endee-llamaindex 0.1.3__py3-none-any.whl → 0.1.5a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- endee_llamaindex/base.py +603 -652
- endee_llamaindex/constants.py +70 -0
- endee_llamaindex/utils.py +7 -587
- {endee_llamaindex-0.1.3.dist-info → endee_llamaindex-0.1.5a1.dist-info}/METADATA +147 -50
- endee_llamaindex-0.1.5a1.dist-info/RECORD +8 -0
- {endee_llamaindex-0.1.3.dist-info → endee_llamaindex-0.1.5a1.dist-info}/WHEEL +1 -1
- endee_llamaindex-0.1.3.dist-info/RECORD +0 -7
- {endee_llamaindex-0.1.3.dist-info → endee_llamaindex-0.1.5a1.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: endee-llamaindex
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.5a1
|
|
4
4
|
Summary: Vector Database for Fast ANN Searches
|
|
5
5
|
Home-page: https://endee.io
|
|
6
6
|
Author: Endee Labs
|
|
@@ -11,13 +11,17 @@ Classifier: Operating System :: OS Independent
|
|
|
11
11
|
Requires-Python: >=3.6
|
|
12
12
|
Description-Content-Type: text/markdown
|
|
13
13
|
Requires-Dist: llama-index>=0.12.34
|
|
14
|
-
Requires-Dist: endee
|
|
14
|
+
Requires-Dist: endee==0.1.9
|
|
15
|
+
Requires-Dist: fastembed>=0.3.0
|
|
16
|
+
Provides-Extra: gpu
|
|
17
|
+
Requires-Dist: fastembed-gpu>=0.3.0; extra == "gpu"
|
|
15
18
|
Dynamic: author
|
|
16
19
|
Dynamic: author-email
|
|
17
20
|
Dynamic: classifier
|
|
18
21
|
Dynamic: description
|
|
19
22
|
Dynamic: description-content-type
|
|
20
23
|
Dynamic: home-page
|
|
24
|
+
Dynamic: provides-extra
|
|
21
25
|
Dynamic: requires-dist
|
|
22
26
|
Dynamic: requires-python
|
|
23
27
|
Dynamic: summary
|
|
@@ -31,18 +35,19 @@ Build powerful RAG applications with Endee vector database and LlamaIndex.
|
|
|
31
35
|
## Table of Contents
|
|
32
36
|
|
|
33
37
|
1. [Installation](#1-installation)
|
|
34
|
-
2. [
|
|
35
|
-
3. [
|
|
36
|
-
4. [
|
|
37
|
-
5. [
|
|
38
|
-
6. [
|
|
39
|
-
7. [
|
|
40
|
-
8. [
|
|
41
|
-
9. [
|
|
42
|
-
10. [Custom Retriever
|
|
43
|
-
11. [
|
|
44
|
-
12. [
|
|
45
|
-
13. [
|
|
38
|
+
2. [Testing locally](#testing-locally)
|
|
39
|
+
3. [Setting up Credentials](#2-setting-up-endee-and-openai-credentials)
|
|
40
|
+
4. [Creating Sample Documents](#3-creating-sample-documents)
|
|
41
|
+
5. [Setting up Endee with LlamaIndex](#4-setting-up-endee-with-llamaindex)
|
|
42
|
+
6. [Creating a Vector Index](#5-creating-a-vector-index-from-documents)
|
|
43
|
+
7. [Basic Retrieval](#6-basic-retrieval-with-query-engine)
|
|
44
|
+
8. [Using Metadata Filters](#7-using-metadata-filters)
|
|
45
|
+
9. [Advanced Filtering](#8-advanced-filtering-with-multiple-conditions)
|
|
46
|
+
10. [Custom Retriever Setup](#9-custom-retriever-setup)
|
|
47
|
+
11. [Custom Retriever with Query Engine](#10-using-a-custom-retriever-with-a-query-engine)
|
|
48
|
+
12. [Direct VectorStore Querying](#11-direct-vectorstore-querying)
|
|
49
|
+
13. [Saving and Loading Indexes](#12-saving-and-loading-indexes)
|
|
50
|
+
14. [Cleanup](#13-cleanup)
|
|
46
51
|
|
|
47
52
|
---
|
|
48
53
|
|
|
@@ -50,12 +55,66 @@ Build powerful RAG applications with Endee vector database and LlamaIndex.
|
|
|
50
55
|
|
|
51
56
|
Get started by installing the required package.
|
|
52
57
|
|
|
58
|
+
### Basic Installation (Dense-only search)
|
|
59
|
+
|
|
53
60
|
```bash
|
|
54
61
|
pip install endee-llamaindex
|
|
55
62
|
```
|
|
56
63
|
|
|
57
64
|
> **Note:** This will automatically install `endee` and `llama-index` as dependencies.
|
|
58
65
|
|
|
66
|
+
### Full Installation (with Hybrid Search support)
|
|
67
|
+
|
|
68
|
+
For hybrid search capabilities (dense + sparse vectors), install with the `hybrid` extra:
|
|
69
|
+
|
|
70
|
+
```bash
|
|
71
|
+
pip install endee-llamaindex[hybrid]
|
|
72
|
+
```
|
|
73
|
+
|
|
74
|
+
This includes FastEmbed for sparse vector encoding (SPLADE, BM25, etc.).
|
|
75
|
+
|
|
76
|
+
### GPU-Accelerated Hybrid Search
|
|
77
|
+
|
|
78
|
+
For GPU-accelerated sparse encoding:
|
|
79
|
+
|
|
80
|
+
```bash
|
|
81
|
+
pip install endee-llamaindex[hybrid-gpu]
|
|
82
|
+
```
|
|
83
|
+
|
|
84
|
+
### All Features
|
|
85
|
+
|
|
86
|
+
To install all optional dependencies:
|
|
87
|
+
|
|
88
|
+
```bash
|
|
89
|
+
pip install endee-llamaindex[all]
|
|
90
|
+
```
|
|
91
|
+
|
|
92
|
+
### Installation Options Summary
|
|
93
|
+
|
|
94
|
+
| Installation | Use Case | Includes |
|
|
95
|
+
|--------------|----------|----------|
|
|
96
|
+
| `pip install endee-llamaindex` | Dense vector search only | Core dependencies |
|
|
97
|
+
| `pip install endee-llamaindex[hybrid]` | Dense + sparse hybrid search | + FastEmbed (CPU) |
|
|
98
|
+
| `pip install endee-llamaindex[hybrid-gpu]` | GPU-accelerated hybrid search | + FastEmbed (GPU) |
|
|
99
|
+
| `pip install endee-llamaindex[all]` | All features | All optional deps |
|
|
100
|
+
|
|
101
|
+
---
|
|
102
|
+
|
|
103
|
+
## Testing locally
|
|
104
|
+
|
|
105
|
+
From the project root:
|
|
106
|
+
|
|
107
|
+
```bash
|
|
108
|
+
python -m venv env && source env/bin/activate # optional
|
|
109
|
+
pip install -e .
|
|
110
|
+
pip install pytest sentence-transformers huggingface-hub
|
|
111
|
+
export ENDEE_API_TOKEN="your-endee-api-token" # or set in endee_llamaindex/test_cases/setup_class.py
|
|
112
|
+
|
|
113
|
+
cd endee_llamaindex/test_cases && PYTHONPATH=.. python -m pytest . -v
|
|
114
|
+
```
|
|
115
|
+
|
|
116
|
+
See [TESTING.md](TESTING.md) for more options and single-test runs.
|
|
117
|
+
|
|
59
118
|
---
|
|
60
119
|
|
|
61
120
|
## 2. Setting up Endee and OpenAI credentials
|
|
@@ -145,7 +204,7 @@ vector_store = EndeeVectorStore.from_params(
|
|
|
145
204
|
index_name=index_name,
|
|
146
205
|
dimension=dimension,
|
|
147
206
|
space_type="cosine", # Can be "cosine", "l2", or "ip"
|
|
148
|
-
precision="
|
|
207
|
+
precision="float16" # Options: "binary", "float16", "float32", "int16d", "int8d" (default: "float16")
|
|
149
208
|
)
|
|
150
209
|
|
|
151
210
|
# Create storage context with our vector store
|
|
@@ -160,9 +219,11 @@ print(f"Initialized Endee vector store with index: {index_name}")
|
|
|
160
219
|
|-----------|-------------|---------|
|
|
161
220
|
| `space_type` | Distance metric for similarity | `cosine`, `l2`, `ip` |
|
|
162
221
|
| `dimension` | Vector dimension | Must match embedding model |
|
|
163
|
-
| `precision` | Index precision setting | `"
|
|
164
|
-
| `key` | Encryption key for metadata | 256-bit hex key (64 hex characters) |
|
|
222
|
+
| `precision` | Index precision setting | `"binary"`, `"float16"` (default), `"float32"`, `"int16d"`, `"int8d"` |
|
|
165
223
|
| `batch_size` | Vectors per API call | Default: `100` |
|
|
224
|
+
| `hybrid` | Enable hybrid search (dense + sparse) | Default: `False` |
|
|
225
|
+
| `M` | Optional HNSW M parameter (bi-directional links) | Optional (backend default if not specified) |
|
|
226
|
+
| `ef_con` | Optional HNSW ef_construction parameter | Optional (backend default if not specified) |
|
|
166
227
|
|
|
167
228
|
---
|
|
168
229
|
|
|
@@ -239,16 +300,47 @@ print(response)
|
|
|
239
300
|
|
|
240
301
|
### Available Filter Operators
|
|
241
302
|
|
|
242
|
-
| Operator | Description |
|
|
243
|
-
|
|
244
|
-
| `FilterOperator.EQ` | Equal to |
|
|
245
|
-
| `FilterOperator.
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
303
|
+
| Operator | Description | Backend Symbol | Example |
|
|
304
|
+
|----------|-------------|----------------|---------|
|
|
305
|
+
| `FilterOperator.EQ` | Equal to | `$eq` | `rating == 5` |
|
|
306
|
+
| `FilterOperator.IN` | In list | `$in` | `category in ["ai", "ml"]` |
|
|
307
|
+
|
|
308
|
+
|
|
309
|
+
> **Important Notes:**
|
|
310
|
+
> - Currently, the Endee LlamaIndex integration only supports **EQ** and **IN** metadata filters.
|
|
311
|
+
> - Range-style operators (LT, LTE, GT, GTE) are **not** supported in this adapter.
|
|
312
|
+
|
|
313
|
+
### Filter Examples
|
|
314
|
+
|
|
315
|
+
Here are practical examples showing how to use the supported filter operators:
|
|
316
|
+
|
|
317
|
+
```python
|
|
318
|
+
from llama_index.core.vector_stores.types import MetadataFilters, MetadataFilter, FilterOperator
|
|
319
|
+
|
|
320
|
+
# Example 1: Equal to (EQ)
|
|
321
|
+
# Find documents with rating equal to 5
|
|
322
|
+
rating_filter = MetadataFilter(key="rating", value=5, operator=FilterOperator.EQ)
|
|
323
|
+
filters = MetadataFilters(filters=[rating_filter])
|
|
324
|
+
# Backend: {"rating": {"$eq": 5}}
|
|
325
|
+
|
|
326
|
+
# Example 2: In list (IN)
|
|
327
|
+
# Find documents in AI or ML categories
|
|
328
|
+
category_filter = MetadataFilter(key="category", value=["ai", "ml"], operator=FilterOperator.IN)
|
|
329
|
+
filters = MetadataFilters(filters=[category_filter])
|
|
330
|
+
# Backend: {"category": {"$in": ["ai", "ml"]}}
|
|
331
|
+
|
|
332
|
+
# Example 3: Combined filters (AND logic)
|
|
333
|
+
# Find AI documents with rating equal to 5
|
|
334
|
+
filters = MetadataFilters(filters=[
|
|
335
|
+
MetadataFilter(key="category", value="ai", operator=FilterOperator.EQ),
|
|
336
|
+
MetadataFilter(key="rating", value=5, operator=FilterOperator.EQ)
|
|
337
|
+
])
|
|
338
|
+
# Backend: [{"category": {"$eq": "ai"}}, {"rating": {"$eq": 5}}]
|
|
339
|
+
|
|
340
|
+
# Create a query engine with filters
|
|
341
|
+
filtered_engine = index.as_query_engine(filters=filters)
|
|
342
|
+
response = filtered_engine.query("What is machine learning?")
|
|
343
|
+
```
|
|
252
344
|
|
|
253
345
|
---
|
|
254
346
|
|
|
@@ -439,10 +531,14 @@ Delete the index when you're done to free up resources.
|
|
|
439
531
|
| `api_token` | `str` | Your Endee API token | Required |
|
|
440
532
|
| `index_name` | `str` | Name of the index | Required |
|
|
441
533
|
| `dimension` | `int` | Vector dimension | Required |
|
|
442
|
-
| `space_type` | `str` | Distance metric | `"cosine"` |
|
|
443
|
-
| `precision` | `str` | Index precision
|
|
444
|
-
| `key` | `str` | Encryption key for metadata (256-bit hex) | `None` |
|
|
534
|
+
| `space_type` | `str` | Distance metric (`"cosine"`, `"l2"`, `"ip"`) | `"cosine"` |
|
|
535
|
+
| `precision` | `str` | Index precision (`"binary"`, `"float16"`, `"float32"`, `"int16d"`, `"int8d"`) | `"float16"` |
|
|
445
536
|
| `batch_size` | `int` | Vectors per API call | `100` |
|
|
537
|
+
| `hybrid` | `bool` | Enable hybrid search (dense + sparse vectors) | `False` |
|
|
538
|
+
| `sparse_dim` | `int` | Sparse dimension for hybrid index | `None` |
|
|
539
|
+
| `model_name` | `str` | Model name for sparse embeddings (e.g., `'splade_pp'`, `'bert_base'`) | `None` |
|
|
540
|
+
| `M` | `int` | Optional HNSW M parameter (bi-directional links per node) | `None` (backend default) |
|
|
541
|
+
| `ef_con` | `int` | Optional HNSW ef_construction parameter | `None` (backend default) |
|
|
446
542
|
|
|
447
543
|
### Distance Metrics
|
|
448
544
|
|
|
@@ -454,38 +550,39 @@ Delete the index when you're done to free up resources.
|
|
|
454
550
|
|
|
455
551
|
### Precision Settings
|
|
456
552
|
|
|
457
|
-
The `precision` parameter controls the
|
|
553
|
+
The `precision` parameter controls the vector storage format and affects memory usage and search performance:
|
|
458
554
|
|
|
459
555
|
| Precision | Description | Use Case |
|
|
460
556
|
|-----------|-------------|----------|
|
|
461
|
-
| `"
|
|
462
|
-
| `"
|
|
463
|
-
| `"
|
|
464
|
-
| `
|
|
557
|
+
| `"float32"` | Full precision floating point | Maximum accuracy, higher memory usage |
|
|
558
|
+
| `"float16"` | Half precision floating point | Balanced accuracy and memory (default) |
|
|
559
|
+
| `"binary"` | Binary vectors | Extremely compact, best for binary embeddings |
|
|
560
|
+
| `"int8d"` | 8-bit integer quantization | High compression, good accuracy |
|
|
561
|
+
| `"int16d"` | 16-bit integer quantization | Better accuracy than int8d, moderate compression |
|
|
465
562
|
|
|
466
|
-
###
|
|
563
|
+
### HNSW Parameters (Optional)
|
|
467
564
|
|
|
468
|
-
|
|
565
|
+
HNSW (Hierarchical Navigable Small World) parameters control index construction and search quality. These are **optional** - if not provided, the Endee backend uses optimized defaults.
|
|
469
566
|
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
|
|
567
|
+
| Parameter | Description | Impact |
|
|
568
|
+
|-----------|-------------|--------|
|
|
569
|
+
| `M` | Number of bi-directional links per node | Higher M = better recall, more memory |
|
|
570
|
+
| `ef_con` | Size of dynamic candidate list during construction | Higher ef_con = better quality, slower indexing |
|
|
571
|
+
|
|
572
|
+
**Example with custom HNSW parameters:**
|
|
474
573
|
|
|
475
|
-
|
|
574
|
+
```python
|
|
476
575
|
vector_store = EndeeVectorStore.from_params(
|
|
477
|
-
api_token=
|
|
478
|
-
index_name=
|
|
479
|
-
dimension=
|
|
576
|
+
api_token="your-token",
|
|
577
|
+
index_name="custom_index",
|
|
578
|
+
dimension=384,
|
|
480
579
|
space_type="cosine",
|
|
481
|
-
|
|
482
|
-
|
|
580
|
+
M=32, # Optional: custom M value
|
|
581
|
+
ef_con=256 # Optional: custom ef_construction
|
|
483
582
|
)
|
|
484
|
-
|
|
485
|
-
# Important: Store this key securely! You'll need it to access the index later.
|
|
486
583
|
```
|
|
487
584
|
|
|
488
|
-
|
|
585
|
+
**Note:** Only specify M and ef_con if you need to fine-tune performance. The backend defaults work well for most use cases.
|
|
489
586
|
|
|
490
587
|
---
|
|
491
588
|
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
endee_llamaindex/__init__.py,sha256=ctCcicNLMO3LpXPGLwvQifvQLX7TEd8CYgFO6Nd9afc,83
|
|
2
|
+
endee_llamaindex/base.py,sha256=A_ha7LWOche6hdQ7OtKsGA2HADZDoRPq2cQTHgphpJM,31232
|
|
3
|
+
endee_llamaindex/constants.py,sha256=-RMx-48CsOklYnarwae5d-BrixCWQfzPawWB-ZgH6gA,2128
|
|
4
|
+
endee_llamaindex/utils.py,sha256=EIdDGZ8clesbiCJSgowonVBtGrimEwa-YV2qj05GMcE,5263
|
|
5
|
+
endee_llamaindex-0.1.5a1.dist-info/METADATA,sha256=sc9Du_5aUVGEj2Zp6ufampMdhg8-hsTDj9xQED4q288,18825
|
|
6
|
+
endee_llamaindex-0.1.5a1.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
7
|
+
endee_llamaindex-0.1.5a1.dist-info/top_level.txt,sha256=AReiKL0lBXSdKPsQlDusPIH_qbS_txOSUctuCR0rRNQ,17
|
|
8
|
+
endee_llamaindex-0.1.5a1.dist-info/RECORD,,
|
|
@@ -1,7 +0,0 @@
|
|
|
1
|
-
endee_llamaindex/__init__.py,sha256=ctCcicNLMO3LpXPGLwvQifvQLX7TEd8CYgFO6Nd9afc,83
|
|
2
|
-
endee_llamaindex/base.py,sha256=I_i2cvGpran4EG0Eu2Wpr5dic-818VsJ_ZYaFSzj0D8,29032
|
|
3
|
-
endee_llamaindex/utils.py,sha256=psGw_VkJlirKiFpk233E8l2xVfPf3gcq1C0SxMQxUsA,25468
|
|
4
|
-
endee_llamaindex-0.1.3.dist-info/METADATA,sha256=iNmNAsblquqz6e8TEmKReytv1WJ0cPNuRPYMTpDfYmI,15026
|
|
5
|
-
endee_llamaindex-0.1.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
6
|
-
endee_llamaindex-0.1.3.dist-info/top_level.txt,sha256=AReiKL0lBXSdKPsQlDusPIH_qbS_txOSUctuCR0rRNQ,17
|
|
7
|
-
endee_llamaindex-0.1.3.dist-info/RECORD,,
|
|
File without changes
|