ennbo 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,24 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING, Callable
4
+
5
+ if TYPE_CHECKING:
6
+ import numpy as np
7
+ from numpy.random import Generator
8
+
9
+ from .base_turbo_impl import BaseTurboImpl
10
+
11
+
12
+ class TurboZeroImpl(BaseTurboImpl):
13
+ def select_candidates(
14
+ self,
15
+ x_cand: np.ndarray,
16
+ num_arms: int,
17
+ num_dim: int,
18
+ rng: Generator,
19
+ fallback_fn: Callable[[np.ndarray, int], np.ndarray],
20
+ from_unit_fn: Callable[[np.ndarray], np.ndarray],
21
+ ) -> np.ndarray:
22
+ from .proposal import select_uniform
23
+
24
+ return select_uniform(x_cand, num_arms, num_dim, rng, from_unit_fn)
@@ -0,0 +1,109 @@
1
+ Metadata-Version: 2.4
2
+ Name: ennbo
3
+ Version: 0.1.0
4
+ Summary: Epistemic Nearest Neighbors
5
+ Project-URL: Homepage, https://github.com/yubo-research/enn
6
+ Project-URL: Source, https://github.com/yubo-research/enn
7
+ Author-email: YUBO Lab <david.sweet@yu.edu>
8
+ License: MIT License
9
+
10
+ Copyright (c) 2025 yubo research
11
+
12
+ Permission is hereby granted, free of charge, to any person obtaining a copy
13
+ of this software and associated documentation files (the "Software"), to deal
14
+ in the Software without restriction, including without limitation the rights
15
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
16
+ copies of the Software, and to permit persons to whom the Software is
17
+ furnished to do so, subject to the following conditions:
18
+
19
+ The above copyright notice and this permission notice shall be included in all
20
+ copies or substantial portions of the Software.
21
+
22
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
25
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
27
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
28
+ SOFTWARE.
29
+ License-File: LICENSE
30
+ Classifier: Intended Audience :: Science/Research
31
+ Classifier: License :: OSI Approved :: MIT License
32
+ Classifier: Programming Language :: Python :: 3
33
+ Classifier: Programming Language :: Python :: 3.11
34
+ Classifier: Programming Language :: Python :: 3.12
35
+ Classifier: Topic :: Scientific/Engineering
36
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
37
+ Classifier: Topic :: Scientific/Engineering :: Mathematics
38
+ Requires-Python: >=3.11
39
+ Requires-Dist: faiss-cpu==1.9.0
40
+ Requires-Dist: gpytorch==1.13
41
+ Requires-Dist: nds==0.4.3
42
+ Requires-Dist: numpy==1.26.4
43
+ Requires-Dist: scipy==1.15.3
44
+ Requires-Dist: torch==2.5.1
45
+ Description-Content-Type: text/markdown
46
+
47
+ # Epistemic Nearest Neighbors
48
+ A fast, alternative surrogate for Bayesian optimization
49
+
50
+ ENN estimates a function's value and associated epistemic uncertainty using a K-Nearest Neighbors model. Queries take $O(N lnK)$ time, where $N$ is the number of observations available for KNN lookups. Compare to an exact GP, which takes $O(N^2)$ time. Additionally, measured running times are very small compared to GPs and other alternative surrogates. [1]
51
+
52
+ ## Contents
53
+ - ENN model, [`EpistemicNearestNeighbors`](https://github.com/yubo-research/enn/blob/main/src/enn/enn/enn.py) [1]
54
+ - TuRBO-ENN optimizer, class [`TurboOptimizer`](https://github.com/yubo-research/enn/blob/main/src/enn/turbo/turbo_optimizer.py) has four modes
55
+ - `TURBO_ONE` - A clone of the TuRBO [2] reference [code](https://github.com/uber-research/TuRBO), reworked to have an `ask()`/`tell()` interface.
56
+ - `TURBO_ENN` - Same as TURBO_ONE, except uses ENN instead of GP and Pareto(mu, se) instead of Thompson sampling.
57
+ - `TURBO_ZERO` - Same as TURBO_ONE, except randomly-chosen RAASP [3] candidates are picked to be proposals. There is no surrogate.
58
+ - `LHD_ONLY` - Just creates an LHD design for every `ask()`. Good for a baseline and for testing.
59
+
60
+ [1] **Sweet, D., & Jadhav, S. A. (2025).** Taking the GP Out of the Loop. *arXiv preprint arXiv:2506.12818*.
61
+ https://arxiv.org/abs/2506.12818
62
+ [2] **Eriksson, D., Pearce, M., Gardner, J. R., Turner, R., & Poloczek, M. (2020).** Scalable Global Optimization via Local Bayesian Optimization. *Advances in Neural Information Processing Systems, 32*.
63
+ https://arxiv.org/abs/1910.01739
64
+ [3] **Rashidi, B., Johnstonbaugh, K., & Gao, C. (2024).** Cylindrical Thompson Sampling for High-Dimensional Bayesian Optimization. *Proceedings of The 27th International Conference on Artificial Intelligence and Statistics* (pp. 3502–3510). PMLR.
65
+ https://proceedings.mlr.press/v238/rashidi24a.html
66
+
67
+
68
+ ## Installation
69
+ `pip install ennbo`
70
+
71
+ ## Demonstration
72
+ [`demo_enn.ipynb`](https://github.com/yubo-research/enn/tree/main/examples/demo_enn.ipynb) - Shows how to use [`EpistemicNearestNeighbors`](https://github.com/yubo-research/enn/blob/main/src/enn/enn/enn.py) to build and query an ENN model.
73
+ [`demo_turbo_enn.ipynb`](https://github.com/yubo-research/enn/tree/main/examples/demo_turbo_enn.ipynb) - Shows how to use [`TurboOptimizer`](https://github.com/yubo-research/enn/blob/main/src/enn/turbo/turbo_optimizer.py) to optimize the Ackley function.
74
+
75
+
76
+
77
+ ## Installation, MacOS
78
+
79
+ On my MacBook I can run into problems with dependencies and compatibilities.
80
+
81
+ On MacOS try:
82
+ ```
83
+ micromamba env create -n ennbo -f conda-macos.yml
84
+ micromamba activate ennbo
85
+ pip install --no-deps ennbo
86
+ ```
87
+
88
+ You may replace `micromamba` with `conda` and this will probably still work.
89
+
90
+ The commands above make sure
91
+ - You use the MacOS-specific PyTorch (with `mps`).
92
+ - You avoid having multiple, competing OpenMPs installed [PyTorch issue](https://github.com/pytorch/pytorch/issues/44282) [faiss issue](https://github.com/faiss-wheels/faiss-wheels/issues/40).
93
+ - You use old enough versions of NumPy and PyTorch to be compatible with faiss [faiss issue](https://github.com/faiss-wheels/faiss-wheels/issues/104).
94
+ - Prevent matplotlib's installation from upgrading your NumPy to an incompatible version.
95
+ - `ennbo`'s listed dependencies do not undo any of the above (which is fine b/c the above commands set the up correctly).
96
+
97
+ Run tests with
98
+ ```
99
+ pytest -x -sv tests
100
+ ```
101
+ and they should all pass fairly quickly (~10s-30s).
102
+
103
+
104
+ If your code still crashes or hangs your, try this [hack](https://discuss.pytorch.org/t/ran-into-this-issue-while-executing/101460):
105
+ ```
106
+ export KMP_DUPLICATE_LIB_OK=TRUE
107
+ export OMP_NUM_THREADS=1
108
+ ```
109
+ I don't recommend this, however, as it will slow things down.
@@ -0,0 +1,27 @@
1
+ enn/__init__.py,sha256=VYIuOTCjhUFIJm78IoJv0WXtvA_IuZhY1sSMJJM3dx8,507
2
+ enn/enn/__init__.py,sha256=K3rntg_ZkITStmXMTBcEhxeS1kel1bb7wB_C7-2WE5Y,135
3
+ enn/enn/enn.py,sha256=ZdDPivZj4SL9e87FolU1oscdPdcwUeIByIrvBLsoCfE,8060
4
+ enn/enn/enn_fit.py,sha256=uv1BHO-nbxVXkR_tM1Ggoh6YNuR-VrjVECFxLquC7u8,4328
5
+ enn/enn/enn_normal.py,sha256=3kOymSx2kzcBMavScXLflPm_gDDLGF9fYLBJ816I3xg,596
6
+ enn/enn/enn_params.py,sha256=fwLZTA8ciRp4XUF5L_VAVsC3EvFuOzR85OYLVtv6TSw,184
7
+ enn/enn/enn_util.py,sha256=ZELPVeyUl0wiHOxjHYKjxeDz88ExmKMeX3P-bQ6tCoE,3075
8
+ enn/turbo/__init__.py,sha256=utnD3CLZgjCvw-46AAu5Tv2M2Vbg5YXK-_TycGk5BU4,197
9
+ enn/turbo/base_turbo_impl.py,sha256=wThjwXGboRrVTamsnvzmM0WNIOZ91GNJ-BmGzjgqdhg,2699
10
+ enn/turbo/lhd_only_impl.py,sha256=yWsOw7Oq0xfEnyXg5AXJSzZFjM7162pqNY37fHQtJQ4,1023
11
+ enn/turbo/proposal.py,sha256=w1izo3ooiiravNRoFWK5ZK7BH-f_HWgqYP8heVtLmYs,3977
12
+ enn/turbo/turbo_config.py,sha256=J0ww_qKDDMpbFVXdntuSbJtUTbdnXrFJyGD1svzG3RM,980
13
+ enn/turbo/turbo_enn_impl.py,sha256=YMAS4krpPXPNtlh46RRG3VLMuGyYLFw5UkPRBU29mzA,5837
14
+ enn/turbo/turbo_gp.py,sha256=i1bxVHima0Nv4MCLlADtlRzt1cENcnVLYk3S9vCoF4c,797
15
+ enn/turbo/turbo_gp_base.py,sha256=tnE5uX_eAt1Db-gemyy83ZvKpdNbMg_tsWkh6sG7zaM,638
16
+ enn/turbo/turbo_gp_noisy.py,sha256=itTL9jUCjE566jwDODT0P36fozsfU_bXACyuKqxYMXs,1080
17
+ enn/turbo/turbo_mode.py,sha256=JMP1jkFCRwPtOzU95MWWd04Sgze7eKF0xNkiPqtQ8SI,181
18
+ enn/turbo/turbo_mode_impl.py,sha256=3HKBjOS96Wn-R_znctQm9Ivrm3FhgZFTuBp7McNDQ88,1749
19
+ enn/turbo/turbo_one_impl.py,sha256=nS02RdRMcEsi3II07jzcrQbsFsfWYTeahUcqoyhig4Q,5207
20
+ enn/turbo/turbo_optimizer.py,sha256=IlofW9_ogCeQMVXa7n8xWEg5fbJBUkvAkeLKe3MoXlA,11902
21
+ enn/turbo/turbo_trust_region.py,sha256=VHNYKWtKLt3iKHI0enL9qMMu1Bwi1nupo20L0Sv-vYY,3759
22
+ enn/turbo/turbo_utils.py,sha256=XU9-YtW1u5-HKk3bA_M-hVNFPAuNcIYozAmej7ulVsY,7532
23
+ enn/turbo/turbo_zero_impl.py,sha256=S4TEHYkVDowtyWSVxWO0ncd1OUIFpeV3IR-eanGr1vg,643
24
+ ennbo-0.1.0.dist-info/METADATA,sha256=slkhtsGXaO31u8w35LNKXN2noxUJYTqHQF7bv1DZMmA,5930
25
+ ennbo-0.1.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
26
+ ennbo-0.1.0.dist-info/licenses/LICENSE,sha256=KTA0NjGalsl_JGrjT_x6SSq9ZYVO3gQ-hLVMEaekc5w,1070
27
+ ennbo-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.28.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 yubo research
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.