emu-base 1.2.7__py3-none-any.whl → 2.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
emu_base/__init__.py CHANGED
@@ -1,43 +1,13 @@
1
- from .base_classes.results import Results
2
- from .base_classes.callback import Callback, AggregationType
3
- from .base_classes.config import BackendConfig
4
- from .base_classes.operator import Operator
5
- from .base_classes.state import State
6
- from .base_classes.backend import Backend
7
- from .base_classes.default_callbacks import (
8
- BitStrings,
9
- CorrelationMatrix,
10
- Energy,
11
- EnergyVariance,
12
- Expectation,
13
- Fidelity,
14
- QubitDensity,
15
- StateResult,
16
- SecondMomentOfEnergy,
17
- )
18
1
  from .constants import DEVICE_COUNT
19
2
  from .pulser_adapter import PulserData, HamiltonianType
20
3
  from .math.brents_root_finding import find_root_brents
21
4
  from .math.krylov_exp import krylov_exp, DEFAULT_MAX_KRYLOV_DIM
5
+ from .aggregators import AggregationType, aggregate
22
6
 
23
7
  __all__ = [
24
8
  "__version__",
25
- "Results",
26
- "BackendConfig",
27
- "Operator",
28
- "State",
29
- "Backend",
30
9
  "AggregationType",
31
- "Callback",
32
- "StateResult",
33
- "BitStrings",
34
- "QubitDensity",
35
- "CorrelationMatrix",
36
- "Expectation",
37
- "Fidelity",
38
- "Energy",
39
- "EnergyVariance",
40
- "SecondMomentOfEnergy",
10
+ "aggregate",
41
11
  "PulserData",
42
12
  "find_root_brents",
43
13
  "krylov_exp",
@@ -46,4 +16,4 @@ __all__ = [
46
16
  "DEVICE_COUNT",
47
17
  ]
48
18
 
49
- __version__ = "1.2.7"
19
+ __version__ = "2.0.1"
@@ -0,0 +1,158 @@
1
+ import statistics
2
+ import torch
3
+ from typing import Any, Callable
4
+ import collections
5
+ from enum import Enum, auto
6
+ from pulser.backend import (
7
+ Results,
8
+ )
9
+ import logging
10
+
11
+
12
+ _NUMERIC_TYPES = {int, float, complex}
13
+
14
+
15
+ class AggregationType(Enum):
16
+ """
17
+ Defines how to combine multiple values from different simulation results.
18
+ """
19
+
20
+ MEAN = auto() # statistics.fmean or list/matrix-wise equivalent
21
+ BAG_UNION = auto() # Counter.__add__
22
+
23
+
24
+ def mean_aggregator(
25
+ values: list[Any],
26
+ ) -> (
27
+ complex
28
+ | float
29
+ | list[complex]
30
+ | list[float]
31
+ | list[list[complex]]
32
+ | list[list[float]]
33
+ | torch.Tensor
34
+ ): # FIXME: support tuples?
35
+ if values == []:
36
+ raise ValueError("Cannot average 0 samples")
37
+
38
+ element_type = type(values[0])
39
+
40
+ if element_type in _NUMERIC_TYPES:
41
+ return statistics.fmean(values)
42
+
43
+ if element_type == torch.Tensor:
44
+ acc = torch.zeros_like(values[0])
45
+ for ten in values:
46
+ acc += ten
47
+ return acc / len(values)
48
+
49
+ if element_type != list:
50
+ raise NotImplementedError("Cannot average this type of data")
51
+
52
+ if values[0] == []:
53
+ raise ValueError("Cannot average list of empty lists")
54
+
55
+ sub_element_type = type(values[0][0])
56
+
57
+ if sub_element_type in _NUMERIC_TYPES:
58
+ dim = len(values[0])
59
+ return [statistics.fmean(value[i] for value in values) for i in range(dim)]
60
+
61
+ if sub_element_type != list: # FIXME: ABC.Iterable? Collection? subclass?
62
+ raise ValueError(f"Cannot average list of lists of {sub_element_type}")
63
+
64
+ if values[0][0] == []:
65
+ raise ValueError("Cannot average list of matrices with no columns")
66
+
67
+ if (sub_sub_element_type := type(values[0][0][0])) not in _NUMERIC_TYPES:
68
+ raise ValueError(f"Cannot average list of matrices of {sub_sub_element_type}")
69
+
70
+ dim1 = len(values[0])
71
+ dim2 = len(values[0][0])
72
+ return [
73
+ [statistics.fmean(value[i][j] for value in values) for j in range(dim2)]
74
+ for i in range(dim1)
75
+ ]
76
+
77
+
78
+ def bag_union_aggregator(values: list[collections.Counter]) -> collections.Counter:
79
+ return sum(values, start=collections.Counter())
80
+
81
+
82
+ aggregation_types_definitions: dict[AggregationType, Callable] = {
83
+ AggregationType.MEAN: mean_aggregator,
84
+ AggregationType.BAG_UNION: bag_union_aggregator,
85
+ }
86
+
87
+
88
+ def _get_aggregation_type(tag: str) -> AggregationType | None:
89
+ if tag.startswith("bitstrings"):
90
+ return AggregationType.BAG_UNION
91
+ if tag.startswith("expectation"):
92
+ return AggregationType.MEAN
93
+ if tag.startswith("fidelity"):
94
+ return AggregationType.MEAN
95
+ if tag.startswith("correlation_matrix"):
96
+ return AggregationType.MEAN
97
+ if tag.startswith("occupation"):
98
+ return AggregationType.MEAN
99
+ if tag.startswith("energy"):
100
+ return AggregationType.MEAN
101
+ if tag.startswith("energy_second_moment"):
102
+ return AggregationType.MEAN
103
+ else:
104
+ return None
105
+
106
+
107
+ def aggregate(
108
+ results_to_aggregate: list[Results],
109
+ **aggregator_functions: Callable[[Any], Any],
110
+ ) -> Results:
111
+ if len(results_to_aggregate) == 0:
112
+ raise ValueError("no results to aggregate")
113
+ if len(results_to_aggregate) == 1:
114
+ return results_to_aggregate[0]
115
+ stored_callbacks = set(results_to_aggregate[0].get_result_tags())
116
+ if not all(
117
+ set(results.get_result_tags()) == stored_callbacks
118
+ for results in results_to_aggregate
119
+ ):
120
+ raise ValueError(
121
+ "Monte-Carlo results seem to provide from incompatible simulations: "
122
+ "they do not all contain the same observables"
123
+ )
124
+ aggregated = Results(
125
+ atom_order=results_to_aggregate[0].atom_order,
126
+ total_duration=results_to_aggregate[0].total_duration,
127
+ )
128
+ for tag in stored_callbacks:
129
+ aggregation_type = aggregator_functions.get(
130
+ tag,
131
+ _get_aggregation_type(tag),
132
+ )
133
+ if aggregation_type is None:
134
+ logging.getLogger("global_logger").warning(f"Skipping aggregation of `{tag}`")
135
+ continue
136
+ aggregation_function: Any = (
137
+ aggregation_type
138
+ if callable(aggregation_type)
139
+ else aggregation_types_definitions[aggregation_type]
140
+ )
141
+ evaluation_times = results_to_aggregate[0].get_result_times(tag)
142
+ if not all(
143
+ results.get_result_times(tag) == evaluation_times
144
+ for results in results_to_aggregate
145
+ ):
146
+ raise ValueError(
147
+ "Monte-Carlo results seem to provide from incompatible simulations: "
148
+ "the callbacks are not stored at the same times"
149
+ )
150
+
151
+ uuid = results_to_aggregate[0]._find_uuid(tag)
152
+ for t in results_to_aggregate[0].get_result_times(tag):
153
+ v = aggregation_function(
154
+ [result.get_result(tag, t) for result in results_to_aggregate]
155
+ )
156
+ aggregated._store_raw(uuid=uuid, tag=tag, time=t, value=v)
157
+
158
+ return aggregated
@@ -1,13 +1,13 @@
1
1
  import pulser
2
- from typing import Tuple
2
+ from typing import Tuple, Sequence
3
3
  import torch
4
4
  import math
5
5
  from pulser.noise_model import NoiseModel
6
+ from pulser.register.base_register import BaseRegister
6
7
  from enum import Enum
7
8
 
8
- from pulser.register.base_register import BaseRegister
9
+ from pulser.backend.config import EmulationConfig
9
10
 
10
- from emu_base.base_classes.config import BackendConfig
11
11
  from emu_base.lindblad_operators import get_lindblad_operators
12
12
  from emu_base.utils import dist2, dist3
13
13
 
@@ -229,15 +229,23 @@ class PulserData:
229
229
  hamiltonian_type: HamiltonianType
230
230
  lindblad_ops: list[torch.Tensor]
231
231
 
232
- def __init__(self, *, sequence: pulser.Sequence, config: BackendConfig, dt: int):
232
+ def __init__(self, *, sequence: pulser.Sequence, config: EmulationConfig, dt: int):
233
233
  self.qubit_count = len(sequence.register.qubit_ids)
234
-
234
+ sequence_duration = sequence.get_duration()
235
235
  # the end value is exclusive, so add +1
236
236
  observable_times = set(torch.arange(0, sequence.get_duration() + 1, dt).tolist())
237
237
  observable_times.add(sequence.get_duration())
238
- for obs in config.callbacks:
239
- observable_times |= set(obs.evaluation_times)
240
- self.target_times = list(observable_times)
238
+ for obs in config.observables:
239
+ times: Sequence[float]
240
+ if obs.evaluation_times is not None:
241
+ times = obs.evaluation_times
242
+ elif config.default_evaluation_times != "Full":
243
+ times = (
244
+ config.default_evaluation_times.tolist() # type: ignore[union-attr,assignment]
245
+ )
246
+ observable_times |= set([round(time * sequence_duration) for time in times])
247
+
248
+ self.target_times: list[int] = list(observable_times)
241
249
  self.target_times.sort()
242
250
 
243
251
  laser_waist = (
@@ -266,9 +274,7 @@ class PulserData:
266
274
  "the interaction matrix"
267
275
  )
268
276
 
269
- self.full_interaction_matrix = torch.tensor(
270
- config.interaction_matrix, dtype=torch.float64
271
- )
277
+ self.full_interaction_matrix = config.interaction_matrix.as_tensor()
272
278
  elif self.hamiltonian_type == HamiltonianType.Rydberg:
273
279
  self.full_interaction_matrix = _rydberg_interaction(sequence)
274
280
  elif self.hamiltonian_type == HamiltonianType.XY:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: emu-base
3
- Version: 1.2.7
3
+ Version: 2.0.1
4
4
  Summary: Pasqal base classes for emulators
5
5
  Project-URL: Documentation, https://pasqal-io.github.io/emulators/
6
6
  Project-URL: Repository, https://github.com/pasqal-io/emulators
@@ -25,7 +25,7 @@ Classifier: Programming Language :: Python :: 3.10
25
25
  Classifier: Programming Language :: Python :: Implementation :: CPython
26
26
  Classifier: Programming Language :: Python :: Implementation :: PyPy
27
27
  Requires-Python: >=3.10
28
- Requires-Dist: pulser-core==1.3.*
28
+ Requires-Dist: pulser-core==1.4.*
29
29
  Requires-Dist: torch==2.5.0
30
30
  Description-Content-Type: text/markdown
31
31
 
@@ -0,0 +1,12 @@
1
+ emu_base/__init__.py,sha256=ZKjTNCGsq85QyEaQgRUOXC9QcPg3W5Kjix-98JCejzs,493
2
+ emu_base/aggregators.py,sha256=bB-rldoDAErxQMpL715K5lpiabGOpkCY0GyxW7mfHuc,5000
3
+ emu_base/constants.py,sha256=41LYkKLUCz-oxPbd-j7nUDZuhIbUrnez6prT0uR0jcE,56
4
+ emu_base/lindblad_operators.py,sha256=Nsl1YrWb8IDM9Z50ucy2Ed44p_IRETnlbr6qaqAgV50,1629
5
+ emu_base/pulser_adapter.py,sha256=dRD80z_dVXkCjDBLRIkmqNGg5M78VEKkQuk3H5JdZSM,11241
6
+ emu_base/utils.py,sha256=RM8O0qfPAJfcdqqAojwEEKV7I3ZfVDklnTisTGhUg5k,233
7
+ emu_base/math/__init__.py,sha256=6BbIytYV5uC-e5jLMtIErkcUl_PvfSNnhmVFY9Il8uQ,97
8
+ emu_base/math/brents_root_finding.py,sha256=AVx6L1Il6rpPJWrLJ7cn6oNmJyZOPRgEaaZaubC9lsU,3711
9
+ emu_base/math/krylov_exp.py,sha256=UCFNeq-j2ukgBsOPC9_Jiv1aqpy88SrslDLiCxIGBwk,3840
10
+ emu_base-2.0.1.dist-info/METADATA,sha256=Aj7pVr9uE3PWpLShQNgHEknUSznis0ZNG799P7UyRp0,3522
11
+ emu_base-2.0.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
12
+ emu_base-2.0.1.dist-info/RECORD,,
@@ -1,31 +0,0 @@
1
- from .operator import Operator
2
- from .state import State
3
- from .results import Results
4
- from .callback import Callback
5
- from .default_callbacks import (
6
- StateResult,
7
- BitStrings,
8
- QubitDensity,
9
- CorrelationMatrix,
10
- Expectation,
11
- Fidelity,
12
- Energy,
13
- EnergyVariance,
14
- SecondMomentOfEnergy,
15
- )
16
-
17
- __all__ = [
18
- "Operator",
19
- "State",
20
- "Results",
21
- "Callback",
22
- "StateResult",
23
- "BitStrings",
24
- "QubitDensity",
25
- "CorrelationMatrix",
26
- "Expectation",
27
- "Fidelity",
28
- "Energy",
29
- "EnergyVariance",
30
- "SecondMomentOfEnergy",
31
- ]
@@ -1,64 +0,0 @@
1
- import statistics
2
- from typing import Any, Callable
3
- import collections
4
- from emu_base.base_classes.callback import AggregationType
5
-
6
-
7
- _NUMERIC_TYPES = {int, float, complex}
8
-
9
-
10
- def mean_aggregator(
11
- values: list[Any],
12
- ) -> (
13
- complex
14
- | float
15
- | list[complex]
16
- | list[float]
17
- | list[list[complex]]
18
- | list[list[float]]
19
- ): # FIXME: support tuples?
20
- if values == []:
21
- raise ValueError("Cannot average 0 samples")
22
-
23
- element_type = type(values[0])
24
-
25
- if element_type in _NUMERIC_TYPES:
26
- return statistics.fmean(values)
27
-
28
- if element_type != list:
29
- raise NotImplementedError("Cannot average this type of data")
30
-
31
- if values[0] == []:
32
- raise ValueError("Cannot average list of empty lists")
33
-
34
- sub_element_type = type(values[0][0])
35
-
36
- if sub_element_type in _NUMERIC_TYPES:
37
- dim = len(values[0])
38
- return [statistics.fmean(value[i] for value in values) for i in range(dim)]
39
-
40
- if sub_element_type != list: # FIXME: ABC.Iterable? Collection? subclass?
41
- raise ValueError(f"Cannot average list of lists of {sub_element_type}")
42
-
43
- if values[0][0] == []:
44
- raise ValueError("Cannot average list of matrices with no columns")
45
-
46
- if (sub_sub_element_type := type(values[0][0][0])) not in _NUMERIC_TYPES:
47
- raise ValueError(f"Cannot average list of matrices of {sub_sub_element_type}")
48
-
49
- dim1 = len(values[0])
50
- dim2 = len(values[0][0])
51
- return [
52
- [statistics.fmean(value[i][j] for value in values) for j in range(dim2)]
53
- for i in range(dim1)
54
- ]
55
-
56
-
57
- def bag_union_aggregator(values: list[collections.Counter]) -> collections.Counter:
58
- return sum(values, start=collections.Counter())
59
-
60
-
61
- aggregation_types_definitions: dict[AggregationType, Callable] = {
62
- AggregationType.MEAN: mean_aggregator,
63
- AggregationType.BAG_UNION: bag_union_aggregator,
64
- }
@@ -1,48 +0,0 @@
1
- import warnings
2
- from abc import ABC, abstractmethod
3
-
4
- from pulser import Sequence
5
-
6
- from emu_base.base_classes.config import BackendConfig
7
- from emu_base.base_classes.results import Results
8
-
9
-
10
- class Backend(ABC):
11
- """
12
- Base class for different emulation backends.
13
- Forces backends to implement a run method.
14
- """
15
-
16
- @staticmethod
17
- def validate_sequence(sequence: Sequence) -> None:
18
- with warnings.catch_warnings():
19
- warnings.simplefilter("ignore", category=DeprecationWarning)
20
-
21
- if not isinstance(sequence, Sequence):
22
- raise TypeError(
23
- "The provided sequence has to be a valid " "pulser.Sequence instance."
24
- )
25
- if sequence.is_parametrized() or sequence.is_register_mappable():
26
- raise ValueError(
27
- "Not supported"
28
- "The provided sequence needs to be built to be simulated. Call"
29
- " `Sequence.build()` with the necessary parameters."
30
- )
31
- if not sequence._schedule:
32
- raise ValueError("The provided sequence has no declared channels.")
33
- if all(sequence._schedule[x][-1].tf == 0 for x in sequence.declared_channels):
34
- raise ValueError("No instructions given for the channels in the sequence.")
35
-
36
- @abstractmethod
37
- def run(self, sequence: Sequence, config: BackendConfig) -> Results:
38
- """
39
- Emulates the given sequence.
40
-
41
- Args:
42
- sequence: a Pulser sequence to simulate
43
- config: the config. Should be of the appropriate type for the backend
44
-
45
- Returns:
46
- the simulation results
47
- """
48
- pass
@@ -1,90 +0,0 @@
1
- from abc import ABC, abstractmethod
2
- from typing import Any, Optional, TYPE_CHECKING
3
- from enum import Enum, auto
4
-
5
- from emu_base.base_classes.config import BackendConfig
6
- from emu_base.base_classes.operator import Operator
7
- from emu_base.base_classes.state import State
8
-
9
- if TYPE_CHECKING:
10
- from emu_base.base_classes.results import Results
11
-
12
-
13
- class AggregationType(Enum):
14
- """
15
- Defines how to combine multiple values from different simulation results.
16
- """
17
-
18
- MEAN = auto() # statistics.fmean or list/matrix-wise equivalent
19
- BAG_UNION = auto() # Counter.__add__
20
-
21
-
22
- class Callback(ABC):
23
- def __init__(self, evaluation_times: set[int]):
24
- """
25
- The callback base class that can be subclassed to add new kinds of results
26
- to the Results object returned by the Backend
27
-
28
- Args:
29
- evaluation_times: the times at which to add a result to Results
30
- """
31
- self.evaluation_times = evaluation_times
32
-
33
- def __call__(
34
- self, config: BackendConfig, t: int, state: State, H: Operator, result: "Results"
35
- ) -> None:
36
- """
37
- This function is called after each time step performed by the emulator.
38
- By default it calls apply to compute a result and put it in `result`
39
- if `t` in `self.evaluation_times`.
40
- It can be overloaded to define any custom behaviour for a `Callback`.
41
-
42
- Args:
43
- config: the config object passed to the run method
44
- t: the current time in ns
45
- state: the current state
46
- H: the Hamiltonian at this time
47
- result: the results object
48
- """
49
- if t in self.evaluation_times:
50
- value_to_store = self.apply(config, t, state, H)
51
- result.store(callback=self, time=t, value=value_to_store)
52
-
53
- @property
54
- @abstractmethod
55
- def name(self) -> str:
56
- """
57
- The name of the observable, can be used to index into the Results object.
58
- Some Callbacks might have multiple instances, such as a callback to compute
59
- a fidelity on some given state. In that case, this method could make sure
60
- each instance has a unique name.
61
-
62
- Returns:
63
- the name of the callback
64
- """
65
- pass
66
-
67
- @abstractmethod
68
- def apply(self, config: BackendConfig, t: int, state: State, H: Operator) -> Any:
69
- """
70
- This method must be implemented by subclasses. The result of this method
71
- gets put in the Results object.
72
-
73
- Args:
74
- config: the config object passed to the run method
75
- t: the current time in ns
76
- state: the current state
77
- H: the Hamiltonian at this time
78
-
79
- Returns:
80
- the result to put in Results
81
- """
82
- pass
83
-
84
- @property
85
- def default_aggregation_type(self) -> Optional[AggregationType]:
86
- """
87
- Defines how to combine by default multiple values from different simulation results.
88
- None means no default, therefore aggregator function is always user-provided.
89
- """
90
- return None
@@ -1,106 +0,0 @@
1
- from __future__ import annotations
2
- from pulser.noise_model import NoiseModel
3
- import logging
4
- import sys
5
- import pathlib
6
- from typing import TYPE_CHECKING
7
- import torch
8
-
9
- if TYPE_CHECKING:
10
- from emu_base.base_classes.callback import Callback
11
-
12
-
13
- class BackendConfig:
14
- """The base backend configuration.
15
-
16
- Args:
17
- observables: a list of callbacks to compute observables
18
- with_modulation: if True, run the sequence with hardware modulation
19
- noise_model: The pulser.NoiseModel to use in the simulation.
20
- interaction_matrix: When specified, override the interaction terms in the Hamiltonian.
21
- This corresponds to the $U_{ij}$ terms in the documentation. Must be symmetric.
22
- interaction_cutoff: set interaction coefficients smaller than this to 0.
23
- This can improve the memory profile of the application for some backends.
24
- log_level: The output verbosity. Should be one of the constants from logging.
25
- log_file: a path to a file where to store the log, instead of printing to stdout
26
-
27
- Examples:
28
- >>> observables = [BitStrings(400, 100)] #compute 100 bitstrings at 400ns
29
- >>> noise_model = pulser.noise_model.NoiseModel()
30
- >>> interaction_matrix = [[1 for _ in range(nqubits)] for _ in range(nqubits)]
31
- >>> interaction_cutoff = 2.0 #this will turn off all the above interactions again
32
- >>> log_level = logging.warn
33
- """
34
-
35
- def __init__(
36
- self,
37
- *,
38
- observables: list[Callback] | None = None,
39
- with_modulation: bool = False,
40
- noise_model: NoiseModel | None = None,
41
- interaction_matrix: list[list[float]] | None = None,
42
- interaction_cutoff: float = 0.0,
43
- log_level: int = logging.INFO,
44
- log_file: pathlib.Path | None = None,
45
- ):
46
- if observables is None:
47
- observables = []
48
- self.callbacks = (
49
- observables # we can add other types of callbacks, and just stack them
50
- )
51
- self.with_modulation = with_modulation
52
- self.noise_model = noise_model
53
-
54
- if interaction_matrix is not None and not (
55
- isinstance(interaction_matrix, list)
56
- and isinstance(interaction_matrix[0], list)
57
- and isinstance(interaction_matrix[0][0], float)
58
- ):
59
- raise ValueError(
60
- "Interaction matrix must be provided as a Python list of lists of floats"
61
- )
62
-
63
- if interaction_matrix is not None:
64
- int_mat = torch.tensor(interaction_matrix)
65
- tol = 1e-10
66
- if not (
67
- int_mat.numel() != 0
68
- and torch.all(torch.isreal(int_mat))
69
- and int_mat.dim() == 2
70
- and int_mat.shape[0] == int_mat.shape[1]
71
- and torch.allclose(int_mat, int_mat.T, atol=tol)
72
- and torch.norm(torch.diag(int_mat)) < tol
73
- ):
74
- raise ValueError("Interaction matrix is not symmetric and zero diag")
75
-
76
- self.interaction_matrix = interaction_matrix
77
- self.interaction_cutoff = interaction_cutoff
78
- self.logger = logging.getLogger("global_logger")
79
- self.log_file = log_file
80
- self.log_level = log_level
81
-
82
- self.init_logging()
83
-
84
- if noise_model is not None and (
85
- noise_model.runs != 1
86
- or noise_model.samples_per_run != 1
87
- or noise_model.runs is not None
88
- or noise_model.samples_per_run is not None
89
- ):
90
- self.logger.warning(
91
- "Warning: The runs and samples_per_run values of the NoiseModel are ignored!"
92
- )
93
-
94
- def init_logging(self) -> None:
95
- if self.log_file is None:
96
- logging.basicConfig(
97
- level=self.log_level, format="%(message)s", stream=sys.stdout, force=True
98
- ) # default to stream = sys.stderr
99
- else:
100
- logging.basicConfig(
101
- level=self.log_level,
102
- format="%(message)s",
103
- filename=str(self.log_file),
104
- filemode="w",
105
- force=True,
106
- )
@@ -1,300 +0,0 @@
1
- from copy import deepcopy
2
- from typing import Any
3
-
4
- from emu_base.base_classes.callback import Callback, AggregationType
5
- from emu_base.base_classes.config import BackendConfig
6
- from emu_base.base_classes.operator import Operator
7
- from emu_base.base_classes.state import State
8
-
9
-
10
- class StateResult(Callback):
11
- """
12
- Store the quantum state in whatever format the backend provides
13
-
14
- Args:
15
- evaluation_times: the times at which to store the state
16
- """
17
-
18
- def __init__(self, evaluation_times: set[int]):
19
- super().__init__(evaluation_times)
20
-
21
- name = "state"
22
-
23
- def apply(self, config: BackendConfig, t: int, state: State, H: Operator) -> Any:
24
- return deepcopy(state)
25
-
26
-
27
- class BitStrings(Callback):
28
- """
29
- Store bitstrings sampled from the current state. Error rates are taken from the config
30
- passed to the run method of the backend. The bitstrings are stored as a Counter[str].
31
-
32
- Args:
33
- evaluation_times: the times at which to sample bitstrings
34
- num_shots: how many bitstrings to sample each time this observable is computed
35
- """
36
-
37
- def __init__(self, evaluation_times: set[int], num_shots: int = 1000):
38
- super().__init__(evaluation_times)
39
- self.num_shots = num_shots
40
-
41
- name = "bitstrings"
42
-
43
- def apply(self, config: BackendConfig, t: int, state: State, H: Operator) -> Any:
44
- p_false_pos = (
45
- 0.0 if config.noise_model is None else config.noise_model.p_false_pos
46
- )
47
- p_false_neg = (
48
- 0.0 if config.noise_model is None else config.noise_model.p_false_neg
49
- )
50
-
51
- return state.sample(self.num_shots, p_false_pos, p_false_neg)
52
-
53
- default_aggregation_type = AggregationType.BAG_UNION
54
-
55
-
56
- _fidelity_counter = -1
57
-
58
-
59
- class Fidelity(Callback):
60
- """
61
- Store $<ψ|φ(t)>$ for the given state $|ψ>$,
62
- and the state $|φ(t)>$ obtained by time evolution.
63
-
64
- Args:
65
- evaluation_times: the times at which to compute the fidelity
66
- state: the state |ψ>. Note that this must be of appropriate type for the backend
67
-
68
- Examples:
69
- >>> state = State.from_state_string(...) #see State API
70
- >>> fidelity = Fidelity([400], state) #measure fidelity on state at t=400ns
71
- """
72
-
73
- def __init__(self, evaluation_times: set[int], state: State):
74
- super().__init__(evaluation_times)
75
- global _fidelity_counter
76
- _fidelity_counter += 1
77
- self.index = _fidelity_counter
78
- self.state = state
79
-
80
- @property
81
- def name(self) -> str:
82
- return f"fidelity_{self.index}"
83
-
84
- def apply(self, config: BackendConfig, t: int, state: State, H: Operator) -> Any:
85
- return self.state.inner(state)
86
-
87
-
88
- _expectation_counter = -1
89
-
90
-
91
- class Expectation(Callback):
92
- """
93
- Store the expectation of the given operator on the current state
94
- (i.e. $\\langle φ(t)|\\mathrm{operator}|φ(t)\\rangle$).
95
-
96
- Args:
97
- evaluation_times: the times at which to compute the expectation
98
- operator: the operator to measure. Must be of appropriate type for the backend.
99
-
100
- Examples:
101
- >>> op = Operator.from_operator_string(...) #see Operator API
102
- >>> expectation = Expectation([400], op) #measure the expecation of op at t=400ns
103
- """
104
-
105
- def __init__(self, evaluation_times: set[int], operator: Operator):
106
- super().__init__(evaluation_times)
107
- global _expectation_counter
108
- _expectation_counter += 1
109
- self.index = _expectation_counter
110
- self.operator = operator
111
-
112
- @property
113
- def name(self) -> str:
114
- return f"expectation_{self.index}"
115
-
116
- def apply(self, config: BackendConfig, t: int, state: State, H: Operator) -> Any:
117
- return self.operator.expect(state)
118
-
119
- default_aggregation_type = AggregationType.MEAN
120
-
121
-
122
- class CorrelationMatrix(Callback):
123
- """
124
- Store the correlation matrix for the current state.
125
- Requires specification of the basis used in the emulation
126
- https://pulser.readthedocs.io/en/stable/conventions.html
127
- It currently supports
128
- - the rydberg basis ('r','g')
129
- - the xy basis ('0', '1')
130
- and returns
131
-
132
- `[[<φ(t)|n_i n_j|φ(t)> for j in qubits] for i in qubits]`
133
-
134
- n_i being the operator that projects qubit i onto the state that measures as 1.
135
- The diagonal of this matrix is the QubitDensity. The correlation matrix
136
- is stored as a list of lists.
137
-
138
- Args:
139
- evaluation_times: the times at which to compute the correlation matrix
140
- basis: the basis used by the sequence
141
- nqubits: the number of qubits in the Register
142
-
143
- Notes:
144
- See the API for `Operator.from_operator_string` for an example of what to do with
145
- basis and nqubits.
146
- """
147
-
148
- def __init__(self, evaluation_times: set[int], basis: tuple[str, ...], nqubits: int):
149
- super().__init__(evaluation_times)
150
- self.operators: list[list[Operator]] | None = None
151
- self.basis = set(basis)
152
- if self.basis == {"r", "g"}:
153
- self.op_string = "rr"
154
- elif self.basis == {"0", "1"}:
155
- self.op_string = "11"
156
- else:
157
- raise ValueError("Unsupported basis provided")
158
- self.nqubits = nqubits
159
-
160
- name = "correlation_matrix"
161
-
162
- def apply(self, config: BackendConfig, t: int, state: State, H: Operator) -> Any:
163
- if hasattr(state, "get_correlation_matrix") and callable(
164
- state.get_correlation_matrix
165
- ):
166
- return state.get_correlation_matrix()
167
-
168
- if self.operators is None or not isinstance(self.operators[0], type(H)):
169
- self.operators = [
170
- [
171
- H.from_operator_string(
172
- self.basis,
173
- self.nqubits,
174
- [(1.0, [({self.op_string: 1.0}, list({i, j}))])],
175
- )
176
- for j in range(self.nqubits)
177
- ]
178
- for i in range(self.nqubits)
179
- ]
180
- return [[op.expect(state).real for op in ops] for ops in self.operators]
181
-
182
- default_aggregation_type = AggregationType.MEAN
183
-
184
-
185
- class QubitDensity(Callback):
186
- """
187
- Requires specification of the basis used in the emulation
188
- https://pulser.readthedocs.io/en/stable/conventions.html
189
- It currently supports
190
- - the rydberg basis ('r','g')
191
- - the xy basis ('0', '1')
192
- and returns
193
-
194
- `[<φ(t)|n_i|φ(t)> for i in qubits]`
195
-
196
- n_i being the operator that projects qubit i onto the state that measures as 1.
197
- The qubit density is stored as a list.
198
-
199
- Args:
200
- evaluation_times: the times at which to compute the density
201
- basis: the basis used by the sequence
202
- nqubits: the number of qubits in the Register
203
-
204
- Notes:
205
- See the API for `State.from_state_string` for an example of what to do with
206
- basis and nqubits.
207
- """
208
-
209
- def __init__(self, evaluation_times: set[int], basis: tuple[str, ...], nqubits: int):
210
- super().__init__(evaluation_times)
211
- self.operators: list[Operator] | None = None
212
- self.basis = set(basis)
213
- if self.basis == {"r", "g"}:
214
- self.op_string = "rr"
215
- elif self.basis == {"0", "1"}:
216
- self.op_string = "11"
217
- else:
218
- raise ValueError("Unsupported basis provided")
219
- self.nqubits = nqubits
220
-
221
- name = "qubit_density"
222
-
223
- def apply(self, config: BackendConfig, t: int, state: State, H: Operator) -> Any:
224
- if self.operators is None or not isinstance(self.operators[0], type(H)):
225
- self.operators = [
226
- H.from_operator_string(
227
- self.basis, self.nqubits, [(1.0, [({self.op_string: 1.0}, [i])])]
228
- )
229
- for i in range(self.nqubits)
230
- ]
231
- return [op.expect(state).real for op in self.operators]
232
-
233
- default_aggregation_type = AggregationType.MEAN
234
-
235
-
236
- class Energy(Callback):
237
- """
238
- Store the expectation value of the current Hamiltonian
239
- (i.e. $\\langle φ(t)|H(t)|φ(t) \\rangle$)
240
-
241
- Args:
242
- evaluation_times: the times at which to compute the expectation
243
- """
244
-
245
- def __init__(self, evaluation_times: set[int]):
246
- super().__init__(evaluation_times)
247
-
248
- name = "energy"
249
-
250
- def apply(self, config: BackendConfig, t: int, state: State, H: Operator) -> Any:
251
- return H.expect(state).real
252
-
253
- default_aggregation_type = AggregationType.MEAN
254
-
255
-
256
- class EnergyVariance(Callback):
257
- """
258
- Store the variance of the current Hamiltonian
259
- (i.e. $\\langle φ(t)|H(t)^2|φ(t)\\rangle - \\langle φ(t)|H(t)|φ(t)\\rangle^2$)
260
-
261
- Args:
262
- evaluation_times: the times at which to compute the variance
263
- """
264
-
265
- def __init__(self, evaluation_times: set[int]):
266
- super().__init__(evaluation_times)
267
-
268
- name = "energy_variance"
269
-
270
- def apply(self, config: BackendConfig, t: int, state: State, H: Operator) -> Any:
271
- h_squared = H @ H
272
- return h_squared.expect(state).real - H.expect(state).real ** 2
273
-
274
- # Explicitely setting this to None out of safety: in the case of MonteCarlo,
275
- # the aggregated variance cannot be computed from this callback.
276
- # Instead, one first need to average Energy and SecondMomentOfEnergy,
277
- # and then compute the variance with the formula:
278
- # AggregatedEnergyVariance = AveragedSecondMomentOfEnergy - AveragedEnergy**2
279
- default_aggregation_type = None
280
-
281
-
282
- class SecondMomentOfEnergy(Callback):
283
- """
284
- Store the expectation value $\\langle φ(t)|H(t)^2|φ(t)\\rangle$.
285
- Useful for computing the variance when averaging over many executions of the program.
286
-
287
- Args:
288
- evaluation_times: the times at which to compute the variance
289
- """
290
-
291
- def __init__(self, evaluation_times: set[int]):
292
- super().__init__(evaluation_times)
293
-
294
- name = "second_moment_of_energy"
295
-
296
- def apply(self, config: BackendConfig, t: int, state: State, H: Operator) -> Any:
297
- h_squared = H @ H
298
- return h_squared.expect(state).real
299
-
300
- default_aggregation_type = AggregationType.MEAN
@@ -1,126 +0,0 @@
1
- from __future__ import annotations
2
-
3
- from abc import ABC, abstractmethod
4
- from typing import Any, Iterable
5
-
6
- from emu_base.base_classes.state import State
7
-
8
-
9
- QuditOp = dict[str, complex] # single qubit operator
10
- TensorOp = list[tuple[QuditOp, list[int]]] # QuditOp applied to list of qubits
11
- FullOp = list[tuple[complex, TensorOp]] # weighted sum of TensorOp
12
-
13
-
14
- class Operator(ABC):
15
- @abstractmethod
16
- def __mul__(self, other: State) -> State:
17
- """
18
- Apply the operator to a state
19
-
20
- Args:
21
- other: the state to apply this operator to
22
-
23
- Returns:
24
- the resulting state
25
- """
26
- pass
27
-
28
- @abstractmethod
29
- def __add__(self, other: Operator) -> Operator:
30
- """
31
- Computes the sum of two operators.
32
-
33
- Args:
34
- other: the other operator
35
-
36
- Returns:
37
- the summed operator
38
- """
39
- pass
40
-
41
- @abstractmethod
42
- def expect(self, state: State) -> float | complex:
43
- """
44
- Compute the expectation value of self on the given state.
45
-
46
- Args:
47
- state: the state with which to compute
48
-
49
- Returns:
50
- the expectation
51
- """
52
-
53
- @staticmethod
54
- @abstractmethod
55
- def from_operator_string(
56
- basis: Iterable[str],
57
- nqubits: int,
58
- operations: FullOp,
59
- operators: dict[str, QuditOp] = {},
60
- /,
61
- **kwargs: Any,
62
- ) -> Operator:
63
- """
64
- Create an operator in the backend-specific format from the
65
- pulser abstract representation
66
- <https://www.notion.so/pasqal/Abstract-State-and-Operator-Definition>
67
- By default it supports strings 'ij', where i and j in basis,
68
- to denote |i><j|, but additional symbols can be defined in operators
69
- For a list of existing bases, see
70
- <https://pulser.readthedocs.io/en/stable/conventions.html>
71
-
72
- Args:
73
- basis: the eigenstates in the basis to use
74
- nqubits: how many qubits there are in the state
75
- operations: which bitstrings make up the state with what weight
76
- operators: additional symbols to be used in operations
77
-
78
- Returns:
79
- the operator in whatever format the backend provides.
80
-
81
- Examples:
82
- >>> basis = {"r", "g"} #rydberg basis
83
- >>> nqubits = 3 #or whatever
84
- >>> x = {"rg": 1.0, "gr": 1.0}
85
- >>> z = {"gg": 1.0, "rr": -1.0}
86
- >>> operators = {"X": x, "Z": z} #define X and Z as conveniences
87
- >>>
88
- >>> operations = [ # 4 X1X + 3 1Z1
89
- >>> (
90
- >>> 1.0,
91
- >>> [
92
- >>> ({"X": 2.0}, [0, 2]),
93
- >>> ({"Z": 3.0}, [1]),
94
- >>> ],
95
- >>> )
96
- >>> ]
97
- >>> op = Operator.from_operator_string(basis, nqubits, operations, operators)
98
- """
99
- pass
100
-
101
- @abstractmethod
102
- def __rmul__(self, scalar: complex) -> Operator:
103
- """
104
- Scale the operator by a scale factor.
105
-
106
- Args:
107
- scalar: the scale factor
108
-
109
- Returns:
110
- the scaled operator
111
- """
112
- pass
113
-
114
- @abstractmethod
115
- def __matmul__(self, other: Operator) -> Operator:
116
- """
117
- Compose two operators. The ordering is that
118
- self is applied after other.
119
-
120
- Args:
121
- other: the operator to compose with self
122
-
123
- Returns:
124
- the composed operator
125
- """
126
- pass
@@ -1,183 +0,0 @@
1
- from dataclasses import dataclass, field
2
- from typing import Any, Callable, Optional
3
- from pathlib import Path
4
- import json
5
- import logging
6
- import torch
7
-
8
- from emu_base.base_classes.callback import Callback, AggregationType
9
- from emu_base.base_classes.aggregators import aggregation_types_definitions
10
-
11
-
12
- class ResultsEncoder(json.JSONEncoder):
13
- def default(self, obj: Any) -> Any:
14
- if isinstance(obj, torch.Tensor):
15
- return obj.tolist()
16
- return super().default(obj)
17
-
18
-
19
- @dataclass
20
- class Results:
21
- """
22
- This class contains emulation results. Since the results written by
23
- an emulator are defined through callbacks, the contents of this class
24
- are not known a-priori.
25
- """
26
-
27
- statistics: Any = None # Backend-specific data
28
-
29
- _results: dict[str, dict[int, Any]] = field(default_factory=dict)
30
- _default_aggregation_types: dict[str, Optional[AggregationType]] = field(
31
- default_factory=dict
32
- )
33
-
34
- @classmethod
35
- def aggregate(
36
- cls,
37
- results_to_aggregate: list["Results"],
38
- **aggregator_functions: Callable[[Any], Any],
39
- ) -> "Results":
40
- if len(results_to_aggregate) == 0:
41
- raise ValueError("no results to aggregate")
42
-
43
- if len(results_to_aggregate) == 1:
44
- return results_to_aggregate[0]
45
-
46
- stored_callbacks = set(results_to_aggregate[0].get_result_names())
47
-
48
- if not all(
49
- set(results.get_result_names()) == stored_callbacks
50
- for results in results_to_aggregate
51
- ):
52
- raise ValueError(
53
- "Monte-Carlo results seem to provide from incompatible simulations: "
54
- "they do not all contain the same observables"
55
- )
56
-
57
- aggregated: Results = cls()
58
-
59
- for stored_callback in stored_callbacks:
60
- aggregation_type = aggregator_functions.get(
61
- stored_callback,
62
- results_to_aggregate[0].get_aggregation_type(stored_callback),
63
- )
64
-
65
- if aggregation_type is None:
66
- logging.getLogger("global_logger").warning(
67
- f"Skipping aggregation of `{stored_callback}`"
68
- )
69
- continue
70
-
71
- aggregation_function: Any = (
72
- aggregation_type
73
- if callable(aggregation_type)
74
- else aggregation_types_definitions[aggregation_type]
75
- )
76
-
77
- evaluation_times = results_to_aggregate[0].get_result_times(stored_callback)
78
- if not all(
79
- results.get_result_times(stored_callback) == evaluation_times
80
- for results in results_to_aggregate
81
- ):
82
- raise ValueError(
83
- "Monte-Carlo results seem to provide from incompatible simulations: "
84
- "the callbacks are not stored at the same times"
85
- )
86
-
87
- aggregated._results[stored_callback] = {
88
- t: aggregation_function(
89
- [result[stored_callback, t] for result in results_to_aggregate]
90
- )
91
- for t in evaluation_times
92
- }
93
-
94
- return aggregated
95
-
96
- def store(self, *, callback: Callback, time: Any, value: Any) -> None:
97
- self._results.setdefault(callback.name, {})
98
-
99
- if time in self._results[callback.name]:
100
- raise ValueError(
101
- f"A value is already stored for observable '{callback.name}' at time {time}"
102
- )
103
-
104
- self._results[callback.name][time] = value
105
- self._default_aggregation_types[callback.name] = callback.default_aggregation_type
106
-
107
- def __getitem__(self, key: Any) -> Any:
108
- if isinstance(key, tuple):
109
- # results["energy", t]
110
- callback_name, time = key
111
-
112
- if callback_name not in self._results:
113
- raise ValueError(
114
- f"No value for observable '{callback_name}' has been stored"
115
- )
116
-
117
- if time not in self._results[callback_name]:
118
- raise ValueError(
119
- f"No value stored at time {time} for observable '{callback_name}'"
120
- )
121
-
122
- return self._results[callback_name][time]
123
-
124
- # results["energy"][t]
125
- assert isinstance(key, str)
126
- callback_name = key
127
- if callback_name not in self._results:
128
- raise ValueError(f"No value for observable '{callback_name}' has been stored")
129
-
130
- return self._results[key]
131
-
132
- def get_result_names(self) -> list[str]:
133
- """
134
- get a list of results present in this object
135
-
136
- Args:
137
-
138
- Returns:
139
- list of results by name
140
-
141
- """
142
- return list(self._results.keys())
143
-
144
- def get_result_times(self, name: str) -> list[int]:
145
- """
146
- get a list of times for which the given result has been stored
147
-
148
- Args:
149
- name: name of the result to get times of
150
-
151
- Returns:
152
- list of times in ns
153
-
154
- """
155
- return list(self._results[name].keys())
156
-
157
- def get_result(self, name: str, time: int) -> Any:
158
- """
159
- get the given result at the given time
160
-
161
- Args:
162
- name: name of the result to get
163
- time: time in ns at which to get the result
164
-
165
- Returns:
166
- the result
167
-
168
- """
169
- return self._results[name][time]
170
-
171
- def get_aggregation_type(self, name: str) -> Optional[AggregationType]:
172
- return self._default_aggregation_types[name]
173
-
174
- def dump(self, file_path: Path) -> None:
175
- with file_path.open("w") as file_handle:
176
- json.dump(
177
- {
178
- "observables": self._results,
179
- "statistics": self.statistics,
180
- },
181
- file_handle,
182
- cls=ResultsEncoder,
183
- )
@@ -1,97 +0,0 @@
1
- from __future__ import annotations
2
- from typing import Any, Iterable
3
- from abc import ABC, abstractmethod
4
- from collections import Counter
5
-
6
-
7
- class State(ABC):
8
- """
9
- Base class enforcing an API for quantum states.
10
- Each backend will implement its own type of state, and the
11
- below methods.
12
- """
13
-
14
- @abstractmethod
15
- def inner(self, other: State) -> float | complex:
16
- """
17
- Compute the inner product between this state and other.
18
- Note that self is the left state in the inner product,
19
- so this function is linear in other, and anti-linear in self
20
-
21
- Args:
22
- other: the other state
23
-
24
- Returns:
25
- inner product
26
- """
27
- pass
28
-
29
- @abstractmethod
30
- def sample(
31
- self, num_shots: int, p_false_pos: float = 0.0, p_false_neg: float = 0.0
32
- ) -> Counter[str]:
33
- """
34
- Sample bitstrings from the state, taking into account error rates.
35
-
36
- Args:
37
- num_shots: how many bitstrings to sample
38
- p_false_pos: the rate at which a 0 is read as a 1
39
- p_false_neg: the rate at which a 1 is read as a 0
40
-
41
- Returns:
42
- the measured bitstrings, by count
43
- """
44
- pass
45
-
46
- @abstractmethod
47
- def __add__(self, other: State) -> State:
48
- """
49
- Computes the sum of two states.
50
-
51
- Args:
52
- other: the other state
53
-
54
- Returns:
55
- the summed state
56
- """
57
- pass
58
-
59
- @abstractmethod
60
- def __rmul__(self, scalar: complex) -> State:
61
- """
62
- Scale the state by a scale factor.
63
-
64
- Args:
65
- scalar: the scale factor
66
-
67
- Returns:
68
- the scaled state
69
- """
70
- pass
71
-
72
- @staticmethod
73
- @abstractmethod
74
- def from_state_string(
75
- *, basis: Iterable[str], nqubits: int, strings: dict[str, complex], **kwargs: Any
76
- ) -> State:
77
- """
78
- Construct a state from the pulser abstract representation
79
- <https://www.notion.so/pasqal/Abstract-State-and-Operator-Definition>
80
- For a list of existing bases, see
81
- <https://pulser.readthedocs.io/en/stable/conventions.html>
82
-
83
- Args:
84
- basis: A tuple containing the basis states.
85
- nqubits: the number of qubits.
86
- strings: A dictionary mapping state strings to complex or floats amplitudes
87
-
88
- Returns:
89
- the state in whatever format the backend provides.
90
-
91
- Examples:
92
- >>> afm_string_state = {"rrr": 1.0 / math.sqrt(2), "ggg": 1.0 / math.sqrt(2)}
93
- >>> afm_state = State.from_state_string(
94
- >>> basis=("r", "g"), nqubits=3, strings=afm_string_state
95
- >>> )
96
- """
97
- pass
@@ -1,20 +0,0 @@
1
- emu_base/__init__.py,sha256=i2Gv8rIusAD2hXepDFdFTfC5FQOOpNXtB0F1xoSd6QQ,1186
2
- emu_base/constants.py,sha256=41LYkKLUCz-oxPbd-j7nUDZuhIbUrnez6prT0uR0jcE,56
3
- emu_base/lindblad_operators.py,sha256=Nsl1YrWb8IDM9Z50ucy2Ed44p_IRETnlbr6qaqAgV50,1629
4
- emu_base/pulser_adapter.py,sha256=SIkw3Mrob4RPTt4QNYzC8CUJ0tj-sTj-t-fEKEyRTtU,10858
5
- emu_base/utils.py,sha256=RM8O0qfPAJfcdqqAojwEEKV7I3ZfVDklnTisTGhUg5k,233
6
- emu_base/base_classes/__init__.py,sha256=Su6fHtjCyg0fw-7y7e7nbMfDASppNRQs8iGaAOkO3c4,570
7
- emu_base/base_classes/aggregators.py,sha256=BDzFq12q36p12TXp2qv3g7a9cHnXbT1hhMZJLVojkDU,1862
8
- emu_base/base_classes/backend.py,sha256=7tnwb9MnRbwRN1_JTqliYftjqExuOE-Rrwz9AU2Pc4c,1645
9
- emu_base/base_classes/callback.py,sha256=JXah_ZDNM8iyPWy7IOwW481qRFyqVvlSM-0OkjBzV0A,3055
10
- emu_base/base_classes/config.py,sha256=oLS2jwmxqwMbLKIPdqohK-KPIcXdtpG3sRr_Y12poNQ,4105
11
- emu_base/base_classes/default_callbacks.py,sha256=F44kkuwWdVcvMGZ9vJ2q7ug-_P8IQyJv-SVxSVWHW_w,9940
12
- emu_base/base_classes/operator.py,sha256=MJjuDUTwJLbaSJzSNCKDWGvmGCGAEIEWISLoPSSzNsU,3501
13
- emu_base/base_classes/results.py,sha256=w4js7gThb49sNjEEDfEf0tYRwK004GrafWPeEOvyeCg,5810
14
- emu_base/base_classes/state.py,sha256=7iIyZmBqqJ6G4SyYZ3kyylWjAqiYIx0aW5B0T74EPZI,2707
15
- emu_base/math/__init__.py,sha256=6BbIytYV5uC-e5jLMtIErkcUl_PvfSNnhmVFY9Il8uQ,97
16
- emu_base/math/brents_root_finding.py,sha256=AVx6L1Il6rpPJWrLJ7cn6oNmJyZOPRgEaaZaubC9lsU,3711
17
- emu_base/math/krylov_exp.py,sha256=UCFNeq-j2ukgBsOPC9_Jiv1aqpy88SrslDLiCxIGBwk,3840
18
- emu_base-1.2.7.dist-info/METADATA,sha256=JpfSGDOQtIu2hwwoHXgBNgf8ZmIkUh0MUDiwJYPZL_Q,3522
19
- emu_base-1.2.7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
20
- emu_base-1.2.7.dist-info/RECORD,,