emx-onnx-cgen 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of emx-onnx-cgen might be problematic. Click here for more details.
- emx_onnx_cgen/__init__.py +6 -0
- emx_onnx_cgen/__main__.py +9 -0
- emx_onnx_cgen/_build_info.py +3 -0
- emx_onnx_cgen/cli.py +328 -0
- emx_onnx_cgen/codegen/__init__.py +25 -0
- emx_onnx_cgen/codegen/c_emitter.py +9044 -0
- emx_onnx_cgen/compiler.py +601 -0
- emx_onnx_cgen/dtypes.py +40 -0
- emx_onnx_cgen/errors.py +14 -0
- emx_onnx_cgen/ir/__init__.py +3 -0
- emx_onnx_cgen/ir/model.py +55 -0
- emx_onnx_cgen/lowering/__init__.py +3 -0
- emx_onnx_cgen/lowering/arg_reduce.py +99 -0
- emx_onnx_cgen/lowering/attention.py +421 -0
- emx_onnx_cgen/lowering/average_pool.py +229 -0
- emx_onnx_cgen/lowering/batch_normalization.py +116 -0
- emx_onnx_cgen/lowering/cast.py +70 -0
- emx_onnx_cgen/lowering/common.py +72 -0
- emx_onnx_cgen/lowering/concat.py +31 -0
- emx_onnx_cgen/lowering/constant_of_shape.py +85 -0
- emx_onnx_cgen/lowering/conv.py +192 -0
- emx_onnx_cgen/lowering/cumsum.py +118 -0
- emx_onnx_cgen/lowering/depth_space.py +114 -0
- emx_onnx_cgen/lowering/dropout.py +46 -0
- emx_onnx_cgen/lowering/elementwise.py +164 -0
- emx_onnx_cgen/lowering/expand.py +151 -0
- emx_onnx_cgen/lowering/eye_like.py +43 -0
- emx_onnx_cgen/lowering/flatten.py +60 -0
- emx_onnx_cgen/lowering/gather.py +48 -0
- emx_onnx_cgen/lowering/gather_elements.py +60 -0
- emx_onnx_cgen/lowering/gemm.py +139 -0
- emx_onnx_cgen/lowering/grid_sample.py +149 -0
- emx_onnx_cgen/lowering/group_normalization.py +68 -0
- emx_onnx_cgen/lowering/identity.py +43 -0
- emx_onnx_cgen/lowering/instance_normalization.py +50 -0
- emx_onnx_cgen/lowering/layer_normalization.py +110 -0
- emx_onnx_cgen/lowering/logsoftmax.py +47 -0
- emx_onnx_cgen/lowering/lp_normalization.py +45 -0
- emx_onnx_cgen/lowering/lrn.py +104 -0
- emx_onnx_cgen/lowering/lstm.py +355 -0
- emx_onnx_cgen/lowering/matmul.py +120 -0
- emx_onnx_cgen/lowering/maxpool.py +195 -0
- emx_onnx_cgen/lowering/mean_variance_normalization.py +49 -0
- emx_onnx_cgen/lowering/negative_log_likelihood_loss.py +250 -0
- emx_onnx_cgen/lowering/pad.py +287 -0
- emx_onnx_cgen/lowering/range.py +104 -0
- emx_onnx_cgen/lowering/reduce.py +544 -0
- emx_onnx_cgen/lowering/registry.py +51 -0
- emx_onnx_cgen/lowering/reshape.py +188 -0
- emx_onnx_cgen/lowering/resize.py +445 -0
- emx_onnx_cgen/lowering/rms_normalization.py +67 -0
- emx_onnx_cgen/lowering/shape.py +78 -0
- emx_onnx_cgen/lowering/size.py +33 -0
- emx_onnx_cgen/lowering/slice.py +425 -0
- emx_onnx_cgen/lowering/softmax.py +47 -0
- emx_onnx_cgen/lowering/softmax_cross_entropy_loss.py +129 -0
- emx_onnx_cgen/lowering/split.py +150 -0
- emx_onnx_cgen/lowering/squeeze.py +161 -0
- emx_onnx_cgen/lowering/tile.py +81 -0
- emx_onnx_cgen/lowering/transpose.py +46 -0
- emx_onnx_cgen/lowering/unsqueeze.py +157 -0
- emx_onnx_cgen/lowering/variadic.py +95 -0
- emx_onnx_cgen/lowering/where.py +73 -0
- emx_onnx_cgen/onnx_import.py +261 -0
- emx_onnx_cgen/ops.py +565 -0
- emx_onnx_cgen/runtime/__init__.py +1 -0
- emx_onnx_cgen/runtime/evaluator.py +2206 -0
- emx_onnx_cgen/validation.py +76 -0
- emx_onnx_cgen-0.2.0.dist-info/METADATA +128 -0
- emx_onnx_cgen-0.2.0.dist-info/RECORD +76 -0
- emx_onnx_cgen-0.2.0.dist-info/WHEEL +5 -0
- emx_onnx_cgen-0.2.0.dist-info/entry_points.txt +2 -0
- emx_onnx_cgen-0.2.0.dist-info/top_level.txt +2 -0
- shared/__init__.py +2 -0
- shared/scalar_functions.py +2405 -0
- shared/scalar_types.py +243 -0
emx_onnx_cgen/ops.py
ADDED
|
@@ -0,0 +1,565 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from collections.abc import Callable, Mapping
|
|
4
|
+
from dataclasses import dataclass
|
|
5
|
+
from enum import Enum
|
|
6
|
+
import math
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
from shared.scalar_functions import ScalarFunction
|
|
11
|
+
from shared.scalar_types import ScalarType
|
|
12
|
+
|
|
13
|
+
from .errors import UnsupportedOpError
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
_NP_ERF = getattr(np, "erf", None)
|
|
17
|
+
if _NP_ERF is None:
|
|
18
|
+
_NP_ERF = np.vectorize(math.erf, otypes=[float])
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class OperatorKind(str, Enum):
|
|
22
|
+
INFIX = "infix"
|
|
23
|
+
FUNC = "func"
|
|
24
|
+
EXPR = "expr"
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@dataclass(frozen=True)
|
|
28
|
+
class BinaryOpSpec:
|
|
29
|
+
operator: str
|
|
30
|
+
kind: OperatorKind
|
|
31
|
+
apply: Callable[[np.ndarray, np.ndarray], np.ndarray]
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
BINARY_OP_TYPES = {
|
|
35
|
+
"Add",
|
|
36
|
+
"And",
|
|
37
|
+
"BitShift",
|
|
38
|
+
"BitwiseAnd",
|
|
39
|
+
"BitwiseOr",
|
|
40
|
+
"BitwiseXor",
|
|
41
|
+
"Div",
|
|
42
|
+
"Equal",
|
|
43
|
+
"Greater",
|
|
44
|
+
"GreaterOrEqual",
|
|
45
|
+
"Less",
|
|
46
|
+
"LessOrEqual",
|
|
47
|
+
"Max",
|
|
48
|
+
"Mean",
|
|
49
|
+
"Min",
|
|
50
|
+
"Mod",
|
|
51
|
+
"Mul",
|
|
52
|
+
"Or",
|
|
53
|
+
"PRelu",
|
|
54
|
+
"Pow",
|
|
55
|
+
"Sub",
|
|
56
|
+
"Sum",
|
|
57
|
+
"Xor",
|
|
58
|
+
}
|
|
59
|
+
|
|
60
|
+
COMPARE_OP_TYPES = {
|
|
61
|
+
"Equal",
|
|
62
|
+
"Greater",
|
|
63
|
+
"GreaterOrEqual",
|
|
64
|
+
"Less",
|
|
65
|
+
"LessOrEqual",
|
|
66
|
+
}
|
|
67
|
+
|
|
68
|
+
UNARY_OP_TYPES = {
|
|
69
|
+
"Abs",
|
|
70
|
+
"Acos",
|
|
71
|
+
"Acosh",
|
|
72
|
+
"Asin",
|
|
73
|
+
"Asinh",
|
|
74
|
+
"Atan",
|
|
75
|
+
"Atanh",
|
|
76
|
+
"BitwiseNot",
|
|
77
|
+
"Ceil",
|
|
78
|
+
"Cos",
|
|
79
|
+
"Cosh",
|
|
80
|
+
"Elu",
|
|
81
|
+
"Erf",
|
|
82
|
+
"Exp",
|
|
83
|
+
"Floor",
|
|
84
|
+
"Gelu",
|
|
85
|
+
"HardSigmoid",
|
|
86
|
+
"HardSwish",
|
|
87
|
+
"Identity",
|
|
88
|
+
"LeakyRelu",
|
|
89
|
+
"Log",
|
|
90
|
+
"Neg",
|
|
91
|
+
"Not",
|
|
92
|
+
"Reciprocal",
|
|
93
|
+
"Relu",
|
|
94
|
+
"Round",
|
|
95
|
+
"Selu",
|
|
96
|
+
"Sigmoid",
|
|
97
|
+
"Sign",
|
|
98
|
+
"Sin",
|
|
99
|
+
"Sinh",
|
|
100
|
+
"Softplus",
|
|
101
|
+
"Softsign",
|
|
102
|
+
"Sqrt",
|
|
103
|
+
"Tan",
|
|
104
|
+
"Tanh",
|
|
105
|
+
"ThresholdedRelu",
|
|
106
|
+
}
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
def _format_float_literal(value: float, dtype: ScalarType) -> str:
|
|
110
|
+
formatted = f"{value:.9g}"
|
|
111
|
+
if "e" not in formatted and "E" not in formatted and "." not in formatted:
|
|
112
|
+
formatted = f"{formatted}.0"
|
|
113
|
+
if dtype in {ScalarType.F16, ScalarType.F32}:
|
|
114
|
+
return f"{formatted}f"
|
|
115
|
+
return formatted
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
UNARY_SYMBOLS_BOOL = {
|
|
119
|
+
ScalarFunction.POSITIVE: "identity",
|
|
120
|
+
ScalarFunction.LOGICAL_NOT: "!",
|
|
121
|
+
ScalarFunction.BITWISE_NOT: "bitwise_not",
|
|
122
|
+
}
|
|
123
|
+
|
|
124
|
+
UNARY_SYMBOLS_INT64 = {
|
|
125
|
+
ScalarFunction.ABS: "llabs",
|
|
126
|
+
ScalarFunction.BITWISE_NOT: "bitwise_not",
|
|
127
|
+
ScalarFunction.POSITIVE: "identity",
|
|
128
|
+
ScalarFunction.NEG: "neg",
|
|
129
|
+
ScalarFunction.ROUND: "round",
|
|
130
|
+
ScalarFunction.SIGN: "sign",
|
|
131
|
+
}
|
|
132
|
+
|
|
133
|
+
UNARY_SYMBOLS_INT32 = {
|
|
134
|
+
ScalarFunction.ABS: "abs",
|
|
135
|
+
ScalarFunction.BITWISE_NOT: "bitwise_not",
|
|
136
|
+
ScalarFunction.POSITIVE: "identity",
|
|
137
|
+
ScalarFunction.NEG: "neg",
|
|
138
|
+
ScalarFunction.ROUND: "round",
|
|
139
|
+
ScalarFunction.SIGN: "sign",
|
|
140
|
+
}
|
|
141
|
+
|
|
142
|
+
UNARY_SYMBOLS_INT16 = {
|
|
143
|
+
ScalarFunction.ABS: "abs",
|
|
144
|
+
ScalarFunction.BITWISE_NOT: "bitwise_not",
|
|
145
|
+
ScalarFunction.POSITIVE: "identity",
|
|
146
|
+
ScalarFunction.NEG: "neg",
|
|
147
|
+
ScalarFunction.ROUND: "round",
|
|
148
|
+
ScalarFunction.SIGN: "sign",
|
|
149
|
+
}
|
|
150
|
+
|
|
151
|
+
UNARY_SYMBOLS_INT8 = {
|
|
152
|
+
ScalarFunction.ABS: "abs",
|
|
153
|
+
ScalarFunction.BITWISE_NOT: "bitwise_not",
|
|
154
|
+
ScalarFunction.POSITIVE: "identity",
|
|
155
|
+
ScalarFunction.NEG: "neg",
|
|
156
|
+
ScalarFunction.ROUND: "round",
|
|
157
|
+
ScalarFunction.SIGN: "sign",
|
|
158
|
+
}
|
|
159
|
+
|
|
160
|
+
UNARY_SYMBOLS_DOUBLE = {
|
|
161
|
+
ScalarFunction.ABS: "fabs",
|
|
162
|
+
ScalarFunction.ACOS: "acos",
|
|
163
|
+
ScalarFunction.ACOSH: "acosh",
|
|
164
|
+
ScalarFunction.ASIN: "asin",
|
|
165
|
+
ScalarFunction.ASINH: "asinh",
|
|
166
|
+
ScalarFunction.ATAN: "atan",
|
|
167
|
+
ScalarFunction.CEIL: "ceil",
|
|
168
|
+
ScalarFunction.COS: "cos",
|
|
169
|
+
ScalarFunction.COSH: "cosh",
|
|
170
|
+
ScalarFunction.ELU: "elu",
|
|
171
|
+
ScalarFunction.ERF: "erf",
|
|
172
|
+
ScalarFunction.EXP: "exp",
|
|
173
|
+
ScalarFunction.FLOOR: "floor",
|
|
174
|
+
ScalarFunction.GELU: "gelu",
|
|
175
|
+
ScalarFunction.HARDSIGMOID: "hardsigmoid",
|
|
176
|
+
ScalarFunction.HARDSWISH: "hardswish",
|
|
177
|
+
ScalarFunction.LEAKY_RELU: "leaky_relu",
|
|
178
|
+
ScalarFunction.POSITIVE: "identity",
|
|
179
|
+
ScalarFunction.LOG: "log",
|
|
180
|
+
ScalarFunction.NEG: "neg",
|
|
181
|
+
ScalarFunction.RECIPROCAL: "reciprocal",
|
|
182
|
+
ScalarFunction.RELU: "relu",
|
|
183
|
+
ScalarFunction.ROUND: "round",
|
|
184
|
+
ScalarFunction.SELU: "selu",
|
|
185
|
+
ScalarFunction.SIGMOID: "sigmoid",
|
|
186
|
+
ScalarFunction.SIGN: "sign",
|
|
187
|
+
ScalarFunction.SIN: "sin",
|
|
188
|
+
ScalarFunction.SINH: "sinh",
|
|
189
|
+
ScalarFunction.SOFTPLUS: "softplus",
|
|
190
|
+
ScalarFunction.SOFTSIGN: "softsign",
|
|
191
|
+
ScalarFunction.SQRT: "sqrt",
|
|
192
|
+
ScalarFunction.TAN: "tan",
|
|
193
|
+
ScalarFunction.TANH: "tanh",
|
|
194
|
+
ScalarFunction.THRESHOLDED_RELU: "thresholded_relu",
|
|
195
|
+
ScalarFunction.ATANH: "atanh",
|
|
196
|
+
}
|
|
197
|
+
|
|
198
|
+
UNARY_SYMBOLS_FLOAT = {
|
|
199
|
+
ScalarFunction.ABS: "fabsf",
|
|
200
|
+
ScalarFunction.ACOS: "acosf",
|
|
201
|
+
ScalarFunction.ACOSH: "acoshf",
|
|
202
|
+
ScalarFunction.ASIN: "asinf",
|
|
203
|
+
ScalarFunction.ASINH: "asinhf",
|
|
204
|
+
ScalarFunction.ATAN: "atanf",
|
|
205
|
+
ScalarFunction.CEIL: "ceilf",
|
|
206
|
+
ScalarFunction.COS: "cosf",
|
|
207
|
+
ScalarFunction.COSH: "coshf",
|
|
208
|
+
ScalarFunction.ELU: "elu",
|
|
209
|
+
ScalarFunction.ERF: "erff",
|
|
210
|
+
ScalarFunction.EXP: "expf",
|
|
211
|
+
ScalarFunction.FLOOR: "floorf",
|
|
212
|
+
ScalarFunction.GELU: "gelu",
|
|
213
|
+
ScalarFunction.HARDSIGMOID: "hardsigmoid",
|
|
214
|
+
ScalarFunction.HARDSWISH: "hardswish",
|
|
215
|
+
ScalarFunction.LEAKY_RELU: "leaky_relu",
|
|
216
|
+
ScalarFunction.POSITIVE: "identity",
|
|
217
|
+
ScalarFunction.LOG: "logf",
|
|
218
|
+
ScalarFunction.NEG: "neg",
|
|
219
|
+
ScalarFunction.RECIPROCAL: "reciprocal",
|
|
220
|
+
ScalarFunction.RELU: "relu",
|
|
221
|
+
ScalarFunction.ROUND: "round",
|
|
222
|
+
ScalarFunction.SELU: "selu",
|
|
223
|
+
ScalarFunction.SIGMOID: "sigmoid",
|
|
224
|
+
ScalarFunction.SIGN: "sign",
|
|
225
|
+
ScalarFunction.SIN: "sinf",
|
|
226
|
+
ScalarFunction.SINH: "sinhf",
|
|
227
|
+
ScalarFunction.SOFTPLUS: "softplus",
|
|
228
|
+
ScalarFunction.SOFTSIGN: "softsign",
|
|
229
|
+
ScalarFunction.SQRT: "sqrtf",
|
|
230
|
+
ScalarFunction.TAN: "tanf",
|
|
231
|
+
ScalarFunction.TANH: "tanhf",
|
|
232
|
+
ScalarFunction.THRESHOLDED_RELU: "thresholded_relu",
|
|
233
|
+
ScalarFunction.ATANH: "atanhf",
|
|
234
|
+
}
|
|
235
|
+
|
|
236
|
+
BINARY_SPECS_BOOL = {
|
|
237
|
+
ScalarFunction.LOGICAL_AND: BinaryOpSpec(
|
|
238
|
+
"&&", OperatorKind.INFIX, lambda left, right: np.logical_and(left, right)
|
|
239
|
+
),
|
|
240
|
+
ScalarFunction.LOGICAL_OR: BinaryOpSpec(
|
|
241
|
+
"||", OperatorKind.INFIX, lambda left, right: np.logical_or(left, right)
|
|
242
|
+
),
|
|
243
|
+
ScalarFunction.LOGICAL_XOR: BinaryOpSpec(
|
|
244
|
+
"!=", OperatorKind.INFIX, lambda left, right: np.logical_xor(left, right)
|
|
245
|
+
),
|
|
246
|
+
}
|
|
247
|
+
|
|
248
|
+
COMPARE_SPECS = {
|
|
249
|
+
ScalarFunction.EQ: BinaryOpSpec("==", OperatorKind.INFIX, np.equal),
|
|
250
|
+
ScalarFunction.GT: BinaryOpSpec(">", OperatorKind.INFIX, np.greater),
|
|
251
|
+
ScalarFunction.GE: BinaryOpSpec(">=", OperatorKind.INFIX, np.greater_equal),
|
|
252
|
+
ScalarFunction.LT: BinaryOpSpec("<", OperatorKind.INFIX, np.less),
|
|
253
|
+
ScalarFunction.LE: BinaryOpSpec("<=", OperatorKind.INFIX, np.less_equal),
|
|
254
|
+
}
|
|
255
|
+
|
|
256
|
+
BINARY_SPECS_INT = {
|
|
257
|
+
ScalarFunction.ADD: BinaryOpSpec(
|
|
258
|
+
"+", OperatorKind.INFIX, lambda left, right: left + right
|
|
259
|
+
),
|
|
260
|
+
ScalarFunction.BITWISE_AND: BinaryOpSpec(
|
|
261
|
+
"&", OperatorKind.INFIX, lambda left, right: left & right
|
|
262
|
+
),
|
|
263
|
+
ScalarFunction.BITWISE_OR: BinaryOpSpec(
|
|
264
|
+
"|", OperatorKind.INFIX, lambda left, right: left | right
|
|
265
|
+
),
|
|
266
|
+
ScalarFunction.BITWISE_XOR: BinaryOpSpec(
|
|
267
|
+
"^", OperatorKind.INFIX, lambda left, right: left ^ right
|
|
268
|
+
),
|
|
269
|
+
ScalarFunction.BITWISE_LEFT_SHIFT: BinaryOpSpec(
|
|
270
|
+
"<<", OperatorKind.INFIX, np.left_shift
|
|
271
|
+
),
|
|
272
|
+
ScalarFunction.BITWISE_RIGHT_SHIFT: BinaryOpSpec(
|
|
273
|
+
">>", OperatorKind.INFIX, np.right_shift
|
|
274
|
+
),
|
|
275
|
+
ScalarFunction.DIV: BinaryOpSpec(
|
|
276
|
+
"/", OperatorKind.INFIX, lambda left, right: left // right
|
|
277
|
+
),
|
|
278
|
+
ScalarFunction.FMOD: BinaryOpSpec(
|
|
279
|
+
"%", OperatorKind.INFIX, np.fmod
|
|
280
|
+
),
|
|
281
|
+
ScalarFunction.REMAINDER: BinaryOpSpec(
|
|
282
|
+
"remainder", OperatorKind.FUNC, np.mod
|
|
283
|
+
),
|
|
284
|
+
ScalarFunction.MAXIMUM: BinaryOpSpec(
|
|
285
|
+
"maximum", OperatorKind.FUNC, np.maximum
|
|
286
|
+
),
|
|
287
|
+
ScalarFunction.MINIMUM: BinaryOpSpec(
|
|
288
|
+
"minimum", OperatorKind.FUNC, np.minimum
|
|
289
|
+
),
|
|
290
|
+
ScalarFunction.POW: BinaryOpSpec("pow", OperatorKind.FUNC, np.power),
|
|
291
|
+
ScalarFunction.SUB: BinaryOpSpec(
|
|
292
|
+
"-", OperatorKind.INFIX, lambda left, right: left - right
|
|
293
|
+
),
|
|
294
|
+
ScalarFunction.MUL: BinaryOpSpec(
|
|
295
|
+
"*", OperatorKind.INFIX, lambda left, right: left * right
|
|
296
|
+
),
|
|
297
|
+
}
|
|
298
|
+
|
|
299
|
+
|
|
300
|
+
def _mean_binary_spec(dtype: ScalarType) -> BinaryOpSpec:
|
|
301
|
+
return BinaryOpSpec(
|
|
302
|
+
f"({{left}} + {{right}}) * {_format_float_literal(0.5, dtype)}",
|
|
303
|
+
OperatorKind.EXPR,
|
|
304
|
+
lambda left, right: (left + right) * 0.5,
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
|
|
308
|
+
def _prelu_binary_spec(dtype: ScalarType) -> BinaryOpSpec:
|
|
309
|
+
zero_literal = _format_float_literal(0.0, dtype)
|
|
310
|
+
return BinaryOpSpec(
|
|
311
|
+
f"({{left}} > {zero_literal} ? {{left}} : {{right}} * {{left}})",
|
|
312
|
+
OperatorKind.EXPR,
|
|
313
|
+
lambda left, right: np.where(left > 0.0, left, right * left),
|
|
314
|
+
)
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
BINARY_SPECS_DOUBLE = {
|
|
318
|
+
ScalarFunction.ADD: BinaryOpSpec(
|
|
319
|
+
"+", OperatorKind.INFIX, lambda left, right: left + right
|
|
320
|
+
),
|
|
321
|
+
ScalarFunction.DIV: BinaryOpSpec(
|
|
322
|
+
"/", OperatorKind.INFIX, lambda left, right: left / right
|
|
323
|
+
),
|
|
324
|
+
ScalarFunction.MAXIMUM: BinaryOpSpec("fmax", OperatorKind.FUNC, np.maximum),
|
|
325
|
+
ScalarFunction.MEAN: _mean_binary_spec(ScalarType.F64),
|
|
326
|
+
ScalarFunction.MINIMUM: BinaryOpSpec("fmin", OperatorKind.FUNC, np.minimum),
|
|
327
|
+
ScalarFunction.MUL: BinaryOpSpec(
|
|
328
|
+
"*", OperatorKind.INFIX, lambda left, right: left * right
|
|
329
|
+
),
|
|
330
|
+
ScalarFunction.REMAINDER: BinaryOpSpec(
|
|
331
|
+
"remainder", OperatorKind.FUNC, np.remainder
|
|
332
|
+
),
|
|
333
|
+
ScalarFunction.POW: BinaryOpSpec("pow", OperatorKind.FUNC, np.power),
|
|
334
|
+
ScalarFunction.PRELU: _prelu_binary_spec(ScalarType.F64),
|
|
335
|
+
ScalarFunction.SUB: BinaryOpSpec(
|
|
336
|
+
"-", OperatorKind.INFIX, lambda left, right: left - right
|
|
337
|
+
),
|
|
338
|
+
}
|
|
339
|
+
|
|
340
|
+
BINARY_SPECS_FLOAT = {
|
|
341
|
+
ScalarFunction.ADD: BinaryOpSpec(
|
|
342
|
+
"+", OperatorKind.INFIX, lambda left, right: left + right
|
|
343
|
+
),
|
|
344
|
+
ScalarFunction.DIV: BinaryOpSpec(
|
|
345
|
+
"/", OperatorKind.INFIX, lambda left, right: left / right
|
|
346
|
+
),
|
|
347
|
+
ScalarFunction.MAXIMUM: BinaryOpSpec("fmaxf", OperatorKind.FUNC, np.maximum),
|
|
348
|
+
ScalarFunction.MEAN: _mean_binary_spec(ScalarType.F32),
|
|
349
|
+
ScalarFunction.MINIMUM: BinaryOpSpec("fminf", OperatorKind.FUNC, np.minimum),
|
|
350
|
+
ScalarFunction.MUL: BinaryOpSpec(
|
|
351
|
+
"*", OperatorKind.INFIX, lambda left, right: left * right
|
|
352
|
+
),
|
|
353
|
+
ScalarFunction.REMAINDER: BinaryOpSpec(
|
|
354
|
+
"remainder", OperatorKind.FUNC, np.remainder
|
|
355
|
+
),
|
|
356
|
+
ScalarFunction.POW: BinaryOpSpec("powf", OperatorKind.FUNC, np.power),
|
|
357
|
+
ScalarFunction.PRELU: _prelu_binary_spec(ScalarType.F32),
|
|
358
|
+
ScalarFunction.SUB: BinaryOpSpec(
|
|
359
|
+
"-", OperatorKind.INFIX, lambda left, right: left - right
|
|
360
|
+
),
|
|
361
|
+
}
|
|
362
|
+
|
|
363
|
+
UNARY_SYMBOLS_BY_DTYPE = {
|
|
364
|
+
ScalarType.BOOL: UNARY_SYMBOLS_BOOL,
|
|
365
|
+
ScalarType.I64: UNARY_SYMBOLS_INT64,
|
|
366
|
+
ScalarType.I32: UNARY_SYMBOLS_INT32,
|
|
367
|
+
ScalarType.I16: UNARY_SYMBOLS_INT16,
|
|
368
|
+
ScalarType.I8: UNARY_SYMBOLS_INT8,
|
|
369
|
+
ScalarType.F64: UNARY_SYMBOLS_DOUBLE,
|
|
370
|
+
ScalarType.F32: UNARY_SYMBOLS_FLOAT,
|
|
371
|
+
ScalarType.F16: UNARY_SYMBOLS_FLOAT,
|
|
372
|
+
}
|
|
373
|
+
|
|
374
|
+
BINARY_SPECS_BY_DTYPE = {
|
|
375
|
+
ScalarType.BOOL: BINARY_SPECS_BOOL,
|
|
376
|
+
ScalarType.I64: BINARY_SPECS_INT,
|
|
377
|
+
ScalarType.I32: BINARY_SPECS_INT,
|
|
378
|
+
ScalarType.I16: BINARY_SPECS_INT,
|
|
379
|
+
ScalarType.I8: BINARY_SPECS_INT,
|
|
380
|
+
ScalarType.U64: BINARY_SPECS_INT,
|
|
381
|
+
ScalarType.U32: BINARY_SPECS_INT,
|
|
382
|
+
ScalarType.U16: BINARY_SPECS_INT,
|
|
383
|
+
ScalarType.U8: BINARY_SPECS_INT,
|
|
384
|
+
ScalarType.F64: BINARY_SPECS_DOUBLE,
|
|
385
|
+
ScalarType.F32: BINARY_SPECS_FLOAT,
|
|
386
|
+
ScalarType.F16: BINARY_SPECS_FLOAT,
|
|
387
|
+
}
|
|
388
|
+
|
|
389
|
+
UNARY_APPLY_FUNCS = {
|
|
390
|
+
"acosf": np.arccos,
|
|
391
|
+
"acos": np.arccos,
|
|
392
|
+
"acoshf": np.arccosh,
|
|
393
|
+
"acosh": np.arccosh,
|
|
394
|
+
"fabsf": np.abs,
|
|
395
|
+
"fabs": np.abs,
|
|
396
|
+
"abs": np.abs,
|
|
397
|
+
"llabs": np.abs,
|
|
398
|
+
"asinf": np.arcsin,
|
|
399
|
+
"asin": np.arcsin,
|
|
400
|
+
"asinhf": np.arcsinh,
|
|
401
|
+
"asinh": np.arcsinh,
|
|
402
|
+
"atanf": np.arctan,
|
|
403
|
+
"atan": np.arctan,
|
|
404
|
+
"bitwise_not": np.bitwise_not,
|
|
405
|
+
"!": np.logical_not,
|
|
406
|
+
"identity": lambda value: value,
|
|
407
|
+
"ceilf": np.ceil,
|
|
408
|
+
"ceil": np.ceil,
|
|
409
|
+
"cosf": np.cos,
|
|
410
|
+
"cos": np.cos,
|
|
411
|
+
"coshf": np.cosh,
|
|
412
|
+
"cosh": np.cosh,
|
|
413
|
+
"elu": lambda value: np.where(value > 0.0, value, np.exp(value) - 1.0),
|
|
414
|
+
"erff": _NP_ERF,
|
|
415
|
+
"erf": _NP_ERF,
|
|
416
|
+
"expf": np.exp,
|
|
417
|
+
"exp": np.exp,
|
|
418
|
+
"floorf": np.floor,
|
|
419
|
+
"floor": np.floor,
|
|
420
|
+
"gelu": lambda value: 0.5
|
|
421
|
+
* value
|
|
422
|
+
* (1.0 + _NP_ERF(value / np.sqrt(2.0))),
|
|
423
|
+
"hardsigmoid": lambda value: np.clip(value * 0.2 + 0.5, 0.0, 1.0),
|
|
424
|
+
"hardswish": lambda value: value
|
|
425
|
+
* np.clip(value + 3.0, 0.0, 6.0)
|
|
426
|
+
/ 6.0,
|
|
427
|
+
"leaky_relu": lambda value: np.where(value > 0.0, value, 0.01 * value),
|
|
428
|
+
"logf": np.log,
|
|
429
|
+
"log": np.log,
|
|
430
|
+
"neg": lambda value: -value,
|
|
431
|
+
"reciprocal": lambda value: 1.0 / value,
|
|
432
|
+
"relu": lambda value: np.maximum(value, 0),
|
|
433
|
+
"round": np.round,
|
|
434
|
+
"selu": lambda value: np.where(
|
|
435
|
+
value > 0.0,
|
|
436
|
+
1.0507009873554805 * value,
|
|
437
|
+
1.0507009873554805
|
|
438
|
+
* 1.6732632423543772
|
|
439
|
+
* (np.exp(value) - 1.0),
|
|
440
|
+
),
|
|
441
|
+
"sigmoid": lambda value: 1.0 / (1.0 + np.exp(-value)),
|
|
442
|
+
"sign": np.sign,
|
|
443
|
+
"sinf": np.sin,
|
|
444
|
+
"sin": np.sin,
|
|
445
|
+
"sqrtf": np.sqrt,
|
|
446
|
+
"sqrt": np.sqrt,
|
|
447
|
+
"softplus": lambda value: np.where(
|
|
448
|
+
value > 20.0, value, np.log1p(np.exp(value))
|
|
449
|
+
),
|
|
450
|
+
"softsign": lambda value: value / (1.0 + np.abs(value)),
|
|
451
|
+
"sinhf": np.sinh,
|
|
452
|
+
"sinh": np.sinh,
|
|
453
|
+
"tanf": np.tan,
|
|
454
|
+
"tan": np.tan,
|
|
455
|
+
"tanhf": np.tanh,
|
|
456
|
+
"tanh": np.tanh,
|
|
457
|
+
"thresholded_relu": lambda value: np.where(
|
|
458
|
+
value > 1.0, value, 0.0
|
|
459
|
+
),
|
|
460
|
+
"atanhf": np.arctanh,
|
|
461
|
+
"atanh": np.arctanh,
|
|
462
|
+
}
|
|
463
|
+
|
|
464
|
+
COMPARE_FUNCTIONS = {
|
|
465
|
+
ScalarFunction.EQ,
|
|
466
|
+
ScalarFunction.GT,
|
|
467
|
+
ScalarFunction.GE,
|
|
468
|
+
ScalarFunction.LT,
|
|
469
|
+
ScalarFunction.LE,
|
|
470
|
+
}
|
|
471
|
+
|
|
472
|
+
UNARY_ATTR_DEFAULTS: Mapping[str, Mapping[str, object]] = {
|
|
473
|
+
"Elu": {"alpha": 1.0},
|
|
474
|
+
"Gelu": {"approximate": "none"},
|
|
475
|
+
"HardSigmoid": {"alpha": 0.2, "beta": 0.5},
|
|
476
|
+
"LeakyRelu": {"alpha": 0.01},
|
|
477
|
+
"Selu": {"alpha": 1.6732632423543772, "gamma": 1.0507009873554805},
|
|
478
|
+
"Softplus": {"beta": 1.0, "threshold": 20.0},
|
|
479
|
+
"ThresholdedRelu": {"alpha": 1.0},
|
|
480
|
+
}
|
|
481
|
+
|
|
482
|
+
|
|
483
|
+
def validate_unary_attrs(op_type: str, attrs: Mapping[str, object]) -> None:
|
|
484
|
+
defaults = UNARY_ATTR_DEFAULTS.get(op_type)
|
|
485
|
+
if defaults is None or not attrs:
|
|
486
|
+
return
|
|
487
|
+
for key in attrs:
|
|
488
|
+
if key not in defaults:
|
|
489
|
+
raise UnsupportedOpError(
|
|
490
|
+
f"{op_type} does not support attribute {key}"
|
|
491
|
+
)
|
|
492
|
+
for key, default in defaults.items():
|
|
493
|
+
if key not in attrs:
|
|
494
|
+
continue
|
|
495
|
+
value = attrs[key]
|
|
496
|
+
if isinstance(default, str):
|
|
497
|
+
if str(value) != default:
|
|
498
|
+
raise UnsupportedOpError(
|
|
499
|
+
f"{op_type} only supports {key}={default}"
|
|
500
|
+
)
|
|
501
|
+
continue
|
|
502
|
+
try:
|
|
503
|
+
numeric_value = float(value)
|
|
504
|
+
except (TypeError, ValueError) as exc:
|
|
505
|
+
raise UnsupportedOpError(
|
|
506
|
+
f"{op_type} only supports {key}={default}"
|
|
507
|
+
) from exc
|
|
508
|
+
if not math.isclose(numeric_value, float(default), abs_tol=1e-6):
|
|
509
|
+
raise UnsupportedOpError(
|
|
510
|
+
f"{op_type} only supports {key}={default}"
|
|
511
|
+
)
|
|
512
|
+
|
|
513
|
+
|
|
514
|
+
def binary_op_symbol(
|
|
515
|
+
function: ScalarFunction,
|
|
516
|
+
attrs: Mapping[str, object] | None = None,
|
|
517
|
+
*,
|
|
518
|
+
dtype: ScalarType,
|
|
519
|
+
validate_attrs: bool = True,
|
|
520
|
+
) -> BinaryOpSpec | None:
|
|
521
|
+
compare_spec = COMPARE_SPECS.get(function)
|
|
522
|
+
if compare_spec is not None:
|
|
523
|
+
return compare_spec
|
|
524
|
+
specs = BINARY_SPECS_BY_DTYPE.get(dtype)
|
|
525
|
+
if specs is not None:
|
|
526
|
+
op_spec = specs.get(function)
|
|
527
|
+
if op_spec is not None:
|
|
528
|
+
return op_spec
|
|
529
|
+
if not dtype.is_float:
|
|
530
|
+
return None
|
|
531
|
+
if function == ScalarFunction.FMOD:
|
|
532
|
+
fmod = 0
|
|
533
|
+
if attrs is not None:
|
|
534
|
+
fmod = int(attrs.get("fmod", 0))
|
|
535
|
+
if validate_attrs and fmod != 1:
|
|
536
|
+
raise UnsupportedOpError(
|
|
537
|
+
"Mod only supports fmod=1 for floating point types"
|
|
538
|
+
)
|
|
539
|
+
func = (
|
|
540
|
+
"fmodf" if dtype in {ScalarType.F16, ScalarType.F32} else "fmod"
|
|
541
|
+
)
|
|
542
|
+
return BinaryOpSpec(func, OperatorKind.FUNC, np.fmod)
|
|
543
|
+
return None
|
|
544
|
+
|
|
545
|
+
|
|
546
|
+
def unary_op_symbol(function: ScalarFunction, *, dtype: ScalarType) -> str | None:
|
|
547
|
+
return UNARY_SYMBOLS_BY_DTYPE.get(dtype, {}).get(function)
|
|
548
|
+
|
|
549
|
+
|
|
550
|
+
def apply_binary_op(
|
|
551
|
+
op_spec: BinaryOpSpec, left: np.ndarray, right: np.ndarray
|
|
552
|
+
) -> np.ndarray:
|
|
553
|
+
return op_spec.apply(left, right)
|
|
554
|
+
|
|
555
|
+
|
|
556
|
+
def apply_unary_op(
|
|
557
|
+
function: ScalarFunction, value: np.ndarray, *, dtype: ScalarType
|
|
558
|
+
) -> np.ndarray:
|
|
559
|
+
op_symbol = unary_op_symbol(function, dtype=dtype)
|
|
560
|
+
if op_symbol is None:
|
|
561
|
+
raise UnsupportedOpError(f"Unsupported unary op {function.value}")
|
|
562
|
+
func = UNARY_APPLY_FUNCS.get(op_symbol)
|
|
563
|
+
if func is not None:
|
|
564
|
+
return func(value)
|
|
565
|
+
raise UnsupportedOpError(f"Unsupported unary op {op_symbol}")
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
"""Runtime helpers for evaluating ONNX graphs."""
|