emx-onnx-cgen 0.3.8__py3-none-any.whl → 0.4.1.dev0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (137) hide show
  1. emx_onnx_cgen/_build_info.py +1 -1
  2. emx_onnx_cgen/_version.py +2 -2
  3. emx_onnx_cgen/cli.py +1025 -162
  4. emx_onnx_cgen/codegen/__init__.py +2 -0
  5. emx_onnx_cgen/codegen/c_emitter.py +2081 -458
  6. emx_onnx_cgen/compiler.py +157 -75
  7. emx_onnx_cgen/determinism.py +39 -0
  8. emx_onnx_cgen/ir/context.py +25 -15
  9. emx_onnx_cgen/ir/model.py +1 -0
  10. emx_onnx_cgen/ir/op_base.py +32 -7
  11. emx_onnx_cgen/ir/ops/__init__.py +20 -0
  12. emx_onnx_cgen/ir/ops/elementwise.py +138 -22
  13. emx_onnx_cgen/ir/ops/misc.py +95 -0
  14. emx_onnx_cgen/ir/ops/nn.py +361 -38
  15. emx_onnx_cgen/ir/ops/reduce.py +1 -16
  16. emx_onnx_cgen/lowering/__init__.py +9 -0
  17. emx_onnx_cgen/lowering/arg_reduce.py +0 -4
  18. emx_onnx_cgen/lowering/average_pool.py +157 -27
  19. emx_onnx_cgen/lowering/bernoulli.py +73 -0
  20. emx_onnx_cgen/lowering/common.py +48 -0
  21. emx_onnx_cgen/lowering/concat.py +41 -7
  22. emx_onnx_cgen/lowering/conv.py +19 -8
  23. emx_onnx_cgen/lowering/conv_integer.py +103 -0
  24. emx_onnx_cgen/lowering/dequantize_linear.py +128 -0
  25. emx_onnx_cgen/lowering/elementwise.py +140 -43
  26. emx_onnx_cgen/lowering/gather.py +11 -2
  27. emx_onnx_cgen/lowering/gemm.py +7 -124
  28. emx_onnx_cgen/lowering/global_max_pool.py +0 -5
  29. emx_onnx_cgen/lowering/gru.py +323 -0
  30. emx_onnx_cgen/lowering/hamming_window.py +104 -0
  31. emx_onnx_cgen/lowering/hardmax.py +1 -37
  32. emx_onnx_cgen/lowering/identity.py +7 -6
  33. emx_onnx_cgen/lowering/logsoftmax.py +1 -35
  34. emx_onnx_cgen/lowering/lp_pool.py +15 -4
  35. emx_onnx_cgen/lowering/matmul.py +3 -105
  36. emx_onnx_cgen/lowering/optional_has_element.py +28 -0
  37. emx_onnx_cgen/lowering/qlinear_mul.py +116 -0
  38. emx_onnx_cgen/lowering/reduce.py +0 -5
  39. emx_onnx_cgen/lowering/reshape.py +7 -16
  40. emx_onnx_cgen/lowering/shape.py +14 -8
  41. emx_onnx_cgen/lowering/slice.py +14 -4
  42. emx_onnx_cgen/lowering/softmax.py +1 -35
  43. emx_onnx_cgen/lowering/split.py +37 -3
  44. emx_onnx_cgen/lowering/tfidf_vectorizer.py +199 -0
  45. emx_onnx_cgen/lowering/tile.py +38 -1
  46. emx_onnx_cgen/lowering/topk.py +1 -5
  47. emx_onnx_cgen/lowering/transpose.py +9 -3
  48. emx_onnx_cgen/lowering/unsqueeze.py +11 -16
  49. emx_onnx_cgen/lowering/upsample.py +151 -0
  50. emx_onnx_cgen/lowering/variadic.py +1 -1
  51. emx_onnx_cgen/lowering/where.py +0 -5
  52. emx_onnx_cgen/onnx_import.py +578 -14
  53. emx_onnx_cgen/ops.py +3 -0
  54. emx_onnx_cgen/templates/adagrad_op.c.j2 +16 -0
  55. emx_onnx_cgen/templates/arg_reduce_op.c.j2 +18 -0
  56. emx_onnx_cgen/templates/attention_op.c.j2 +189 -0
  57. emx_onnx_cgen/templates/average_pool_op.c.j2 +126 -0
  58. emx_onnx_cgen/templates/batch_norm_op.c.j2 +11 -0
  59. emx_onnx_cgen/templates/bernoulli_op.c.j2 +34 -0
  60. emx_onnx_cgen/templates/binary_op.c.j2 +9 -0
  61. emx_onnx_cgen/templates/cast_op.c.j2 +9 -0
  62. emx_onnx_cgen/templates/clip_op.c.j2 +14 -0
  63. emx_onnx_cgen/templates/concat_op.c.j2 +28 -0
  64. emx_onnx_cgen/templates/constant_of_shape_op.c.j2 +10 -0
  65. emx_onnx_cgen/templates/conv_integer_op.c.j2 +34 -0
  66. emx_onnx_cgen/templates/conv_op.c.j2 +32 -0
  67. emx_onnx_cgen/templates/conv_transpose_op.c.j2 +43 -0
  68. emx_onnx_cgen/templates/cumsum_op.c.j2 +51 -0
  69. emx_onnx_cgen/templates/depth_to_space_op.c.j2 +26 -0
  70. emx_onnx_cgen/templates/dequantize_linear_op.c.j2 +10 -0
  71. emx_onnx_cgen/templates/einsum_op.c.j2 +55 -0
  72. emx_onnx_cgen/templates/expand_op.c.j2 +14 -0
  73. emx_onnx_cgen/templates/eye_like_op.c.j2 +27 -0
  74. emx_onnx_cgen/templates/gather_elements_op.c.j2 +13 -0
  75. emx_onnx_cgen/templates/gather_nd_op.c.j2 +29 -0
  76. emx_onnx_cgen/templates/gather_op.c.j2 +13 -0
  77. emx_onnx_cgen/templates/gemm_op.c.j2 +35 -0
  78. emx_onnx_cgen/templates/grid_sample_op.c.j2 +184 -0
  79. emx_onnx_cgen/templates/group_normalization_op.c.j2 +46 -0
  80. emx_onnx_cgen/templates/gru_op.c.j2 +152 -0
  81. emx_onnx_cgen/templates/hamming_window_op.c.j2 +12 -0
  82. emx_onnx_cgen/templates/hardmax_op.c.j2 +24 -0
  83. emx_onnx_cgen/templates/identity_op.c.j2 +9 -0
  84. emx_onnx_cgen/templates/instance_normalization_op.c.j2 +35 -0
  85. emx_onnx_cgen/templates/layer_normalization_op.c.j2 +65 -0
  86. emx_onnx_cgen/templates/logsoftmax_op.c.j2 +27 -0
  87. emx_onnx_cgen/templates/lp_normalization_op.c.j2 +27 -0
  88. emx_onnx_cgen/templates/lp_pool_op.c.j2 +24 -0
  89. emx_onnx_cgen/templates/lrn_op.c.j2 +20 -0
  90. emx_onnx_cgen/templates/lstm_op.c.j2 +175 -0
  91. emx_onnx_cgen/templates/matmul_op.c.j2 +13 -0
  92. emx_onnx_cgen/templates/maxpool_op.c.j2 +118 -0
  93. emx_onnx_cgen/templates/mean_variance_normalization_op.c.j2 +34 -0
  94. emx_onnx_cgen/templates/multi_input_op.c.j2 +15 -0
  95. emx_onnx_cgen/templates/negative_log_likelihood_loss_op.c.j2 +54 -0
  96. emx_onnx_cgen/templates/nonmax_suppression_op.c.j2 +179 -0
  97. emx_onnx_cgen/templates/nonzero_op.c.j2 +15 -0
  98. emx_onnx_cgen/templates/one_hot_op.c.j2 +25 -0
  99. emx_onnx_cgen/templates/optional_has_element_op.c.j2 +4 -0
  100. emx_onnx_cgen/templates/pad_op.c.j2 +80 -0
  101. emx_onnx_cgen/templates/qlinear_matmul_op.c.j2 +33 -0
  102. emx_onnx_cgen/templates/qlinear_mul_op.c.j2 +18 -0
  103. emx_onnx_cgen/templates/quantize_linear_op.c.j2 +13 -0
  104. emx_onnx_cgen/templates/range_op.c.j2 +8 -0
  105. emx_onnx_cgen/templates/reduce_op.c.j2 +28 -0
  106. emx_onnx_cgen/templates/reduce_op_dynamic.c.j2 +77 -0
  107. emx_onnx_cgen/templates/reshape_op.c.j2 +18 -0
  108. emx_onnx_cgen/templates/resize_op.c.j2 +277 -0
  109. emx_onnx_cgen/templates/rms_normalization_op.c.j2 +28 -0
  110. emx_onnx_cgen/templates/rotary_embedding_op.c.j2 +66 -0
  111. emx_onnx_cgen/templates/scatter_nd_op.c.j2 +52 -0
  112. emx_onnx_cgen/templates/shape_op.c.j2 +6 -0
  113. emx_onnx_cgen/templates/size_op.c.j2 +4 -0
  114. emx_onnx_cgen/templates/slice_op.c.j2 +9 -0
  115. emx_onnx_cgen/templates/slice_op_dynamic.c.j2 +70 -0
  116. emx_onnx_cgen/templates/softmax_cross_entropy_loss_op.c.j2 +105 -0
  117. emx_onnx_cgen/templates/softmax_op.c.j2 +26 -0
  118. emx_onnx_cgen/templates/space_to_depth_op.c.j2 +22 -0
  119. emx_onnx_cgen/templates/split_op.c.j2 +18 -0
  120. emx_onnx_cgen/templates/tensor_scatter_op.c.j2 +44 -0
  121. emx_onnx_cgen/templates/testbench.c.j2 +161 -0
  122. emx_onnx_cgen/templates/tfidf_vectorizer_op.c.j2 +144 -0
  123. emx_onnx_cgen/templates/tile_op.c.j2 +14 -0
  124. emx_onnx_cgen/templates/topk_op.c.j2 +50 -0
  125. emx_onnx_cgen/templates/transpose_op.c.j2 +9 -0
  126. emx_onnx_cgen/templates/trilu_op.c.j2 +33 -0
  127. emx_onnx_cgen/templates/unary_op.c.j2 +23 -0
  128. emx_onnx_cgen/templates/where_op.c.j2 +9 -0
  129. emx_onnx_cgen/verification.py +45 -5
  130. {emx_onnx_cgen-0.3.8.dist-info → emx_onnx_cgen-0.4.1.dev0.dist-info}/METADATA +33 -15
  131. emx_onnx_cgen-0.4.1.dev0.dist-info/RECORD +190 -0
  132. {emx_onnx_cgen-0.3.8.dist-info → emx_onnx_cgen-0.4.1.dev0.dist-info}/WHEEL +1 -1
  133. emx_onnx_cgen/runtime/__init__.py +0 -1
  134. emx_onnx_cgen/runtime/evaluator.py +0 -2955
  135. emx_onnx_cgen-0.3.8.dist-info/RECORD +0 -107
  136. {emx_onnx_cgen-0.3.8.dist-info → emx_onnx_cgen-0.4.1.dev0.dist-info}/entry_points.txt +0 -0
  137. {emx_onnx_cgen-0.3.8.dist-info → emx_onnx_cgen-0.4.1.dev0.dist-info}/top_level.txt +0 -0
@@ -1,7 +1,10 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: emx-onnx-cgen
3
- Version: 0.3.8
3
+ Version: 0.4.1.dev0
4
4
  Summary: emmtrix ONNX-to-C Code Generator
5
+ Project-URL: Homepage, https://github.com/emmtrix/emx-onnx-cgen
6
+ Project-URL: Repository, https://github.com/emmtrix/emx-onnx-cgen
7
+ Project-URL: Issues, https://github.com/emmtrix/emx-onnx-cgen/issues
5
8
  Requires-Python: >=3.10
6
9
  Description-Content-Type: text/markdown
7
10
 
@@ -39,10 +42,10 @@ Key characteristics:
39
42
 
40
43
  - CLI for ONNX-to-C compilation and verification.
41
44
  - Deterministic codegen with explicit tensor shapes and loop nests.
42
- - Minimal C runtime templates in `templates/`.
45
+ - Minimal C runtime templates in `src/emx_onnx_cgen/templates/`.
43
46
  - ONNX Runtime comparison for end-to-end validation.
44
47
  - Official ONNX operator coverage tracking.
45
- - Support for a wide range of ONNX operators (see `OFFICIAL_ONNX_FILE_SUPPORT.md`).
48
+ - Support for a wide range of ONNX operators (see `ONNX_SUPPORT.md`).
46
49
  - Supported data types:
47
50
  - `float`, `double`, `float16`
48
51
  - `int8_t`, `uint8_t`, `int16_t`, `uint16_t`, `int32_t`, `uint32_t`, `int64_t`, `uint64_t`
@@ -89,13 +92,16 @@ emx-onnx-cgen compile <model.onnx> <output.c> [options]
89
92
 
90
93
  Options:
91
94
 
92
- - `--template-dir`: Directory containing the C templates (default: `templates`).
95
+ - `--model-base-dir`, `-B`: Base directory for resolving the model path (example: `emx-onnx-cgen compile --model-base-dir /data model.onnx out.c`).
96
+ - `--color`: Colorize CLI output (`auto`, `always`, `never`; default: `auto`).
93
97
  - `--model-name`: Override the generated model name (default: output file stem).
94
98
  - `--emit-testbench`: Emit a JSON-producing `main()` testbench for validation.
95
99
  - `--emit-data-file`: Emit constant data arrays into a companion `_data` C file.
96
- - `--large-weight-threshold`: Store weights larger than this element count in a binary file (default: `1048576`; set to `0` to disable).
97
- - `--large-temp-threshold-bytes`: Mark temporary buffers larger than this threshold as static (default: `1024`).
100
+ - `--large-weight-threshold`: Store weights in a binary file once the cumulative byte size exceeds this threshold (default: `102400`; set to `0` to disable).
101
+ - `--large-temp-threshold`: Mark temporary buffers larger than this threshold as static (default: `1024`).
98
102
  - `--no-restrict-arrays`: Disable `restrict` qualifiers on generated array parameters.
103
+ - `--fp32-accumulation-strategy`: Accumulation strategy for float32 inputs (`simple` uses float32, `fp64` uses double; default: `fp64`).
104
+ - `--fp16-accumulation-strategy`: Accumulation strategy for float16 inputs (`simple` uses float16, `fp32` uses float; default: `fp32`).
99
105
 
100
106
  ### `verify`
101
107
 
@@ -105,13 +111,20 @@ emx-onnx-cgen verify <model.onnx> [options]
105
111
 
106
112
  Options:
107
113
 
108
- - `--template-dir`: Directory containing the C templates (default: `templates`).
114
+ - `--model-base-dir`, `-B`: Base directory for resolving the model and test data paths (example: `emx-onnx-cgen verify --model-base-dir /data model.onnx --test-data-dir inputs`).
115
+ - `--color`: Colorize CLI output (`auto`, `always`, `never`; default: `auto`).
109
116
  - `--model-name`: Override the generated model name (default: model file stem).
110
117
  - `--cc`: Explicit C compiler command for building the testbench binary.
111
- - `--large-weight-threshold`: Store weights larger than this element count in a binary file (default: `1024`).
112
- - `--large-temp-threshold-bytes`: Mark temporary buffers larger than this threshold as static (default: `1024`).
118
+ - `--large-weight-threshold`: Store weights in a binary file once the cumulative byte size exceeds this threshold (default: `102400`).
119
+ - `--large-temp-threshold`: Mark temporary buffers larger than this threshold as static (default: `1024`).
113
120
  - `--max-ulp`: Maximum allowed ULP distance for floating outputs (default: `100`).
114
- - `--runtime`: Runtime backend for verification (`onnxruntime` or `onnx-reference`, default: `onnx-reference`).
121
+ - `--atol-eps`: Absolute tolerance as a multiple of machine epsilon for floating outputs (default: `1.0`).
122
+ - `--runtime`: Runtime backend for verification (`onnxruntime` or `onnx-reference`, default: `onnxruntime`).
123
+ - `--temp-dir-root`: Root directory in which to create a temporary verification directory (default: system temp dir).
124
+ - `--temp-dir`: Exact directory to use for temporary verification files (default: create a temporary directory).
125
+ - `--keep-temp-dir`: Keep the temporary verification directory instead of deleting it.
126
+ - `--fp32-accumulation-strategy`: Accumulation strategy for float32 inputs (`simple` uses float32, `fp64` uses double; default: `fp64`).
127
+ - `--fp16-accumulation-strategy`: Accumulation strategy for float16 inputs (`simple` uses float16, `fp32` uses float; default: `fp32`).
115
128
 
116
129
  How verification works:
117
130
 
@@ -122,9 +135,14 @@ How verification works:
122
135
  directory.
123
136
  3. **Run runtime backend**: the JSON inputs from the testbench are fed to the
124
137
  selected runtime (`onnxruntime` or `onnx-reference`) using the same model.
125
- 4. **Compare outputs**: floating outputs are compared by maximum ULP distance
126
- (see https://www.emmtrix.com/wiki/ULP_Difference_of_Float_Numbers for the
127
- ULP definition and algorithm); non-floating outputs must match exactly.
138
+ The compiler no longer ships a Python runtime evaluator.
139
+ 4. **Compare outputs**: floating outputs are compared by maximum ULP distance.
140
+ Floating-point verification first ignores very small differences up to
141
+ **--atol-eps × [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) of
142
+ the evaluated floating-point type**, treating such values as equal. For
143
+ values with a larger absolute difference, the ULP distance is computed, and
144
+ the maximum ULP distance is reported; non-floating outputs must match
145
+ exactly.
128
146
  Missing outputs or mismatches are treated as failures.
129
147
  5. **ORT unsupported models**: when using `onnxruntime`, if ORT reports
130
148
  `NOT_IMPLEMENTED`, verification is skipped with a warning (exit code 0).
@@ -147,8 +165,8 @@ runtime.
147
165
 
148
166
  ## Official ONNX test coverage
149
167
 
150
- See [`OFFICIAL_ONNX_FILE_SUPPORT.md`](OFFICIAL_ONNX_FILE_SUPPORT.md) for the generated support matrix.
151
- See [`SUPPORT_OPS.md`](SUPPORT_OPS.md) for operator-level support derived from the expectation JSON files.
168
+ See [`ONNX_SUPPORT.md`](https://github.com/emmtrix/emx-onnx-cgen/blob/v0.4.0/ONNX_SUPPORT.md) for the generated support matrix.
169
+ See [`SUPPORT_OPS.md`](https://github.com/emmtrix/emx-onnx-cgen/blob/v0.4.0/SUPPORT_OPS.md) for operator-level support derived from the expectation JSON files.
152
170
 
153
171
  ## Maintained by
154
172
 
@@ -0,0 +1,190 @@
1
+ emx_onnx_cgen/__init__.py,sha256=jUSbu1kJ0krzVTYEcph3jCprBhD7tWNtiSdL6r29KrM,221
2
+ emx_onnx_cgen/__main__.py,sha256=iC1lLVtR6-TmpL6OxXcy3oIntExUtajn9-q627R1XyI,140
3
+ emx_onnx_cgen/_build_info.py,sha256=2a3tiwcONr275Rn1dg8CjAqlSrdAJUd_LYt3hxGyRa4,112
4
+ emx_onnx_cgen/_version.py,sha256=ptLWt_Y6Ljpzx3CLPNc1ziUZh_FZbRUr08VOhJPCHpE,717
5
+ emx_onnx_cgen/cli.py,sha256=YJjo4r73IcZ8fMClqmFtnmwyv1nzjPixjnBr67AJnjo,53202
6
+ emx_onnx_cgen/compiler.py,sha256=pR9iEuQd8UQvD-rxh2O0Rte1SlnJh_ns1F1JM5JxX3Q,21832
7
+ emx_onnx_cgen/determinism.py,sha256=6O43NfbRfLfKUQqL4cHUS-EaPhFCLGrJ4kKB5C7z5TQ,1103
8
+ emx_onnx_cgen/dtypes.py,sha256=jRx3BBvk0qFW14bngoL1B7L_IRasyNJ4jqhpM5YhcOM,1335
9
+ emx_onnx_cgen/errors.py,sha256=HpOv95mTgr9ZX2gYe1RtwVMbPskh7zkqjU_FgAD-uIM,363
10
+ emx_onnx_cgen/onnx_import.py,sha256=FrxAzwtTXj-XhN5KcqqyqkN-Q_PNF9cFlU1OlAXdi7Q,29041
11
+ emx_onnx_cgen/onnxruntime_utils.py,sha256=mEsC1x00M1jyBgVBKqnKoqx6H1tdgsFFUy7rbITs3bs,308
12
+ emx_onnx_cgen/ops.py,sha256=zrVmDMfwZC3RnPWl_YOLUEdr3j9MC-WQHXV0dETufWc,16888
13
+ emx_onnx_cgen/testbench.py,sha256=-NbqD1aC7OXvFMLiLzd2IPObenQdHFH85cNxNSB1GeY,640
14
+ emx_onnx_cgen/validation.py,sha256=KFdUdGjQbzTj1szCJcjxnTi8f5l6ywNgCB9abbBpTbM,2360
15
+ emx_onnx_cgen/verification.py,sha256=mtkUqJpJbXWHnWB-Rpt0n_cSeh4rPBufHFP7y5KH3TY,2084
16
+ emx_onnx_cgen/codegen/__init__.py,sha256=EqCc1e0n2PBXbJKTDq6VXehBNIUVwqS0OYC8e68CYqM,444
17
+ emx_onnx_cgen/codegen/c_emitter.py,sha256=tPut1jHbBFuZ1auRKgUvHRnGDMKNe9M8efqDT2xaR0Y,520147
18
+ emx_onnx_cgen/codegen/emitter.py,sha256=udcsqJNr46TFHiyVv5I4wdVH8ll6Bi4VqcR1VvofbnY,92
19
+ emx_onnx_cgen/ir/__init__.py,sha256=fD2D8qxlGoCFJb0m9v6u3XTgzSxDOhB4cfLBiCLovzg,102
20
+ emx_onnx_cgen/ir/context.py,sha256=Xo1UCezDdGLF195GSLP4xARDEN6dBwLRez-EqUFTTmY,3813
21
+ emx_onnx_cgen/ir/model.py,sha256=Bjy8edpmeET_U-H44g-uEe3HUumUMiZNUQbOf101MOg,1295
22
+ emx_onnx_cgen/ir/op_base.py,sha256=RbJRg_V9Zh2a9nKPUAUvGIWv16Y_l5t1JcmifOSdHQ0,18358
23
+ emx_onnx_cgen/ir/op_context.py,sha256=9CZCUNJLsV4cJsYmJqWbaDrwQd4sr-9Ot1PmPSqGAto,2103
24
+ emx_onnx_cgen/ir/ops/__init__.py,sha256=kQxoj0uMI-1ngOjWHEtX_deLSwrPfwQGgMmjis7wSJA,2905
25
+ emx_onnx_cgen/ir/ops/elementwise.py,sha256=H7MOYYNSmz8Jsy7RaufF3BA-AmGX21JEPeIsipUOu2Q,8174
26
+ emx_onnx_cgen/ir/ops/misc.py,sha256=-nRybPqwar0uS4CiZDH8EScPyBALAFfSw9BxdJGhO-o,16234
27
+ emx_onnx_cgen/ir/ops/nn.py,sha256=6oVU6pddR28E4Q52V5E8pAWxRV3r0dgoT_RblEd1jYA,26893
28
+ emx_onnx_cgen/ir/ops/reduce.py,sha256=ePIJwzlswsktvJazMtOd0YuazCHS2dXUwrqCKhUauk4,2263
29
+ emx_onnx_cgen/lowering/__init__.py,sha256=pD_983kCqKV-M6g0z62XLUAwHGExb2lY1HptTXegMbk,1717
30
+ emx_onnx_cgen/lowering/adagrad.py,sha256=DuW3MeNNJjhXz1k7XI9JDwfgWr-TyD5Q-B9eAZrNecM,4797
31
+ emx_onnx_cgen/lowering/arg_reduce.py,sha256=6D785Z_yn9n0uabn9W5v6-YsjqHZbpvOa8L9oySh5U0,3241
32
+ emx_onnx_cgen/lowering/attention.py,sha256=-Il_8AQMuwQtq-2-RkVyVfnvtRJuO61Cv1PlMIypxEc,16477
33
+ emx_onnx_cgen/lowering/average_pool.py,sha256=r-agefzjj99Fw2CP1ElhvYHiYd3R7zlPvJOfzKJcjek,12619
34
+ emx_onnx_cgen/lowering/batch_normalization.py,sha256=_i-vwlhuAQYqxJIezHaxeqcmISV66Y_5o929_FTtMZg,3976
35
+ emx_onnx_cgen/lowering/bernoulli.py,sha256=Fn-t0fgve_Ns2LBzilHwnLE30ONnNNxtJu7IxVcwcfw,2435
36
+ emx_onnx_cgen/lowering/cast.py,sha256=J2Tf7MprIcZjsgVLGsaccpbyvftfXfm57o--Il-8GlQ,2841
37
+ emx_onnx_cgen/lowering/common.py,sha256=We_bZ33DE8TW7SBG70djC1VmXjTivsB0XWqQTFEK0XI,18446
38
+ emx_onnx_cgen/lowering/concat.py,sha256=p40vipQsbyymVqV4YO2JWVNiuqkU-xyVqqrCI8iujB4,2499
39
+ emx_onnx_cgen/lowering/constant_of_shape.py,sha256=N01UvbVroDk08FTbBMndrLYIzI0G6M0UQuCr4oxpP40,3197
40
+ emx_onnx_cgen/lowering/conv.py,sha256=oKJcs4foIewuTFmJ4jbzZm8mz58LyqgO3qSjc3ODx8I,7394
41
+ emx_onnx_cgen/lowering/conv_integer.py,sha256=4TCdUDSijyXo_eEhp0sPX05G2OrmjAdCJ7yzgMp2BuQ,3814
42
+ emx_onnx_cgen/lowering/conv_transpose.py,sha256=10K7nhQ60p0PAB3qxmeazm2tbsSS1GDeINBk7VzsH1U,11153
43
+ emx_onnx_cgen/lowering/cumsum.py,sha256=9E0C5NtvPt6g5T4QLdIOeDkXaZNzyDklus2-qu2B7eA,4114
44
+ emx_onnx_cgen/lowering/depth_space.py,sha256=i7INioNkofBxFlZW9y0W_qA6mp67_FAXouhKCiB9RKc,4206
45
+ emx_onnx_cgen/lowering/dequantize_linear.py,sha256=XQ8OOIcX_8dtuS5VHWCo7FhYtIOEJeY1aMfEf5hd4Jk,4762
46
+ emx_onnx_cgen/lowering/dropout.py,sha256=MZ4YrB-jvUFXpIKE5kOLyrEF5uy5dh0yjJH6Rj8KlMs,1764
47
+ emx_onnx_cgen/lowering/einsum.py,sha256=MWAgWVOzP38RSOxJABwvYU6ykD9odmhrmddXinmFs7s,6117
48
+ emx_onnx_cgen/lowering/elementwise.py,sha256=xvA1ifzLherNXbe9_EYYuyFcREk_uRcuUw6Jo38f7h8,15967
49
+ emx_onnx_cgen/lowering/expand.py,sha256=y0h1x2xh6Oqtblm6TbELB6_I4fsquU3YuZoB4mZJeTo,525
50
+ emx_onnx_cgen/lowering/eye_like.py,sha256=QBiHWYZbgK4uiUYWuS7WHCMBGMSG0paNZM84OYmGb7c,1723
51
+ emx_onnx_cgen/lowering/flatten.py,sha256=6h-TQNy9iq5hfXR9h2clUrc2eHmZP9gAb9KbCSJdV20,2131
52
+ emx_onnx_cgen/lowering/gather.py,sha256=XrGpsdOu0Rg2mKgKcGgcK4_BOjUlbBuTxFiBDhVp3lA,1054
53
+ emx_onnx_cgen/lowering/gather_elements.py,sha256=cCp2UFOjktgEfS9s9npMS_BXklBkpMpD7UhIIMhQ-_Y,2318
54
+ emx_onnx_cgen/lowering/gather_nd.py,sha256=rmr_ijeSeCrZ_R_QPwdoHPQUCe8nE0YRSv2NjUiiFjY,3090
55
+ emx_onnx_cgen/lowering/gemm.py,sha256=2P9SKDGlXC8wUK363_QKS0H5bPjsuEBxPTPs89WvC5k,791
56
+ emx_onnx_cgen/lowering/global_max_pool.py,sha256=orUQjQRK_Fm_g9ktUTYpZ74_LxnAN0tIEDaQ8OQYi1k,2058
57
+ emx_onnx_cgen/lowering/grid_sample.py,sha256=FFbK-jrjqFLwSUu7BfSZC9So7MeCZprGKG5N4XQUxR4,5217
58
+ emx_onnx_cgen/lowering/group_normalization.py,sha256=Ep7toUW9sHvMHb2EwNpgayygTW-TN62ooVLdaF0z9_c,2653
59
+ emx_onnx_cgen/lowering/gru.py,sha256=xsKcYoiFBdiMI0MlHEtjD2Sw0ZIfeJEPMmaIh--3bzI,11212
60
+ emx_onnx_cgen/lowering/hamming_window.py,sha256=v5qEaxcO45JqTPWUf5a6SKaZvfqmNUqkRQijvdZfEoA,3559
61
+ emx_onnx_cgen/lowering/hardmax.py,sha256=VW00Te4FlmeRfD96lvbPifYU8u1DFNqClF4NsioRcBk,566
62
+ emx_onnx_cgen/lowering/identity.py,sha256=z_iK9zTDUJ4_7OcYG2_acfj4tIXEgUG5a38p3I559uM,1961
63
+ emx_onnx_cgen/lowering/instance_normalization.py,sha256=XrDOAo8Af7yDObtAAJ006dVCN175cWPb5Wvh61PE7xs,1939
64
+ emx_onnx_cgen/lowering/layer_normalization.py,sha256=RjRn1sPFupB8n3RsA8O9p5vDmfmj2Q6hjMVhSFzfLkU,4518
65
+ emx_onnx_cgen/lowering/logsoftmax.py,sha256=996JK-b_3DzYD9hywJ_ce8V8LbM1JDzzgXD0G8ONqBk,584
66
+ emx_onnx_cgen/lowering/lp_normalization.py,sha256=il1fBWan8DwZ3dlRVSJWVhMpzHDYtwjh1YJaNm6palY,1701
67
+ emx_onnx_cgen/lowering/lp_pool.py,sha256=ZweJqeMazliY0OvotznFf03Jsd2jOe0cA6vv_Ap0yZ4,5298
68
+ emx_onnx_cgen/lowering/lrn.py,sha256=rJ_7ISllYphbHKmlMv3c5IwqPl-oZrEKWux7QCdjqIQ,3359
69
+ emx_onnx_cgen/lowering/lstm.py,sha256=RVe0qGesoK-FfWeV0vCKCkoWD32Fv_C22LnQLFLr4Tc,12294
70
+ emx_onnx_cgen/lowering/matmul.py,sha256=i4Ve0gYFhE-oKsI_bCQedbVgrh4ZbzjZrcPdTrjAcVQ,520
71
+ emx_onnx_cgen/lowering/maxpool.py,sha256=0XoazajqrB5So-hEnR73LOSsdF7ZnguVNAc9NSjK6Q4,7483
72
+ emx_onnx_cgen/lowering/mean_variance_normalization.py,sha256=tFeDgrocZO5Q5hNBaFl4cTFpKTPNVmRH9-FZircEffA,1864
73
+ emx_onnx_cgen/lowering/negative_log_likelihood_loss.py,sha256=J5VfAQN2bIrt8D4_6KIGxRBk4Q9ykJvlqJftCrqy-jc,9333
74
+ emx_onnx_cgen/lowering/non_max_suppression.py,sha256=9EeHm2aF7QBmP-s23r43VDgRvGyFWcNcI1s_jYPqln0,5749
75
+ emx_onnx_cgen/lowering/nonzero.py,sha256=qjDlI_0s37hK-arOD-Bm_Ft9N_gTVt0X3OEqxuP1sR0,1626
76
+ emx_onnx_cgen/lowering/one_hot.py,sha256=JGJsA35Q5hyX7nutNVJMGgTgcFxlAlolH9k4igVc2s0,4341
77
+ emx_onnx_cgen/lowering/optional_has_element.py,sha256=Wdo-HKAJFXqBSBPfugqRy7XPvliB78IgGsazvZx1Fmk,970
78
+ emx_onnx_cgen/lowering/pad.py,sha256=Z8361NQCwypKfTnS8-0rylX6P-S8xLU6QLbahVzxrzw,10405
79
+ emx_onnx_cgen/lowering/qlinear_matmul.py,sha256=gsV8CAB9_PhPuCGBYEvqfhby3uHQ6-4lyfDI2Xgvw0c,7899
80
+ emx_onnx_cgen/lowering/qlinear_mul.py,sha256=Esqx2BxJh9KXcnM0RKCagQAJSQYZ446Za0KazUHlKDw,4761
81
+ emx_onnx_cgen/lowering/quantize_linear.py,sha256=yJOvZbGxI8HcZ_Zl9VO49qJVfZ5FwNoDq5TjTiGzKmg,4760
82
+ emx_onnx_cgen/lowering/range.py,sha256=yaRvLHLlWNvvg-IO590jSVPv2dWrJjPWXyysSNOj0IY,3452
83
+ emx_onnx_cgen/lowering/reduce.py,sha256=E4wuNpFyy_thi9CFwdhYRusPGk5E9cnLUqp5l_S4Rik,18209
84
+ emx_onnx_cgen/lowering/registry.py,sha256=tNmnP6ZhIrKv83Q6VdfkTLSsw6P8cqch-nqSWpURYX8,2002
85
+ emx_onnx_cgen/lowering/reshape.py,sha256=__sOC1FvUCIEdbHObNcL3s97bQkKVhu7ecB9M2AEIu8,13108
86
+ emx_onnx_cgen/lowering/resize.py,sha256=XCTUppSDj9-GyztBORIuK1MJMxelA3DU_NZzfsVIlgQ,14633
87
+ emx_onnx_cgen/lowering/rms_normalization.py,sha256=pWu5u0TqHZaL3rh07MtA6eOP0zLzNCoQ84f1V0un2Iw,2525
88
+ emx_onnx_cgen/lowering/rotary_embedding.py,sha256=IfDxuUCJqFIK8SCviYXZfdJcrgg8tjT2ofYFUP2uv8c,6068
89
+ emx_onnx_cgen/lowering/scatter_nd.py,sha256=WuNxsMQmCTXgqen5rygpAbZIsfca537lvvFPakn0rJU,3210
90
+ emx_onnx_cgen/lowering/shape.py,sha256=Yy4bVL2oUI2MHMm44HbQEEiR2zK2Rezn78urFZl_M60,2536
91
+ emx_onnx_cgen/lowering/size.py,sha256=Mfj2x0zvDrhMAcmhXI5F63dzd3w3ZT2IxfI0jMbTSuQ,1250
92
+ emx_onnx_cgen/lowering/slice.py,sha256=LpJlCZNTlxpNGH2J88S0a54B5_BubtlOXmQ150fHwaM,15165
93
+ emx_onnx_cgen/lowering/softmax.py,sha256=ob9xaTF5bpk43eNb3BeTLSFOWFi1JAJW65I_mIW9cZ0,566
94
+ emx_onnx_cgen/lowering/softmax_cross_entropy_loss.py,sha256=B6h23sGBZLdpKcbtoQUhVwfLrdSJwNcbCoPoDc3rTc0,5219
95
+ emx_onnx_cgen/lowering/split.py,sha256=zv-W5O6K6Q5reZa7UhJ53tbCFTygt1wsCiQEGD_HgSE,7098
96
+ emx_onnx_cgen/lowering/squeeze.py,sha256=p9bER1Jkc8_6BGjsD3b7zhuak11eywoQhVFIvJ9Vzj0,6084
97
+ emx_onnx_cgen/lowering/tensor_scatter.py,sha256=1Wqb9XsNNj1CEKnH3Vx45xh3QQbxHF9L90ycVbcsy44,4485
98
+ emx_onnx_cgen/lowering/tfidf_vectorizer.py,sha256=DgvEtY8VM94dmSS5EjeVYnXOJ6NZbY_6nvrzphsZN0g,7189
99
+ emx_onnx_cgen/lowering/tile.py,sha256=4kBobxBKz9OtXvTvwOw_k7_ckBFwiYZGmTi0AlAEvZI,4536
100
+ emx_onnx_cgen/lowering/topk.py,sha256=bXwzDFoKz7C3znBlH1EgZOi62CSYX37FMN9j2F1sKgI,4656
101
+ emx_onnx_cgen/lowering/transpose.py,sha256=EVKlbeX1MFwgq62qq8v4EG4yCAoh2RcYhggcHrdpLQU,2071
102
+ emx_onnx_cgen/lowering/trilu.py,sha256=OjJjyo2ZRcfo9UGH8Zfq4o0PR6YDeoHSj8DzMu0w318,3266
103
+ emx_onnx_cgen/lowering/unsqueeze.py,sha256=_2SjIqdxmR2EvFjruV86cl9aQmJcfg9IO7yolaZR2cI,5841
104
+ emx_onnx_cgen/lowering/upsample.py,sha256=OBcJKuAZ6vGBngPlWFyyfdjK4pg-E2scydQ5KASk8XE,5285
105
+ emx_onnx_cgen/lowering/variadic.py,sha256=KFwMG3FgCp3LGRoUTeWLNz5pIG1WHyj2Wb2w89AZ9pI,1869
106
+ emx_onnx_cgen/lowering/where.py,sha256=SXWgJT2VA87GL8ZjvcvabhepR4DJ_mrADDq7bxJ9F5Y,2490
107
+ emx_onnx_cgen/templates/adagrad_op.c.j2,sha256=t4cvRqoIrexiXSFLct7r_lc8mzRVUjyKBevl3Zks2Zk,905
108
+ emx_onnx_cgen/templates/arg_reduce_op.c.j2,sha256=FJ-XKruwY6slb_hMHmMtKS3N_1YVhRGsKYQraWQemUg,753
109
+ emx_onnx_cgen/templates/attention_op.c.j2,sha256=jIsMjyGcb996QfnAS0rP3IIgN7BkA750V8Y1yiYiRR0,9506
110
+ emx_onnx_cgen/templates/average_pool_op.c.j2,sha256=BXr8FhcCCMdMjIfSi4kntvVLvMRq3nWOXTFIYUJJ8Bw,6480
111
+ emx_onnx_cgen/templates/batch_norm_op.c.j2,sha256=Mxrl0Y77q9vDvCUqnKjdHSrjt9N69q14cApz9XaG8fk,566
112
+ emx_onnx_cgen/templates/bernoulli_op.c.j2,sha256=gVrlvYzWbcA3-30sbk_Z_JlYJ4AHwVA2DJqFyaHmk8A,1117
113
+ emx_onnx_cgen/templates/binary_op.c.j2,sha256=YGS5j48cSjMrHztVTXOtSI7EKBihfHwOt5vpDgruiAM,539
114
+ emx_onnx_cgen/templates/cast_op.c.j2,sha256=9BaxC3x_ca-4Pi8sZ64KD5cxXy7-mS-vARkordf4Ens,419
115
+ emx_onnx_cgen/templates/clip_op.c.j2,sha256=Qloge-NSIPQ-niIQc6SrWpJFdqFQAp1M_O5yn9VzrdU,576
116
+ emx_onnx_cgen/templates/concat_op.c.j2,sha256=3XVNRRcoPZW34X5jecTX_1AM5nEAhCuhZG8QG03K5-0,1319
117
+ emx_onnx_cgen/templates/constant_of_shape_op.c.j2,sha256=fl8PHmO81wOms-w3ndZ5UODMQU7yIu9jIoTZrg7cHVA,380
118
+ emx_onnx_cgen/templates/conv_integer_op.c.j2,sha256=vydhDC2A6-RflRxvJg2f5WFuGt6cY5HDokIdgolDiYc,2439
119
+ emx_onnx_cgen/templates/conv_op.c.j2,sha256=tvhZ1Y2z6KIgk93FAEhkgKBsBqdBST4U-cJCPdfx-Rs,2284
120
+ emx_onnx_cgen/templates/conv_transpose_op.c.j2,sha256=nM7MY1qwgFe9kTcf47i6Kq8Nah9KIrP8S7AbDlG66pQ,2727
121
+ emx_onnx_cgen/templates/cumsum_op.c.j2,sha256=6RXVRl5NnRr8jEV5VpuYk0E-2k6GbIwZfXpbSihV8GU,2069
122
+ emx_onnx_cgen/templates/depth_to_space_op.c.j2,sha256=LObJ8_QCQubdut_KAozzQaVjFxuGPmr5fOOzdJOHlTc,1264
123
+ emx_onnx_cgen/templates/dequantize_linear_op.c.j2,sha256=z0AyDco-siBR5Nm7h02u7p0avGSiTxm1c1Z3dJ2ym4o,483
124
+ emx_onnx_cgen/templates/einsum_op.c.j2,sha256=L-mft265aXvBkfm33JSDozKDue6wK5SpbRYWT-T7Vvc,3179
125
+ emx_onnx_cgen/templates/expand_op.c.j2,sha256=4zGcRy6E5oDQosUVkVpv_gBae-tPoz3PuDBghwxVTUY,593
126
+ emx_onnx_cgen/templates/eye_like_op.c.j2,sha256=pFh7UgWeHKJ7dKhW-VEqLTYarjXpYSRfvCB00vmUAlc,1043
127
+ emx_onnx_cgen/templates/gather_elements_op.c.j2,sha256=6CFztzreMZmUHXh2sr9sscPb9aBJJgBIo_XTTSgG0Xw,560
128
+ emx_onnx_cgen/templates/gather_nd_op.c.j2,sha256=1CBnPSsUEgLrnv9MnKxT1IxwtXIO7ghOW69jq4N9UZs,1037
129
+ emx_onnx_cgen/templates/gather_op.c.j2,sha256=76kTx8XV_iY3T5hLC0pxV7RLErvEHgcsL0w5rkQq54c,566
130
+ emx_onnx_cgen/templates/gemm_op.c.j2,sha256=MK_hl_1EjjwL2QysAZ5oZqubayZDR7F2f9aDWGK0KJc,1492
131
+ emx_onnx_cgen/templates/grid_sample_op.c.j2,sha256=xznm33Hne2SpQG7mCiGcnVuWe_NhmWcV4yOTdv04bQM,8938
132
+ emx_onnx_cgen/templates/group_normalization_op.c.j2,sha256=vIxBXEAGmdrHmQ0p_-NjChf1eK5MODH1E5Zszf4x1ck,2297
133
+ emx_onnx_cgen/templates/gru_op.c.j2,sha256=Mxv7-VrCsHZqN7DUIdPV6BDuBVHO90FkZb-MP9X0UFE,7247
134
+ emx_onnx_cgen/templates/hamming_window_op.c.j2,sha256=pwwOd5fRuSEnlfTRkG5Bor5FiWvZagsJxaN87rJDpSs,562
135
+ emx_onnx_cgen/templates/hardmax_op.c.j2,sha256=jfGo7aZRfs_rYh2RF0S-oUC6eW7wSlfSzsWNrNr4Sp8,1213
136
+ emx_onnx_cgen/templates/identity_op.c.j2,sha256=cMIKmBjrY7mKNXWCPP96JzonYOLAyxvIhtur7u8QeoQ,410
137
+ emx_onnx_cgen/templates/instance_normalization_op.c.j2,sha256=Ffj0S9UhfA0uR2bYS8xiJYmK3hKE7KrPfYRvCXdTvXM,1779
138
+ emx_onnx_cgen/templates/layer_normalization_op.c.j2,sha256=M02O1ArelK1GP_E6sSd9s-SrO7hQerTey9xPbiWwZlE,3208
139
+ emx_onnx_cgen/templates/logsoftmax_op.c.j2,sha256=xQZqD7wJELWV-QyC8J4Jn2LPspNPNxkOkzKiW1Nkwb4,1374
140
+ emx_onnx_cgen/templates/lp_normalization_op.c.j2,sha256=d2RzG1aiCw7rEEik7BcC929xHBHlHA5TGMM9sUL8prQ,1134
141
+ emx_onnx_cgen/templates/lp_pool_op.c.j2,sha256=hC91h4ynvh_4LGpkW6IE2H20wPpdkz65mKudasznhKA,1332
142
+ emx_onnx_cgen/templates/lrn_op.c.j2,sha256=ANPey63qgozZYc4yXHkgo4eos08qxEIv0Bj30tZJTrw,972
143
+ emx_onnx_cgen/templates/lstm_op.c.j2,sha256=B774zaw_MuNrWg7phs239e3YcD254WG2dOcg7b7-Mtk,8388
144
+ emx_onnx_cgen/templates/matmul_op.c.j2,sha256=KbM-BE7opwN-qq7x83f9NvuLY0XSum9AhLI8aegDsQg,1028
145
+ emx_onnx_cgen/templates/maxpool_op.c.j2,sha256=DOSbfeLqzJxVVfEq_mym7l1FtpWFJ4_SbGlMRU6dvsk,6733
146
+ emx_onnx_cgen/templates/mean_variance_normalization_op.c.j2,sha256=fQofYSGnc4qYfo-bWHNliE8t4-pW4KdgSawMSyv2OiE,1408
147
+ emx_onnx_cgen/templates/multi_input_op.c.j2,sha256=4cYUmzYX0r7Hby1iJys2Q9LiroQPIRqlbUiLIsMUxf4,663
148
+ emx_onnx_cgen/templates/negative_log_likelihood_loss_op.c.j2,sha256=ECWSgma_vQWZNpV35v5q46VJkwPcm1JEAl7G7bDvqU4,1958
149
+ emx_onnx_cgen/templates/nonmax_suppression_op.c.j2,sha256=-A9MHZQiOMIMyajbhl_sg3zsq8QjjA09nlFYdZF--8o,7574
150
+ emx_onnx_cgen/templates/nonzero_op.c.j2,sha256=rmI_nV-s0fbUKzgNF92J5t1Ur0P4I9TsTAEnD6mjyeg,534
151
+ emx_onnx_cgen/templates/one_hot_op.c.j2,sha256=frzEGK47nHL_rUJJtvOe2o1_5I1M_dcNkqKbr0AMQWY,1003
152
+ emx_onnx_cgen/templates/optional_has_element_op.c.j2,sha256=Q1ydPD03IwBF4kOlQF1njzyzdUim_RWFkwrP3oPysio,145
153
+ emx_onnx_cgen/templates/pad_op.c.j2,sha256=jmNJz9oDVmlKavuTsgLc2_Y1V-T6IZb8MgAcI7hEQiI,3426
154
+ emx_onnx_cgen/templates/qlinear_matmul_op.c.j2,sha256=KJZH-aQEWIOIr_e8bQDMd5jZaUPdjBd6IdpgJRjNX0s,2898
155
+ emx_onnx_cgen/templates/qlinear_mul_op.c.j2,sha256=KxTJ1W3TiZtg14Y2tY-RhalwvXF_JrAhoi0KvtTOfQs,1768
156
+ emx_onnx_cgen/templates/quantize_linear_op.c.j2,sha256=IToa5IkdFxlFRKsJP8g8oM8iK-y5xcgRM6NCXq-8rpw,683
157
+ emx_onnx_cgen/templates/range_op.c.j2,sha256=5fT0Ow-gr5KwGgKv7IuW6HTWD1SEHVyVxgPEI4jbpQg,343
158
+ emx_onnx_cgen/templates/reduce_op.c.j2,sha256=tHGGkqz-1zJed9qlXFfMw3LUcWVssDWDw707oeStiNE,951
159
+ emx_onnx_cgen/templates/reduce_op_dynamic.c.j2,sha256=hTb-OE2Q4e8us7iOESTcVxTdbvSUo3fimDxIuWrQ3iA,2741
160
+ emx_onnx_cgen/templates/reshape_op.c.j2,sha256=ok-_aWeoFFtRUyCQmDpNH8hFEUr8yDL8xzUzyY2nm4I,717
161
+ emx_onnx_cgen/templates/resize_op.c.j2,sha256=Z2DAGFV3o7y4UK6cStCDQKny9fYXMNyUaW30Z_wxrJw,10708
162
+ emx_onnx_cgen/templates/rms_normalization_op.c.j2,sha256=jZap5WBXDIXOaouErQpsg2xOppefvNk16OBvxwrWIVY,1505
163
+ emx_onnx_cgen/templates/rotary_embedding_op.c.j2,sha256=hx7wP9y-R4E8irzN4bVCNBUFKAJIIl_56fr2xB6ZFlI,2757
164
+ emx_onnx_cgen/templates/scatter_nd_op.c.j2,sha256=zBRZhdl8t7V09jn9WYYoXzMfZQwipotxHZw9d9OUP1Y,1888
165
+ emx_onnx_cgen/templates/shape_op.c.j2,sha256=1RAbUeK5qcNl_aClcccFfNJXHKgAUg3RLxcbZOQFvss,192
166
+ emx_onnx_cgen/templates/size_op.c.j2,sha256=QFmXFo8GJ0J7X3Gk7AKkWJ1H8CMziMIex9yxh8vF390,137
167
+ emx_onnx_cgen/templates/slice_op.c.j2,sha256=lzt-sLsu9_ceB3NeCJHbViGB3uGRPPdxjLuMoyJxpdA,416
168
+ emx_onnx_cgen/templates/slice_op_dynamic.c.j2,sha256=qQ-c5JJA6haEtEgr4YAv_S0r65JOpza5xyxTRKSqSxk,2386
169
+ emx_onnx_cgen/templates/softmax_cross_entropy_loss_op.c.j2,sha256=8svd2Cdxi2LI5B91rZB5hmpfeCorKy1t_yPS-wUXe5A,3907
170
+ emx_onnx_cgen/templates/softmax_op.c.j2,sha256=kGi-Tfte70tpkdSmZEb3QqIGKCTYfmwExwF6UU0HVoo,1287
171
+ emx_onnx_cgen/templates/space_to_depth_op.c.j2,sha256=URarlsQ2OQJWR1iFW9g4Id10ml9xGEI5Cfd2HLucZr8,1107
172
+ emx_onnx_cgen/templates/split_op.c.j2,sha256=pTgMEim_WsTGRpkHmTrbp6MD0QUgbuWYNg0aXrLMPQE,1001
173
+ emx_onnx_cgen/templates/tensor_scatter_op.c.j2,sha256=cWY6HRF45ndD5OJiudR_qJ5gA74e1Ni0KzEo8En8-lc,1708
174
+ emx_onnx_cgen/templates/testbench.c.j2,sha256=a2gomUR6ZRwp1iEMf9cU26YCxx075RoKSSagrPbtSME,5098
175
+ emx_onnx_cgen/templates/tfidf_vectorizer_op.c.j2,sha256=aOAdPywoj_YdQefmZM8m8I16LhE4cpvsB1dzeKz7tHs,6734
176
+ emx_onnx_cgen/templates/tile_op.c.j2,sha256=4zGcRy6E5oDQosUVkVpv_gBae-tPoz3PuDBghwxVTUY,593
177
+ emx_onnx_cgen/templates/topk_op.c.j2,sha256=BlIZrhasfYPflNhVSVL2u8KyJOvg2DAYkEs8rN9bAGs,2311
178
+ emx_onnx_cgen/templates/transpose_op.c.j2,sha256=4fUCHukFNFNx0cd3HdjlsoE2_rf-VYM7Qy0n9F5NJzA,416
179
+ emx_onnx_cgen/templates/trilu_op.c.j2,sha256=-3vIYEIg6hpkKF_cWZQUgWdwZDfBAhg82ObE0wr0mPQ,1302
180
+ emx_onnx_cgen/templates/unary_op.c.j2,sha256=O2y4ZGtk0pcrUNRVCX3URm9l7BtYuM1PM4UPU5e-U3A,1615
181
+ emx_onnx_cgen/templates/where_op.c.j2,sha256=p7D2exEzl15-EnHYyLyxeNsFjycUXm8AYU4zOJQChf8,357
182
+ shared/__init__.py,sha256=bmP79AVZdY_1aNULJap9pm76Q41Rabrza6X-0A8lDzw,45
183
+ shared/scalar_functions.py,sha256=CErro1Du2Ri3uqX6Dgd18DzNbxduckAvsmLJ6oHGx9A,91123
184
+ shared/scalar_types.py,sha256=kEpsl5T-NVFxCcTzXqPJbtpvDiCgKHfz91dphLLZxZA,4912
185
+ shared/ulp.py,sha256=DpeovCFijmP8_M7zyTZWsNyfOtJ1AjNSdxf5jGsdfJo,1856
186
+ emx_onnx_cgen-0.4.1.dev0.dist-info/METADATA,sha256=Vc8-2kAZWsb85o-MH8--f6ofR9GBi75nqJ1FfmGAxk8,8185
187
+ emx_onnx_cgen-0.4.1.dev0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
188
+ emx_onnx_cgen-0.4.1.dev0.dist-info/entry_points.txt,sha256=b7Rvmz_Bi9kWyn7QayQC_FEXiRpt4cS1RnluKh49yoo,57
189
+ emx_onnx_cgen-0.4.1.dev0.dist-info/top_level.txt,sha256=g39fo-blEbgiVcC_GRqAnBzN234w3LXbcVdLUoItSLk,21
190
+ emx_onnx_cgen-0.4.1.dev0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.10.1)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1 +0,0 @@
1
- """Runtime helpers for evaluating ONNX graphs."""