emu-mps 1.2.3__py3-none-any.whl → 1.2.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,9 @@
1
+ from .optimiser import minimize_bandwidth
2
+ from .permutations import permute_list, permute_matrix, invert_permutation
3
+
4
+ __all__ = [
5
+ "minimize_bandwidth",
6
+ "permute_list",
7
+ "permute_matrix",
8
+ "invert_permutation",
9
+ ]
@@ -0,0 +1,234 @@
1
+ from scipy.sparse import csr_matrix
2
+ from scipy.sparse.csgraph import reverse_cuthill_mckee
3
+ import numpy as np
4
+ from emu_mps.optimatrix.permutations import permute_matrix, permute_list
5
+ import itertools
6
+
7
+
8
+ def is_symmetric(mat: np.ndarray) -> bool:
9
+ if mat.shape[0] != mat.shape[1]:
10
+ return False
11
+ if not np.allclose(mat, mat.T, atol=1e-8):
12
+ return False
13
+
14
+ return True
15
+
16
+
17
+ def matrix_bandwidth(mat: np.ndarray) -> float:
18
+ """matrix_bandwidth(matrix: np.ndarray) -> float
19
+
20
+ Computes bandwidth as max weighted distance between columns of
21
+ a square matrix as `max (abs(matrix[i, j] * (j - i))`.
22
+
23
+ abs(j-i)
24
+ |<--------->|
25
+ (i,i) (i,j)
26
+ | |
27
+ | * . . . . . |
28
+ | . * . . a . |
29
+ | . . * . . . |
30
+ | . . . * . . |
31
+ | . . . . * . |
32
+ | . . . . . * |
33
+
34
+ Distance from the main diagonal `[i,i]` and element `m[i,j]` along row is
35
+ `abs(j-i)` and therefore the weighted distance is `abs(matrix[i, j] * (j - i))`
36
+
37
+ Parameters
38
+ -------
39
+ matrix :
40
+ square matrix nxn
41
+
42
+ Returns
43
+ -------
44
+ bandwidth of the input matrix
45
+
46
+ Example:
47
+ -------
48
+ >>> matrix = np.array([
49
+ ... [ 1, -17, 2.4],
50
+ ... [ 9, 1, -10],
51
+ ... [-15, 20, 1],])
52
+ >>> matrix_bandwidth(matrix) # 30.0 because abs(-15 * (2-0) == 30)
53
+ 30.0
54
+ """
55
+
56
+ bandwidth = max(abs(el * (index[0] - index[1])) for index, el in np.ndenumerate(mat))
57
+ return float(bandwidth)
58
+
59
+
60
+ def minimize_bandwidth_above_threshold(mat: np.ndarray, threshold: float) -> np.ndarray:
61
+ """
62
+ minimize_bandwidth_above_threshold(matrix, trunc) -> permutation_lists
63
+
64
+ Finds a permutation list that minimizes a bandwidth of a symmetric matrix `A = A.T`
65
+ using the reverse Cuthill-Mckee algorithm from `scipy.sparse.csgraph.reverse_cuthill_mckee`.
66
+ Matrix elements below a threshold `m[i,j] < threshold` are considered as 0.
67
+
68
+ Parameters
69
+ -------
70
+ matrix :
71
+ symmetric square matrix
72
+ threshold :
73
+ matrix elements `m[i,j] < threshold` are considered as 0
74
+
75
+ Returns
76
+ -------
77
+ permutation list that minimizes matrix bandwidth for a given threshold
78
+
79
+ Example:
80
+ -------
81
+ >>> matrix = np.array([
82
+ ... [1, 2, 3],
83
+ ... [2, 5, 6],
84
+ ... [3, 6, 9]])
85
+ >>> threshold = 3
86
+ >>> minimize_bandwidth_above_threshold(matrix, threshold)
87
+ array([1, 2, 0], dtype=int32)
88
+ """
89
+
90
+ matrix_truncated = mat.copy()
91
+ matrix_truncated[mat < threshold] = 0
92
+ rcm_permutation = reverse_cuthill_mckee(
93
+ csr_matrix(matrix_truncated), symmetric_mode=True
94
+ )
95
+ return np.array(rcm_permutation)
96
+
97
+
98
+ def minimize_bandwidth_global(mat: np.ndarray) -> list[int]:
99
+ """
100
+ minimize_bandwidth_global(matrix) -> list
101
+
102
+ Does one optimisation step towards finding
103
+ a permutation of a matrix that minimizes matrix bandwidth.
104
+
105
+ Parameters
106
+ -------
107
+ matrix :
108
+ symmetric square matrix
109
+
110
+ Returns
111
+ -------
112
+ permutation order that minimizes matrix bandwidth
113
+
114
+ Example:
115
+ -------
116
+ >>> matrix = np.array([
117
+ ... [1, 2, 3],
118
+ ... [2, 5, 6],
119
+ ... [3, 6, 9]])
120
+ >>> minimize_bandwidth_global(matrix)
121
+ [2, 1, 0]
122
+ """
123
+ mat_amplitude = np.max(np.abs(mat))
124
+ # Search from 1.0 to 0.1 doesn't change result
125
+ permutations = (
126
+ minimize_bandwidth_above_threshold(mat, trunc * mat_amplitude)
127
+ for trunc in np.arange(start=0.1, stop=1.0, step=0.01)
128
+ )
129
+
130
+ opt_permutation = min(
131
+ permutations, key=lambda perm: matrix_bandwidth(permute_matrix(mat, list(perm)))
132
+ )
133
+ return list(opt_permutation) # opt_permutation is np.ndarray
134
+
135
+
136
+ def minimize_bandwidth_impl(
137
+ matrix: np.ndarray, initial_perm: list[int]
138
+ ) -> tuple[list[int], float]:
139
+ """
140
+ minimize_bandwidth_impl(matrix, initial_perm) -> list
141
+
142
+ Applies initial_perm to a matrix and
143
+ finds the permutation list for a symmetric matrix that iteratively minimizes matrix bandwidth.
144
+
145
+ Parameters
146
+ -------
147
+ matrix :
148
+ symmetric square matrix
149
+ initial_perm: list of integers
150
+
151
+
152
+ Returns
153
+ -------
154
+ permutation order that minimizes matrix bandwidth
155
+
156
+ Example:
157
+ -------
158
+ Periodic 1D chain
159
+ >>> matrix = np.array([
160
+ ... [0, 1, 0, 0, 1],
161
+ ... [1, 0, 1, 0, 0],
162
+ ... [0, 1, 0, 1, 0],
163
+ ... [0, 0, 1, 0, 1],
164
+ ... [1, 0, 0, 1, 0]])
165
+ >>> id_perm = list(range(matrix.shape[0]))
166
+ >>> minimize_bandwidth_impl(matrix, id_perm) # [3, 2, 4, 1, 0] does zig-zag
167
+ ([3, 2, 4, 1, 0], 2.0)
168
+
169
+ Simple 1D chain. Cannot be optimised further
170
+ >>> matrix = np.array([
171
+ ... [0, 1, 0, 0, 0],
172
+ ... [1, 0, 1, 0, 0],
173
+ ... [0, 1, 0, 1, 0],
174
+ ... [0, 0, 1, 0, 1],
175
+ ... [0, 0, 0, 1, 0]])
176
+ >>> id_perm = list(range(matrix.shape[0]))
177
+ >>> minimize_bandwidth_impl(matrix, id_perm)
178
+ ([0, 1, 2, 3, 4], 1.0)
179
+ """
180
+ if initial_perm != list(range(matrix.shape[0])):
181
+ matrix = permute_matrix(matrix, initial_perm)
182
+ bandwidth = matrix_bandwidth(matrix)
183
+ acc_permutation = initial_perm
184
+
185
+ for counter in range(101):
186
+ if counter == 100:
187
+ raise (
188
+ NotImplementedError(
189
+ "The algorithm takes too many steps, " "probably not converging."
190
+ )
191
+ )
192
+
193
+ optimal_perm = minimize_bandwidth_global(matrix)
194
+ test_mat = permute_matrix(matrix, optimal_perm)
195
+ new_bandwidth = matrix_bandwidth(test_mat)
196
+
197
+ if bandwidth <= new_bandwidth:
198
+ break
199
+
200
+ matrix = test_mat
201
+ acc_permutation = permute_list(acc_permutation, optimal_perm)
202
+ bandwidth = new_bandwidth
203
+
204
+ return acc_permutation, bandwidth
205
+
206
+
207
+ def minimize_bandwidth(input_matrix: np.ndarray, samples: int = 100) -> list[int]:
208
+ assert is_symmetric(input_matrix), "Input matrix is not symmetric"
209
+ input_mat = abs(input_matrix)
210
+ # We are interested in strength of the interaction, not sign
211
+
212
+ L = input_mat.shape[0]
213
+ rnd_permutations = itertools.chain(
214
+ [list(range(L))], # First element is always the identity list
215
+ (np.random.permutation(L).tolist() for _ in range(samples)),
216
+ )
217
+
218
+ opt_permutations_and_opt_bandwidth = (
219
+ minimize_bandwidth_impl(input_mat, rnd_perm) for rnd_perm in rnd_permutations
220
+ )
221
+
222
+ best_perm, best_bandwidth = min(
223
+ opt_permutations_and_opt_bandwidth,
224
+ key=lambda perm_and_bandwidth: perm_and_bandwidth[1],
225
+ )
226
+
227
+ assert best_bandwidth <= matrix_bandwidth(input_matrix), "Matrix is not optimised"
228
+ return best_perm
229
+
230
+
231
+ if __name__ == "__main__":
232
+ import doctest
233
+
234
+ doctest.testmod()
@@ -0,0 +1,94 @@
1
+ import numpy as np
2
+
3
+
4
+ def permute_list(input_list: list, permutation: list[int]) -> list:
5
+ """
6
+ Permutes the input list according to the given permutation.
7
+
8
+ Parameters
9
+ -------
10
+ input_list :
11
+ A list to permute.
12
+ permutation :
13
+ A list of indices representing the new order.
14
+
15
+ Returns
16
+ -------
17
+ The permuted list.
18
+
19
+ Example
20
+ -------
21
+ >>> permute_list(['a', 'b', 'c'], [2, 0, 1])
22
+ ['c', 'a', 'b']
23
+ """
24
+
25
+ permuted_list = [None] * len(input_list)
26
+ for i, p in enumerate(permutation):
27
+ permuted_list[i] = input_list[p]
28
+ return permuted_list
29
+
30
+
31
+ def invert_permutation(permutation: list[int]) -> list[int]:
32
+ """
33
+ invert_permutation(permutation) -> inv_permutation
34
+
35
+ Inverts the input permutation list.
36
+
37
+ Parameters
38
+ -------
39
+ permutation :
40
+ A list of indices representing the order
41
+
42
+ Returns
43
+ -------
44
+ permutation list inverse to the input list
45
+
46
+ Example:
47
+ -------
48
+ >>> invert_permutation([2, 0, 1])
49
+ [1, 2, 0]
50
+ """
51
+
52
+ inv_perm = np.empty_like(permutation)
53
+ inv_perm[permutation] = np.arange(len(permutation))
54
+ return list(inv_perm)
55
+
56
+
57
+ def permute_matrix(mat: np.ndarray, permutation: list[int]) -> np.ndarray:
58
+ """
59
+ permute_matrix(matrix, permutation_list) -> permuted_matrix
60
+
61
+ Simultaneously permutes columns and rows according to a permutation list.
62
+
63
+ Parameters
64
+ -------
65
+ matrix :
66
+ square matrix nxn
67
+ permutation :
68
+ permutation list
69
+
70
+ Returns
71
+ -------
72
+ matrix with permuted columns and rows
73
+
74
+ Example:
75
+ -------
76
+ >>> matrix = np.array([
77
+ ... [1, 2, 3],
78
+ ... [4, 5, 6],
79
+ ... [7, 8, 9]])
80
+ >>> permutation = [1, 0, 2]
81
+ >>> permute_matrix(matrix, permutation)
82
+ array([[5, 4, 6],
83
+ [2, 1, 3],
84
+ [8, 7, 9]])
85
+ """
86
+
87
+ perm = np.array(permutation)
88
+ return mat[perm, :][:, perm]
89
+
90
+
91
+ if __name__ == "__main__":
92
+ import doctest
93
+
94
+ doctest.testmod()
emu_mps/tdvp.py CHANGED
@@ -3,6 +3,7 @@ import torch
3
3
  from emu_base import krylov_exp
4
4
  from emu_mps import MPS, MPO
5
5
  from emu_mps.utils import split_tensor
6
+ from emu_mps.mps_config import MPSConfig
6
7
 
7
8
 
8
9
  def new_right_bath(
@@ -10,7 +11,8 @@ def new_right_bath(
10
11
  ) -> torch.Tensor:
11
12
  bath = torch.tensordot(state, bath, ([2], [2]))
12
13
  bath = torch.tensordot(op.to(bath.device), bath, ([2, 3], [1, 3]))
13
- return torch.tensordot(state.conj(), bath, ([1, 2], [1, 3]))
14
+ bath = torch.tensordot(state.conj(), bath, ([1, 2], [1, 3]))
15
+ return bath
14
16
 
15
17
 
16
18
  """
@@ -79,27 +81,6 @@ def apply_effective_Hamiltonian(
79
81
  _TIME_CONVERSION_COEFF = 0.001 # Omega and delta are given in rad/ms, dt in ns
80
82
 
81
83
 
82
- class EvolveConfig:
83
- def __init__(
84
- self,
85
- *,
86
- exp_tolerance: float,
87
- norm_tolerance: float,
88
- max_krylov_dim: int,
89
- is_hermitian: bool,
90
- max_error: float,
91
- max_rank: int
92
- ) -> None:
93
- self.exp_tolerance = exp_tolerance
94
- self.norm_tolerance = norm_tolerance
95
- self.max_krylov_dim = max_krylov_dim
96
- self.is_hermitian = is_hermitian
97
- self.max_error = (
98
- max_error # FIXME: max_error and max_rank are irrelevant for evolve_single
99
- )
100
- self.max_rank = max_rank
101
-
102
-
103
84
  def evolve_pair(
104
85
  *,
105
86
  state_factors: list[torch.Tensor],
@@ -107,7 +88,8 @@ def evolve_pair(
107
88
  ham_factors: list[torch.Tensor],
108
89
  dt: float,
109
90
  orth_center_right: bool,
110
- config: EvolveConfig
91
+ is_hermitian: bool,
92
+ config: MPSConfig,
111
93
  ) -> tuple[torch.Tensor, torch.Tensor]:
112
94
  """
113
95
  Time evolution of a pair of tensors of a tensor train using baths and truncated SVD.
@@ -154,16 +136,16 @@ def evolve_pair(
154
136
  evol = krylov_exp(
155
137
  op,
156
138
  combined_state_factors,
157
- exp_tolerance=config.exp_tolerance,
158
- norm_tolerance=config.norm_tolerance,
139
+ exp_tolerance=config.precision * config.extra_krylov_tolerance,
140
+ norm_tolerance=config.precision * config.extra_krylov_tolerance,
159
141
  max_krylov_dim=config.max_krylov_dim,
160
- is_hermitian=config.is_hermitian,
142
+ is_hermitian=is_hermitian,
161
143
  ).reshape(left_bond_dim * 2, 2 * right_bond_dim)
162
144
 
163
145
  l, r = split_tensor(
164
146
  evol,
165
- max_error=config.max_error,
166
- max_rank=config.max_rank,
147
+ max_error=config.precision,
148
+ max_rank=config.max_bond_dim,
167
149
  orth_center_right=orth_center_right,
168
150
  )
169
151
 
@@ -178,7 +160,8 @@ def evolve_single(
178
160
  baths: tuple[torch.Tensor, torch.Tensor],
179
161
  ham_factor: torch.Tensor,
180
162
  dt: float,
181
- config: EvolveConfig
163
+ is_hermitian: bool,
164
+ config: MPSConfig,
182
165
  ) -> torch.Tensor:
183
166
  """
184
167
  Time evolution of a single tensor of a tensor train using baths.
@@ -202,8 +185,8 @@ def evolve_single(
202
185
  return krylov_exp(
203
186
  op,
204
187
  state_factor,
205
- exp_tolerance=config.exp_tolerance,
206
- norm_tolerance=config.norm_tolerance,
188
+ exp_tolerance=config.precision * config.extra_krylov_tolerance,
189
+ norm_tolerance=config.precision * config.extra_krylov_tolerance,
207
190
  max_krylov_dim=config.max_krylov_dim,
208
- is_hermitian=config.is_hermitian,
191
+ is_hermitian=is_hermitian,
209
192
  )
emu_mps/utils.py CHANGED
@@ -3,7 +3,7 @@ import torch
3
3
  import random
4
4
  from collections import Counter
5
5
 
6
- DEVICE_COUNT = torch.cuda.device_count()
6
+ from emu_mps import MPSConfig
7
7
 
8
8
 
9
9
  def new_left_bath(
@@ -12,15 +12,16 @@ def new_left_bath(
12
12
  # this order is more efficient than contracting the op first in general
13
13
  bath = torch.tensordot(bath, state.conj(), ([0], [0]))
14
14
  bath = torch.tensordot(bath, op.to(bath.device), ([0, 2], [0, 1]))
15
- return torch.tensordot(bath, state, ([0, 2], [0, 1]))
15
+ bath = torch.tensordot(bath, state, ([0, 2], [0, 1]))
16
+ return bath
16
17
 
17
18
 
18
19
  def _determine_cutoff_index(d: torch.Tensor, max_error: float) -> int:
19
20
  assert max_error > 0
20
21
  squared_max_error = max_error * max_error
21
- acc = 0
22
+ acc = 0.0
22
23
  for i in range(d.shape[0]):
23
- acc += d[i]
24
+ acc += d[i].item()
24
25
  if acc > squared_max_error:
25
26
  return i
26
27
  return 0 # type: ignore[no-any-return]
@@ -60,9 +61,8 @@ def split_tensor(
60
61
 
61
62
 
62
63
  def truncate_impl(
63
- factors: list[torch.tensor],
64
- max_error: float = 1e-5,
65
- max_rank: int = 1024,
64
+ factors: list[torch.Tensor],
65
+ config: MPSConfig,
66
66
  ) -> None:
67
67
  """
68
68
  Eigenvalues-based truncation of a matrix product.
@@ -78,8 +78,8 @@ def truncate_impl(
78
78
 
79
79
  l, r = split_tensor(
80
80
  factors[i].reshape(factor_shape[0], -1),
81
- max_error=max_error,
82
- max_rank=max_rank,
81
+ max_error=config.precision,
82
+ max_rank=config.max_bond_dim,
83
83
  orth_center_right=False,
84
84
  )
85
85
 
@@ -241,7 +241,7 @@ def apply_measurement_errors(
241
241
  return result
242
242
 
243
243
 
244
- n_operator = torch.tensor(
244
+ n_operator: torch.Tensor = torch.tensor(
245
245
  [
246
246
  [0, 0],
247
247
  [0, 1],
@@ -0,0 +1,101 @@
1
+ Metadata-Version: 2.4
2
+ Name: emu-mps
3
+ Version: 1.2.5
4
+ Summary: Pasqal MPS based pulse emulator built on PyTorch
5
+ Author-email: Anton Quelle <anton.quelle@pasqal.com>, Mauro Mendizabal <mauro.mendizabal-pico@pasqal.com>, Stefano Grava <stefano.grava@pasqal.com>, Pablo Le Henaff <pablo.le-henaff@pasqal.com>
6
+ License: PASQAL OPEN-SOURCE SOFTWARE LICENSE AGREEMENT (MIT-derived)
7
+
8
+ The author of the License is:
9
+ Pasqal, a Société par Actions Simplifiée (Simplified Joint Stock Company) registered under number 849 441 522 at the Registre du commerce et des sociétés (Trade and Companies Register) of Evry – France, headquartered at 7 rue Leonard de Vinci – 91300 – Massy – France, duly represented by its Président, M. Georges-Olivier REYMOND,
10
+
11
+ Hereafter referred to as « the Licensor »
12
+
13
+ - Permission is hereby granted, free of charge, to any person obtaining a copy of this software (the “Licensee”) and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
14
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. The Software is “as is”, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and non-infringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise arising from, out of or in connection with the Software or the use or other dealings in the Software.
15
+
16
+ - If use of the Software leads to the necessary use of any patent of the Licensor and/or any of its Affiliates (defined as a company owned or controlled by the Licensor), the Licensee is granted a royalty-free license, in any country where such patent is in force, to use the object of such patent; or use the process covered by such patent,
17
+
18
+ - Such a patent license is granted for internal research or academic use of the Licensee's, which includes use by employees and students of the Licensee, acting on behalf of the Licensee, for research purposes only.
19
+
20
+ - The License is governed by the laws of France. Any dispute relating to the License, notably its execution, performance and/or termination shall be brought to, heard and tried by the Tribunal Judiciaire de Paris, regardless of the rules of jurisdiction in the matter.
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Programming Language :: Python :: Implementation :: CPython
23
+ Classifier: Programming Language :: Python :: Implementation :: PyPy
24
+ Requires-Python: >=3.10
25
+ Requires-Dist: emu-base==1.2.5
26
+ Description-Content-Type: text/markdown
27
+
28
+ <div align="center">
29
+ <img src="docs/logos/LogoTaglineSoftGreen.svg">
30
+
31
+ # Emu-MPS
32
+ </div>
33
+
34
+ **Emu-mps** is a backend for the [Pulser low-level Quantum Programming toolkit](https://pulser.readthedocs.io) that lets you run Quantum Algorithms on a simulated device, using GPU acceleration if available. More in depth, emu-mps is designed to **emu**late the dynamics of programmable arrays of neutral atoms, with matrix product states (**mps**). While benchmarking is incomplete as of this writing, early results suggest that this design makes emu-mps faster and more memory-efficient than previous generations of quantum emulators at running simulations with large numbers of qubits.
35
+
36
+ As of this writing, Emu-MPS is provided for Linux and macOS but will not work under Windows.
37
+
38
+ ## Installation
39
+
40
+ **Warning:** installing emu-mps will update pulser-core
41
+
42
+ ### Using `hatch`, `uv` or any pyproject-compatible Python manager
43
+
44
+ To add `emu-mps` to your project, edit your `pyproject.toml` to add the line
45
+
46
+ ```toml
47
+ "emu-mps"
48
+ ```
49
+
50
+ to the list of `dependencies`.
51
+
52
+
53
+ ### Using `pip` or `pipx`
54
+ To install the `pipy` package using `pip` or `pipx`
55
+
56
+ 1. Create a `venv` if that's not done yet
57
+
58
+ ```sh
59
+ $ python -m venv venv
60
+
61
+ ```
62
+
63
+ 2. Enter the venv
64
+
65
+ If you're running Unix:
66
+
67
+ ```sh
68
+ $ . venv/bin/activate
69
+ ```
70
+
71
+ If you're running Windows:
72
+
73
+ ```sh
74
+ C:\> /path/to/new/virtual/environment/Scripts/activate
75
+ ```
76
+
77
+ 3. Install the package
78
+
79
+ ```sh
80
+ $ pip install emu-mps
81
+ # or
82
+ $ pipx install emu-mps
83
+ ```
84
+
85
+
86
+ Join us on [Slack](https://pasqalworkspace.slack.com/archives/C07MUV5K7EU) or by [e-mail](mailto:emulation@pasqal.com) to give us feedback about how you plan to use Emu-MPS or if you require specific feature-upgrades.
87
+
88
+ ## Usage
89
+
90
+ For the time being, the easiest way to learn how to use this package is to look
91
+ at the [examples](examples/emu_mps_examples) and [notebooks](https://pasqal-io.github.io/emulators/latest/).
92
+
93
+ See also the [full documentation](https://github.com/pasqal-io/emulators/blob/main/docs/index.md) for
94
+ the API, information about contributing, benchmarks, etc.
95
+
96
+
97
+ ## Getting in touch
98
+
99
+ - [Pasqal Community Portal](https://community.pasqal.com/) (forums, chat, tutorials, examples, code library).
100
+ - [GitHub Repository](https://github.com/pasqal-io/quantum-evolution-kernel) (source code, issue tracker).
101
+ - [Professional Support](https://www.pasqal.com/contact-us/) (if you need tech support, custom licenses, a variant of this library optimized for your workload, your own QPU, remote access to a QPU, ...)
@@ -0,0 +1,18 @@
1
+ emu_mps/__init__.py,sha256=EdVngqaa6GtyXmEP2aK3BfTHjYLBJSN3wR0CvltS9NQ,646
2
+ emu_mps/algebra.py,sha256=ngPtTH-j2ZCBWoaJZXlkUyIlug7dY7Q92gzfnRlpPMA,5485
3
+ emu_mps/constants.py,sha256=41LYkKLUCz-oxPbd-j7nUDZuhIbUrnez6prT0uR0jcE,56
4
+ emu_mps/hamiltonian.py,sha256=LcBs6CKBb643a1e9AAVtQoUfa4L_0dIhLOKecx5OOWs,15864
5
+ emu_mps/mpo.py,sha256=7y6q0UIfyX9igQknqtgt6nymuVcgjHlH3-Qv7N7uOZE,8769
6
+ emu_mps/mps.py,sha256=OjG_caqPOioCdOt-bFUkOf2xuNGnKzj0LaMc3EJCHi4,17855
7
+ emu_mps/mps_backend.py,sha256=6fVaq-D4xyicYRjGjhqMEieC7---90LpfpbV7ZD7zkQ,2192
8
+ emu_mps/mps_backend_impl.py,sha256=HKDqUakqSs1THeeEZP5MFZaUyALnaIhrlsZTQ0Qp4qU,20867
9
+ emu_mps/mps_config.py,sha256=MxahrPDaOpfdB6SLG1610iDUOuLR04IaCjKQRk99ICY,3346
10
+ emu_mps/noise.py,sha256=h4X2EFjoC_Ok0gZ8I9wN77RANXaVehTBbjkcbY_GAmY,784
11
+ emu_mps/tdvp.py,sha256=TH4CcBNczRURXYGPXndWKDs0jWXz_x9ozM961uGiSOw,5711
12
+ emu_mps/utils.py,sha256=n9BcpuIz4Kl6EYlATaK8TKsyF-T7FTwbBo6KSAQYzl8,8066
13
+ emu_mps/optimatrix/__init__.py,sha256=lHWYNeThHp57ZrwTwXd0p8bNvcCv0w_AZ31iCWflBUo,226
14
+ emu_mps/optimatrix/optimiser.py,sha256=cVMdm2r_4OpbthcQuFMrJ9rNR9WEJRga9c_lHrJFkhw,6687
15
+ emu_mps/optimatrix/permutations.py,sha256=JRXGont8B4QgbkV9CzrA0w7uzLgBrmZ1J9aa0G52hPo,1979
16
+ emu_mps-1.2.5.dist-info/METADATA,sha256=bOtqQKZZ6ZkK9C6aV4puIipHUm5v1G9-tQrUftkIw0M,5559
17
+ emu_mps-1.2.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
18
+ emu_mps-1.2.5.dist-info/RECORD,,