topic :: Scientific/Engineering :: GIS
15
+ Classifier: Topic :: Scientific/Engineering :: Oceanography
16
+ Classifier: Topic :: Scientific/Engineering :: Visualization
17
+ Classifier: Topic :: Scientific/Engineering :: Image Processing
18
+ Classifier: License :: OSI Approved :: Apache Software License
19
+ Classifier: Programming Language :: Python :: 3.10
20
+ Classifier: Programming Language :: Python :: 3.11
21
+ Classifier: Programming Language :: Python :: 3.12
22
+ Classifier: Programming Language :: Python :: 3.13
23
+ Requires-Python: <4.0,>=3.10
24
+ Description-Content-Type: text/markdown
25
+ License-File: LICENSE
26
+ Requires-Dist: colorama>=0.4.3
27
+ Requires-Dist: geopandas>=0.10.0
28
+ Requires-Dist: matplotlib>=3.8.0
29
+ Requires-Dist: numpy>=1.26.0
30
+ Requires-Dist: odc-geo>=0.4.7
31
+ Requires-Dist: pandas>=2.2.0
32
+ Requires-Dist: psutil>=5.8.0
33
+ Requires-Dist: pyogrio>=0.10.0
34
+ Requires-Dist: pyproj>=3.7.0
35
+ Requires-Dist: pyTMD==2.2.0
36
+ Requires-Dist: scikit-learn>=1.4.0
37
+ Requires-Dist: scipy>=1.14.1
38
+ Requires-Dist: shapely>=2.0.6
39
+ Requires-Dist: tqdm>=4.55.0
40
+ Requires-Dist: xarray>=2022.3.0
41
+ Provides-Extra: notebooks
42
+ Requires-Dist: odc-stac>=0.3.10; extra == "notebooks"
43
+ Requires-Dist: odc-geo[tiff,warp]>=0.4.7; extra == "notebooks"
44
+ Requires-Dist: pystac-client>=0.8.3; extra == "notebooks"
45
+ Requires-Dist: folium>=0.16.0; extra == "notebooks"
46
+ Requires-Dist: planetary_computer>=1.0.0; extra == "notebooks"
47
+
48
+ # `eo-tides`: Tide modelling tools for large-scale satellite earth observation analysis
49
+
50
+ <img align="right" width="200" src="https://github.com/GeoscienceAustralia/eo-tides/blob/main/docs/assets/eo-tides-logo.gif?raw=true" alt="eo-tides logo" style="margin-right: 40px;">
51
+
52
+ [![Release](https://img.shields.io/github/v/release/GeoscienceAustralia/eo-tides)](https://pypi.org/project/eo-tides/)
53
+ [![Build status](https://img.shields.io/github/actions/workflow/status/GeoscienceAustralia/eo-tides/main.yml?branch=main)](https://github.com/GeoscienceAustralia/eo-tides/actions/workflows/main.yml?query=branch%3Amain)
54
+ [![Python Version from PEP 621 TOML](https://img.shields.io/pypi/pyversions/eo-tides)](https://github.com/GeoscienceAustralia/eo-tides/blob/main/pyproject.toml)
55
+ [![codecov](https://codecov.io/gh/GeoscienceAustralia/eo-tides/branch/main/graph/badge.svg)](https://codecov.io/gh/GeoscienceAustralia/eo-tides)
56
+ [![License](https://img.shields.io/github/license/GeoscienceAustralia/eo-tides)](https://img.shields.io/github/license/GeoscienceAustralia/eo-tides)
57
+
58
+ - ⚙️ **Github repository**: <https://github.com/GeoscienceAustralia/eo-tides/>
59
+ - 📘 **Documentation**: <https://GeoscienceAustralia.github.io/eo-tides/>
60
+ - 🐍 **PyPI**: <https://pypi.org/project/eo-tides/>
61
+
62
+ <br>
63
+
64
+ `eo-tides` provides powerful parallelized tools for integrating satellite Earth observation data with tide modelling. 🛠️🌊🛰️
65
+
66
+ `eo-tides` combines advanced tide modelling functionality from the [`pyTMD`](https://pytmd.readthedocs.io/en/latest/) package with [`pandas`](https://pandas.pydata.org/docs/index.html), [`xarray`](https://docs.xarray.dev/en/stable/) and [`odc-geo`](https://odc-geo.readthedocs.io/en/latest/), providing a suite of flexible tools for efficient analysis of coastal and ocean Earth observation data – from regional, continental, to global scale.
67
+
68
+ These tools can be applied to petabytes of freely available satellite data (e.g. from [Digital Earth Australia](https://knowledge.dea.ga.gov.au/) or [Microsoft Planetary Computer](https://planetarycomputer.microsoft.com/)) loaded via Open Data Cube's [`odc-stac`](https://odc-stac.readthedocs.io/en/latest/) or [`datacube`](https://opendatacube.readthedocs.io/en/latest/) packages, supporting coastal and ocean earth observation analysis for any time period or location globally.
69
+
70
+ ![eo-tides abstract showing satellite data, tide data array and tide animation](https://github.com/GeoscienceAustralia/eo-tides/blob/main/docs/assets/eo-tides-abstract.gif?raw=true)
71
+
72
+ ## Highlights
73
+
74
+ - 🌊 Model tide heights and phases (e.g. high, low, ebb, flow) from multiple global ocean tide models in parallel, and return a `pandas.DataFrame` for further analysis
75
+ - 🛰️ "Tag" satellite data with tide heights based on the exact moment of image acquisition
76
+ - 🌐 Model tides for every individual satellite pixel through time, producing three-dimensional "tide height" `xarray`-format datacubes that can be integrated with satellite data
77
+ - 📈 Calculate statistics describing local tide dynamics, as well as biases caused by interactions between tidal processes and satellite orbits
78
+ - 🛠️ Validate modelled tides using measured sea levels from coastal tide gauges (e.g. [GESLA Global Extreme Sea Level Analysis](https://gesla.org/))
79
+ <!-- - 🎯 Combine multiple tide models into a single locally-optimised "ensemble" model informed by satellite altimetry and satellite-observed patterns of tidal inundation -->
80
+
81
+ ## Supported tide models
82
+
83
+ `eo-tides` supports [all ocean tide models supported by `pyTMD`](https://pytmd.readthedocs.io/en/latest/getting_started/Getting-Started.html#model-database). These include:
84
+
85
+ - [Empirical Ocean Tide model](https://doi.org/10.5194/essd-13-3869-2021) (EOT20)
86
+ - [Finite Element Solution tide models](https://doi.org/10.5194/os-2020-96) (FES2022, FES2014, FES2012)
87
+ - [TOPEX/POSEIDON global tide models](https://www.tpxo.net/global) (TPXO10, TPXO9, TPXO8)
88
+ - [Global Ocean Tide models](https://doi.org/10.1002/2016RG000546) (GOT5.6, GOT5.5, GOT4.10, GOT4.8, GOT4.7)
89
+ - [Hamburg direct data Assimilation Methods for Tides models](https://doi.org/10.1002/2013JC009766) (HAMTIDE11)
90
+
91
+ For instructions on how to set up these models for use in `eo-tides`, refer to [Setting up tide models](setup.md).
92
+
93
+ ## Installing and setting up `eo-tides`
94
+
95
+ To get started with `eo-tides`, follow the [Installation](https://geoscienceaustralia.github.io/eo-tides/install/) and [Setting up tide models](https://geoscienceaustralia.github.io/eo-tides/setup/) guides.
96
+
97
+ ## Jupyter Notebooks code examples
98
+
99
+ Interactive Jupyter Notebook usage examples and more complex coastal EO case studies can be found in the [`docs/notebooks/`](https://github.com/GeoscienceAustralia/eo-tides/tree/main/docs/notebooks) directory, or [rendered in the documentation here](https://geoscienceaustralia.github.io/eo-tides/notebooks/Model_tides/).
100
+
101
+ ## Citing `eo-tides`
102
+
103
+ To cite `eo-tides` in your work, please use the following citation:
104
+
105
+ ```
106
+ Bishop-Taylor, R., Sagar, S., Phillips, C., & Newey, V. (2024). eo-tides: Tide modelling tools for large-scale satellite earth observation analysis. https://github.com/GeoscienceAustralia/eo-tides
107
+ ```
108
+
109
+ In addition, please consider also citing the underlying [`pyTMD` Python package](https://pytmd.readthedocs.io/en/latest/) which powers the tide modelling functionality behind `eo-tides`:
110
+
111
+ ```
112
+ Sutterley, T. C., Alley, K., Brunt, K., Howard, S., Padman, L., Siegfried, M. (2017) pyTMD: Python-based tidal prediction software. 10.5281/zenodo.5555395
113
+ ```
114
+
115
+ ## Acknowledgements
116
+
117
+ For a full list of acknowledgements, refer to [Citations and Credits](https://geoscienceaustralia.github.io/eo-tides/credits/).
118
+ This repository was initialised using the [`cookiecutter-uv`](https://github.com/fpgmaas/cookiecutter-uv) package.
@@ -0,0 +1,11 @@
1
+ eo_tides/__init__.py,sha256=pGvVlxMKiYjm_273G-oYcOgVuPra7uEdNZv0oN1i69c,1693
2
+ eo_tides/eo.py,sha256=nuaOppYJCVL8mbFyaL9e4ahHB_LBGBrr5XfnAopmW5M,22746
3
+ eo_tides/model.py,sha256=xpKaVO1_cLLwbODpffqDL80Hw7Yv9JchH42tKhX1oto,34585
4
+ eo_tides/stats.py,sha256=RXs3J3YZH3yOrzDibEDp3-7wjkleOEFzO33lp27ATuE,22993
5
+ eo_tides/utils.py,sha256=9xJ1q-b-TVHg5zFyLy6AT_srrPQDvmFdWJmlGSPaJF0,26563
6
+ eo_tides/validation.py,sha256=KP8WLT5z7KLFjQ9oDla7VJOyLQAK4SVbcz2ySAbsbwI,11882
7
+ eo_tides-0.5.0.dist-info/LICENSE,sha256=owxWsXViCL2J6Ks3XYhot7t4Y93nstmXAT95Zf030Cc,11350
8
+ eo_tides-0.5.0.dist-info/METADATA,sha256=CtP3dQKJAbs1bEZaJz0egfina4OD4jba4TGDlLxxIPg,7906
9
+ eo_tides-0.5.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
10
+ eo_tides-0.5.0.dist-info/top_level.txt,sha256=lXZDUUM1DlLdKWHRn8zdmtW8Rx-eQOIWVvt0b8VGiyQ,9
11
+ eo_tides-0.5.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.8.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ eo_tides