empathy-framework 5.3.0__py3-none-any.whl → 5.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (458) hide show
  1. empathy_framework-5.4.0.dist-info/METADATA +47 -0
  2. empathy_framework-5.4.0.dist-info/RECORD +8 -0
  3. {empathy_framework-5.3.0.dist-info → empathy_framework-5.4.0.dist-info}/top_level.txt +0 -1
  4. empathy_healthcare_plugin/__init__.py +12 -11
  5. empathy_llm_toolkit/__init__.py +12 -26
  6. empathy_os/__init__.py +12 -356
  7. empathy_software_plugin/__init__.py +12 -11
  8. empathy_framework-5.3.0.dist-info/METADATA +0 -1026
  9. empathy_framework-5.3.0.dist-info/RECORD +0 -456
  10. empathy_framework-5.3.0.dist-info/entry_points.txt +0 -26
  11. empathy_framework-5.3.0.dist-info/licenses/LICENSE +0 -201
  12. empathy_framework-5.3.0.dist-info/licenses/LICENSE_CHANGE_ANNOUNCEMENT.md +0 -101
  13. empathy_healthcare_plugin/monitors/__init__.py +0 -9
  14. empathy_healthcare_plugin/monitors/clinical_protocol_monitor.py +0 -315
  15. empathy_healthcare_plugin/monitors/monitoring/__init__.py +0 -44
  16. empathy_healthcare_plugin/monitors/monitoring/protocol_checker.py +0 -300
  17. empathy_healthcare_plugin/monitors/monitoring/protocol_loader.py +0 -214
  18. empathy_healthcare_plugin/monitors/monitoring/sensor_parsers.py +0 -306
  19. empathy_healthcare_plugin/monitors/monitoring/trajectory_analyzer.py +0 -389
  20. empathy_healthcare_plugin/protocols/cardiac.json +0 -93
  21. empathy_healthcare_plugin/protocols/post_operative.json +0 -92
  22. empathy_healthcare_plugin/protocols/respiratory.json +0 -92
  23. empathy_healthcare_plugin/protocols/sepsis.json +0 -141
  24. empathy_llm_toolkit/README.md +0 -553
  25. empathy_llm_toolkit/agent_factory/__init__.py +0 -53
  26. empathy_llm_toolkit/agent_factory/adapters/__init__.py +0 -85
  27. empathy_llm_toolkit/agent_factory/adapters/autogen_adapter.py +0 -312
  28. empathy_llm_toolkit/agent_factory/adapters/crewai_adapter.py +0 -483
  29. empathy_llm_toolkit/agent_factory/adapters/haystack_adapter.py +0 -298
  30. empathy_llm_toolkit/agent_factory/adapters/langchain_adapter.py +0 -362
  31. empathy_llm_toolkit/agent_factory/adapters/langgraph_adapter.py +0 -333
  32. empathy_llm_toolkit/agent_factory/adapters/native.py +0 -228
  33. empathy_llm_toolkit/agent_factory/adapters/wizard_adapter.py +0 -423
  34. empathy_llm_toolkit/agent_factory/base.py +0 -305
  35. empathy_llm_toolkit/agent_factory/crews/__init__.py +0 -67
  36. empathy_llm_toolkit/agent_factory/crews/code_review.py +0 -1113
  37. empathy_llm_toolkit/agent_factory/crews/health_check.py +0 -1262
  38. empathy_llm_toolkit/agent_factory/crews/refactoring.py +0 -1128
  39. empathy_llm_toolkit/agent_factory/crews/security_audit.py +0 -1018
  40. empathy_llm_toolkit/agent_factory/decorators.py +0 -287
  41. empathy_llm_toolkit/agent_factory/factory.py +0 -558
  42. empathy_llm_toolkit/agent_factory/framework.py +0 -193
  43. empathy_llm_toolkit/agent_factory/memory_integration.py +0 -328
  44. empathy_llm_toolkit/agent_factory/resilient.py +0 -320
  45. empathy_llm_toolkit/agents_md/__init__.py +0 -22
  46. empathy_llm_toolkit/agents_md/loader.py +0 -218
  47. empathy_llm_toolkit/agents_md/parser.py +0 -271
  48. empathy_llm_toolkit/agents_md/registry.py +0 -307
  49. empathy_llm_toolkit/claude_memory.py +0 -466
  50. empathy_llm_toolkit/cli/__init__.py +0 -8
  51. empathy_llm_toolkit/cli/sync_claude.py +0 -487
  52. empathy_llm_toolkit/code_health.py +0 -1313
  53. empathy_llm_toolkit/commands/__init__.py +0 -51
  54. empathy_llm_toolkit/commands/context.py +0 -375
  55. empathy_llm_toolkit/commands/loader.py +0 -301
  56. empathy_llm_toolkit/commands/models.py +0 -231
  57. empathy_llm_toolkit/commands/parser.py +0 -371
  58. empathy_llm_toolkit/commands/registry.py +0 -429
  59. empathy_llm_toolkit/config/__init__.py +0 -29
  60. empathy_llm_toolkit/config/unified.py +0 -291
  61. empathy_llm_toolkit/context/__init__.py +0 -22
  62. empathy_llm_toolkit/context/compaction.py +0 -455
  63. empathy_llm_toolkit/context/manager.py +0 -434
  64. empathy_llm_toolkit/contextual_patterns.py +0 -361
  65. empathy_llm_toolkit/core.py +0 -907
  66. empathy_llm_toolkit/git_pattern_extractor.py +0 -435
  67. empathy_llm_toolkit/hooks/__init__.py +0 -24
  68. empathy_llm_toolkit/hooks/config.py +0 -306
  69. empathy_llm_toolkit/hooks/executor.py +0 -289
  70. empathy_llm_toolkit/hooks/registry.py +0 -302
  71. empathy_llm_toolkit/hooks/scripts/__init__.py +0 -39
  72. empathy_llm_toolkit/hooks/scripts/evaluate_session.py +0 -201
  73. empathy_llm_toolkit/hooks/scripts/first_time_init.py +0 -285
  74. empathy_llm_toolkit/hooks/scripts/pre_compact.py +0 -207
  75. empathy_llm_toolkit/hooks/scripts/session_end.py +0 -183
  76. empathy_llm_toolkit/hooks/scripts/session_start.py +0 -163
  77. empathy_llm_toolkit/hooks/scripts/suggest_compact.py +0 -225
  78. empathy_llm_toolkit/learning/__init__.py +0 -30
  79. empathy_llm_toolkit/learning/evaluator.py +0 -438
  80. empathy_llm_toolkit/learning/extractor.py +0 -514
  81. empathy_llm_toolkit/learning/storage.py +0 -560
  82. empathy_llm_toolkit/levels.py +0 -227
  83. empathy_llm_toolkit/pattern_confidence.py +0 -414
  84. empathy_llm_toolkit/pattern_resolver.py +0 -272
  85. empathy_llm_toolkit/pattern_summary.py +0 -350
  86. empathy_llm_toolkit/providers.py +0 -967
  87. empathy_llm_toolkit/routing/__init__.py +0 -32
  88. empathy_llm_toolkit/routing/model_router.py +0 -362
  89. empathy_llm_toolkit/security/IMPLEMENTATION_SUMMARY.md +0 -413
  90. empathy_llm_toolkit/security/PHASE2_COMPLETE.md +0 -384
  91. empathy_llm_toolkit/security/PHASE2_SECRETS_DETECTOR_COMPLETE.md +0 -271
  92. empathy_llm_toolkit/security/QUICK_REFERENCE.md +0 -316
  93. empathy_llm_toolkit/security/README.md +0 -262
  94. empathy_llm_toolkit/security/__init__.py +0 -62
  95. empathy_llm_toolkit/security/audit_logger.py +0 -929
  96. empathy_llm_toolkit/security/audit_logger_example.py +0 -152
  97. empathy_llm_toolkit/security/pii_scrubber.py +0 -640
  98. empathy_llm_toolkit/security/secrets_detector.py +0 -678
  99. empathy_llm_toolkit/security/secrets_detector_example.py +0 -304
  100. empathy_llm_toolkit/security/secure_memdocs.py +0 -1192
  101. empathy_llm_toolkit/security/secure_memdocs_example.py +0 -278
  102. empathy_llm_toolkit/session_status.py +0 -745
  103. empathy_llm_toolkit/state.py +0 -246
  104. empathy_llm_toolkit/utils/__init__.py +0 -5
  105. empathy_llm_toolkit/utils/tokens.py +0 -349
  106. empathy_os/adaptive/__init__.py +0 -13
  107. empathy_os/adaptive/task_complexity.py +0 -127
  108. empathy_os/agent_monitoring.py +0 -414
  109. empathy_os/cache/__init__.py +0 -117
  110. empathy_os/cache/base.py +0 -166
  111. empathy_os/cache/dependency_manager.py +0 -256
  112. empathy_os/cache/hash_only.py +0 -251
  113. empathy_os/cache/hybrid.py +0 -457
  114. empathy_os/cache/storage.py +0 -285
  115. empathy_os/cache_monitor.py +0 -356
  116. empathy_os/cache_stats.py +0 -298
  117. empathy_os/cli/__init__.py +0 -152
  118. empathy_os/cli/__main__.py +0 -12
  119. empathy_os/cli/commands/__init__.py +0 -1
  120. empathy_os/cli/commands/batch.py +0 -264
  121. empathy_os/cli/commands/cache.py +0 -248
  122. empathy_os/cli/commands/help.py +0 -331
  123. empathy_os/cli/commands/info.py +0 -140
  124. empathy_os/cli/commands/inspect.py +0 -436
  125. empathy_os/cli/commands/inspection.py +0 -57
  126. empathy_os/cli/commands/memory.py +0 -48
  127. empathy_os/cli/commands/metrics.py +0 -92
  128. empathy_os/cli/commands/orchestrate.py +0 -184
  129. empathy_os/cli/commands/patterns.py +0 -207
  130. empathy_os/cli/commands/profiling.py +0 -202
  131. empathy_os/cli/commands/provider.py +0 -98
  132. empathy_os/cli/commands/routing.py +0 -285
  133. empathy_os/cli/commands/setup.py +0 -96
  134. empathy_os/cli/commands/status.py +0 -235
  135. empathy_os/cli/commands/sync.py +0 -166
  136. empathy_os/cli/commands/tier.py +0 -121
  137. empathy_os/cli/commands/utilities.py +0 -114
  138. empathy_os/cli/commands/workflow.py +0 -579
  139. empathy_os/cli/core.py +0 -32
  140. empathy_os/cli/parsers/__init__.py +0 -68
  141. empathy_os/cli/parsers/batch.py +0 -118
  142. empathy_os/cli/parsers/cache.py +0 -65
  143. empathy_os/cli/parsers/help.py +0 -41
  144. empathy_os/cli/parsers/info.py +0 -26
  145. empathy_os/cli/parsers/inspect.py +0 -66
  146. empathy_os/cli/parsers/metrics.py +0 -42
  147. empathy_os/cli/parsers/orchestrate.py +0 -61
  148. empathy_os/cli/parsers/patterns.py +0 -54
  149. empathy_os/cli/parsers/provider.py +0 -40
  150. empathy_os/cli/parsers/routing.py +0 -110
  151. empathy_os/cli/parsers/setup.py +0 -42
  152. empathy_os/cli/parsers/status.py +0 -47
  153. empathy_os/cli/parsers/sync.py +0 -31
  154. empathy_os/cli/parsers/tier.py +0 -33
  155. empathy_os/cli/parsers/workflow.py +0 -77
  156. empathy_os/cli/utils/__init__.py +0 -1
  157. empathy_os/cli/utils/data.py +0 -242
  158. empathy_os/cli/utils/helpers.py +0 -68
  159. empathy_os/cli_legacy.py +0 -3957
  160. empathy_os/cli_minimal.py +0 -1159
  161. empathy_os/cli_router.py +0 -437
  162. empathy_os/cli_unified.py +0 -814
  163. empathy_os/config/__init__.py +0 -66
  164. empathy_os/config/xml_config.py +0 -286
  165. empathy_os/config.py +0 -545
  166. empathy_os/coordination.py +0 -870
  167. empathy_os/core.py +0 -1511
  168. empathy_os/core_modules/__init__.py +0 -15
  169. empathy_os/cost_tracker.py +0 -626
  170. empathy_os/dashboard/__init__.py +0 -41
  171. empathy_os/dashboard/app.py +0 -512
  172. empathy_os/dashboard/simple_server.py +0 -435
  173. empathy_os/dashboard/standalone_server.py +0 -547
  174. empathy_os/discovery.py +0 -306
  175. empathy_os/emergence.py +0 -306
  176. empathy_os/exceptions.py +0 -123
  177. empathy_os/feedback_loops.py +0 -373
  178. empathy_os/hot_reload/README.md +0 -473
  179. empathy_os/hot_reload/__init__.py +0 -62
  180. empathy_os/hot_reload/config.py +0 -83
  181. empathy_os/hot_reload/integration.py +0 -229
  182. empathy_os/hot_reload/reloader.py +0 -298
  183. empathy_os/hot_reload/watcher.py +0 -183
  184. empathy_os/hot_reload/websocket.py +0 -177
  185. empathy_os/levels.py +0 -577
  186. empathy_os/leverage_points.py +0 -441
  187. empathy_os/logging_config.py +0 -261
  188. empathy_os/mcp/__init__.py +0 -10
  189. empathy_os/mcp/server.py +0 -506
  190. empathy_os/memory/__init__.py +0 -237
  191. empathy_os/memory/claude_memory.py +0 -469
  192. empathy_os/memory/config.py +0 -224
  193. empathy_os/memory/control_panel.py +0 -1290
  194. empathy_os/memory/control_panel_support.py +0 -145
  195. empathy_os/memory/cross_session.py +0 -845
  196. empathy_os/memory/edges.py +0 -179
  197. empathy_os/memory/encryption.py +0 -159
  198. empathy_os/memory/file_session.py +0 -770
  199. empathy_os/memory/graph.py +0 -570
  200. empathy_os/memory/long_term.py +0 -913
  201. empathy_os/memory/long_term_types.py +0 -99
  202. empathy_os/memory/mixins/__init__.py +0 -25
  203. empathy_os/memory/mixins/backend_init_mixin.py +0 -249
  204. empathy_os/memory/mixins/capabilities_mixin.py +0 -208
  205. empathy_os/memory/mixins/handoff_mixin.py +0 -208
  206. empathy_os/memory/mixins/lifecycle_mixin.py +0 -49
  207. empathy_os/memory/mixins/long_term_mixin.py +0 -352
  208. empathy_os/memory/mixins/promotion_mixin.py +0 -109
  209. empathy_os/memory/mixins/short_term_mixin.py +0 -182
  210. empathy_os/memory/nodes.py +0 -179
  211. empathy_os/memory/redis_bootstrap.py +0 -540
  212. empathy_os/memory/security/__init__.py +0 -31
  213. empathy_os/memory/security/audit_logger.py +0 -932
  214. empathy_os/memory/security/pii_scrubber.py +0 -640
  215. empathy_os/memory/security/secrets_detector.py +0 -678
  216. empathy_os/memory/short_term.py +0 -2192
  217. empathy_os/memory/simple_storage.py +0 -302
  218. empathy_os/memory/storage/__init__.py +0 -15
  219. empathy_os/memory/storage_backend.py +0 -167
  220. empathy_os/memory/summary_index.py +0 -583
  221. empathy_os/memory/types.py +0 -446
  222. empathy_os/memory/unified.py +0 -182
  223. empathy_os/meta_workflows/__init__.py +0 -74
  224. empathy_os/meta_workflows/agent_creator.py +0 -248
  225. empathy_os/meta_workflows/builtin_templates.py +0 -567
  226. empathy_os/meta_workflows/cli_commands/__init__.py +0 -56
  227. empathy_os/meta_workflows/cli_commands/agent_commands.py +0 -321
  228. empathy_os/meta_workflows/cli_commands/analytics_commands.py +0 -442
  229. empathy_os/meta_workflows/cli_commands/config_commands.py +0 -232
  230. empathy_os/meta_workflows/cli_commands/memory_commands.py +0 -182
  231. empathy_os/meta_workflows/cli_commands/template_commands.py +0 -354
  232. empathy_os/meta_workflows/cli_commands/workflow_commands.py +0 -382
  233. empathy_os/meta_workflows/cli_meta_workflows.py +0 -59
  234. empathy_os/meta_workflows/form_engine.py +0 -292
  235. empathy_os/meta_workflows/intent_detector.py +0 -409
  236. empathy_os/meta_workflows/models.py +0 -569
  237. empathy_os/meta_workflows/pattern_learner.py +0 -738
  238. empathy_os/meta_workflows/plan_generator.py +0 -384
  239. empathy_os/meta_workflows/session_context.py +0 -397
  240. empathy_os/meta_workflows/template_registry.py +0 -229
  241. empathy_os/meta_workflows/workflow.py +0 -984
  242. empathy_os/metrics/__init__.py +0 -12
  243. empathy_os/metrics/collector.py +0 -31
  244. empathy_os/metrics/prompt_metrics.py +0 -194
  245. empathy_os/models/__init__.py +0 -172
  246. empathy_os/models/__main__.py +0 -13
  247. empathy_os/models/adaptive_routing.py +0 -437
  248. empathy_os/models/auth_cli.py +0 -444
  249. empathy_os/models/auth_strategy.py +0 -450
  250. empathy_os/models/cli.py +0 -655
  251. empathy_os/models/empathy_executor.py +0 -354
  252. empathy_os/models/executor.py +0 -257
  253. empathy_os/models/fallback.py +0 -762
  254. empathy_os/models/provider_config.py +0 -282
  255. empathy_os/models/registry.py +0 -472
  256. empathy_os/models/tasks.py +0 -359
  257. empathy_os/models/telemetry/__init__.py +0 -71
  258. empathy_os/models/telemetry/analytics.py +0 -594
  259. empathy_os/models/telemetry/backend.py +0 -196
  260. empathy_os/models/telemetry/data_models.py +0 -431
  261. empathy_os/models/telemetry/storage.py +0 -489
  262. empathy_os/models/token_estimator.py +0 -420
  263. empathy_os/models/validation.py +0 -280
  264. empathy_os/monitoring/__init__.py +0 -52
  265. empathy_os/monitoring/alerts.py +0 -946
  266. empathy_os/monitoring/alerts_cli.py +0 -448
  267. empathy_os/monitoring/multi_backend.py +0 -271
  268. empathy_os/monitoring/otel_backend.py +0 -362
  269. empathy_os/optimization/__init__.py +0 -19
  270. empathy_os/optimization/context_optimizer.py +0 -272
  271. empathy_os/orchestration/__init__.py +0 -67
  272. empathy_os/orchestration/agent_templates.py +0 -707
  273. empathy_os/orchestration/config_store.py +0 -499
  274. empathy_os/orchestration/execution_strategies.py +0 -2111
  275. empathy_os/orchestration/meta_orchestrator.py +0 -1168
  276. empathy_os/orchestration/pattern_learner.py +0 -696
  277. empathy_os/orchestration/real_tools.py +0 -931
  278. empathy_os/pattern_cache.py +0 -187
  279. empathy_os/pattern_library.py +0 -542
  280. empathy_os/patterns/debugging/all_patterns.json +0 -81
  281. empathy_os/patterns/debugging/workflow_20260107_1770825e.json +0 -77
  282. empathy_os/patterns/refactoring_memory.json +0 -89
  283. empathy_os/persistence.py +0 -564
  284. empathy_os/platform_utils.py +0 -265
  285. empathy_os/plugins/__init__.py +0 -28
  286. empathy_os/plugins/base.py +0 -361
  287. empathy_os/plugins/registry.py +0 -268
  288. empathy_os/project_index/__init__.py +0 -32
  289. empathy_os/project_index/cli.py +0 -335
  290. empathy_os/project_index/index.py +0 -667
  291. empathy_os/project_index/models.py +0 -504
  292. empathy_os/project_index/reports.py +0 -474
  293. empathy_os/project_index/scanner.py +0 -777
  294. empathy_os/project_index/scanner_parallel.py +0 -291
  295. empathy_os/prompts/__init__.py +0 -61
  296. empathy_os/prompts/config.py +0 -77
  297. empathy_os/prompts/context.py +0 -177
  298. empathy_os/prompts/parser.py +0 -285
  299. empathy_os/prompts/registry.py +0 -313
  300. empathy_os/prompts/templates.py +0 -208
  301. empathy_os/redis_config.py +0 -302
  302. empathy_os/redis_memory.py +0 -799
  303. empathy_os/resilience/__init__.py +0 -56
  304. empathy_os/resilience/circuit_breaker.py +0 -256
  305. empathy_os/resilience/fallback.py +0 -179
  306. empathy_os/resilience/health.py +0 -300
  307. empathy_os/resilience/retry.py +0 -209
  308. empathy_os/resilience/timeout.py +0 -135
  309. empathy_os/routing/__init__.py +0 -43
  310. empathy_os/routing/chain_executor.py +0 -433
  311. empathy_os/routing/classifier.py +0 -217
  312. empathy_os/routing/smart_router.py +0 -234
  313. empathy_os/routing/workflow_registry.py +0 -343
  314. empathy_os/scaffolding/README.md +0 -589
  315. empathy_os/scaffolding/__init__.py +0 -35
  316. empathy_os/scaffolding/__main__.py +0 -14
  317. empathy_os/scaffolding/cli.py +0 -240
  318. empathy_os/socratic/__init__.py +0 -256
  319. empathy_os/socratic/ab_testing.py +0 -958
  320. empathy_os/socratic/blueprint.py +0 -533
  321. empathy_os/socratic/cli.py +0 -703
  322. empathy_os/socratic/collaboration.py +0 -1114
  323. empathy_os/socratic/domain_templates.py +0 -924
  324. empathy_os/socratic/embeddings.py +0 -738
  325. empathy_os/socratic/engine.py +0 -794
  326. empathy_os/socratic/explainer.py +0 -682
  327. empathy_os/socratic/feedback.py +0 -772
  328. empathy_os/socratic/forms.py +0 -629
  329. empathy_os/socratic/generator.py +0 -732
  330. empathy_os/socratic/llm_analyzer.py +0 -637
  331. empathy_os/socratic/mcp_server.py +0 -702
  332. empathy_os/socratic/session.py +0 -312
  333. empathy_os/socratic/storage.py +0 -667
  334. empathy_os/socratic/success.py +0 -730
  335. empathy_os/socratic/visual_editor.py +0 -860
  336. empathy_os/socratic/web_ui.py +0 -958
  337. empathy_os/telemetry/__init__.py +0 -39
  338. empathy_os/telemetry/agent_coordination.py +0 -475
  339. empathy_os/telemetry/agent_tracking.py +0 -367
  340. empathy_os/telemetry/approval_gates.py +0 -545
  341. empathy_os/telemetry/cli.py +0 -1231
  342. empathy_os/telemetry/commands/__init__.py +0 -14
  343. empathy_os/telemetry/commands/dashboard_commands.py +0 -696
  344. empathy_os/telemetry/event_streaming.py +0 -409
  345. empathy_os/telemetry/feedback_loop.py +0 -567
  346. empathy_os/telemetry/usage_tracker.py +0 -591
  347. empathy_os/templates.py +0 -754
  348. empathy_os/test_generator/__init__.py +0 -38
  349. empathy_os/test_generator/__main__.py +0 -14
  350. empathy_os/test_generator/cli.py +0 -234
  351. empathy_os/test_generator/generator.py +0 -355
  352. empathy_os/test_generator/risk_analyzer.py +0 -216
  353. empathy_os/tier_recommender.py +0 -384
  354. empathy_os/tools.py +0 -183
  355. empathy_os/trust/__init__.py +0 -28
  356. empathy_os/trust/circuit_breaker.py +0 -579
  357. empathy_os/trust_building.py +0 -527
  358. empathy_os/validation/__init__.py +0 -19
  359. empathy_os/validation/xml_validator.py +0 -281
  360. empathy_os/vscode_bridge.py +0 -173
  361. empathy_os/workflow_commands.py +0 -780
  362. empathy_os/workflow_patterns/__init__.py +0 -33
  363. empathy_os/workflow_patterns/behavior.py +0 -249
  364. empathy_os/workflow_patterns/core.py +0 -76
  365. empathy_os/workflow_patterns/output.py +0 -99
  366. empathy_os/workflow_patterns/registry.py +0 -255
  367. empathy_os/workflow_patterns/structural.py +0 -288
  368. empathy_os/workflows/__init__.py +0 -539
  369. empathy_os/workflows/autonomous_test_gen.py +0 -1268
  370. empathy_os/workflows/base.py +0 -2667
  371. empathy_os/workflows/batch_processing.py +0 -342
  372. empathy_os/workflows/bug_predict.py +0 -1084
  373. empathy_os/workflows/builder.py +0 -273
  374. empathy_os/workflows/caching.py +0 -253
  375. empathy_os/workflows/code_review.py +0 -1048
  376. empathy_os/workflows/code_review_adapters.py +0 -312
  377. empathy_os/workflows/code_review_pipeline.py +0 -722
  378. empathy_os/workflows/config.py +0 -645
  379. empathy_os/workflows/dependency_check.py +0 -644
  380. empathy_os/workflows/document_gen/__init__.py +0 -25
  381. empathy_os/workflows/document_gen/config.py +0 -30
  382. empathy_os/workflows/document_gen/report_formatter.py +0 -162
  383. empathy_os/workflows/document_gen/workflow.py +0 -1426
  384. empathy_os/workflows/document_manager.py +0 -216
  385. empathy_os/workflows/document_manager_README.md +0 -134
  386. empathy_os/workflows/documentation_orchestrator.py +0 -1205
  387. empathy_os/workflows/history.py +0 -510
  388. empathy_os/workflows/keyboard_shortcuts/__init__.py +0 -39
  389. empathy_os/workflows/keyboard_shortcuts/generators.py +0 -391
  390. empathy_os/workflows/keyboard_shortcuts/parsers.py +0 -416
  391. empathy_os/workflows/keyboard_shortcuts/prompts.py +0 -295
  392. empathy_os/workflows/keyboard_shortcuts/schema.py +0 -193
  393. empathy_os/workflows/keyboard_shortcuts/workflow.py +0 -509
  394. empathy_os/workflows/llm_base.py +0 -363
  395. empathy_os/workflows/manage_docs.py +0 -87
  396. empathy_os/workflows/manage_docs_README.md +0 -134
  397. empathy_os/workflows/manage_documentation.py +0 -821
  398. empathy_os/workflows/new_sample_workflow1.py +0 -149
  399. empathy_os/workflows/new_sample_workflow1_README.md +0 -150
  400. empathy_os/workflows/orchestrated_health_check.py +0 -849
  401. empathy_os/workflows/orchestrated_release_prep.py +0 -600
  402. empathy_os/workflows/output.py +0 -413
  403. empathy_os/workflows/perf_audit.py +0 -863
  404. empathy_os/workflows/pr_review.py +0 -762
  405. empathy_os/workflows/progress.py +0 -785
  406. empathy_os/workflows/progress_server.py +0 -322
  407. empathy_os/workflows/progressive/README 2.md +0 -454
  408. empathy_os/workflows/progressive/README.md +0 -454
  409. empathy_os/workflows/progressive/__init__.py +0 -82
  410. empathy_os/workflows/progressive/cli.py +0 -219
  411. empathy_os/workflows/progressive/core.py +0 -488
  412. empathy_os/workflows/progressive/orchestrator.py +0 -723
  413. empathy_os/workflows/progressive/reports.py +0 -520
  414. empathy_os/workflows/progressive/telemetry.py +0 -274
  415. empathy_os/workflows/progressive/test_gen.py +0 -495
  416. empathy_os/workflows/progressive/workflow.py +0 -589
  417. empathy_os/workflows/refactor_plan.py +0 -694
  418. empathy_os/workflows/release_prep.py +0 -895
  419. empathy_os/workflows/release_prep_crew.py +0 -969
  420. empathy_os/workflows/research_synthesis.py +0 -404
  421. empathy_os/workflows/routing.py +0 -168
  422. empathy_os/workflows/secure_release.py +0 -593
  423. empathy_os/workflows/security_adapters.py +0 -297
  424. empathy_os/workflows/security_audit.py +0 -1329
  425. empathy_os/workflows/security_audit_phase3.py +0 -355
  426. empathy_os/workflows/seo_optimization.py +0 -633
  427. empathy_os/workflows/step_config.py +0 -234
  428. empathy_os/workflows/telemetry_mixin.py +0 -269
  429. empathy_os/workflows/test5.py +0 -125
  430. empathy_os/workflows/test5_README.md +0 -158
  431. empathy_os/workflows/test_coverage_boost_crew.py +0 -849
  432. empathy_os/workflows/test_gen/__init__.py +0 -52
  433. empathy_os/workflows/test_gen/ast_analyzer.py +0 -249
  434. empathy_os/workflows/test_gen/config.py +0 -88
  435. empathy_os/workflows/test_gen/data_models.py +0 -38
  436. empathy_os/workflows/test_gen/report_formatter.py +0 -289
  437. empathy_os/workflows/test_gen/test_templates.py +0 -381
  438. empathy_os/workflows/test_gen/workflow.py +0 -655
  439. empathy_os/workflows/test_gen.py +0 -54
  440. empathy_os/workflows/test_gen_behavioral.py +0 -477
  441. empathy_os/workflows/test_gen_parallel.py +0 -341
  442. empathy_os/workflows/test_lifecycle.py +0 -526
  443. empathy_os/workflows/test_maintenance.py +0 -627
  444. empathy_os/workflows/test_maintenance_cli.py +0 -590
  445. empathy_os/workflows/test_maintenance_crew.py +0 -840
  446. empathy_os/workflows/test_runner.py +0 -622
  447. empathy_os/workflows/tier_tracking.py +0 -531
  448. empathy_os/workflows/xml_enhanced_crew.py +0 -285
  449. empathy_software_plugin/SOFTWARE_PLUGIN_README.md +0 -57
  450. empathy_software_plugin/cli/__init__.py +0 -120
  451. empathy_software_plugin/cli/inspect.py +0 -362
  452. empathy_software_plugin/cli.py +0 -574
  453. empathy_software_plugin/plugin.py +0 -188
  454. workflow_scaffolding/__init__.py +0 -11
  455. workflow_scaffolding/__main__.py +0 -12
  456. workflow_scaffolding/cli.py +0 -206
  457. workflow_scaffolding/generator.py +0 -265
  458. {empathy_framework-5.3.0.dist-info → empathy_framework-5.4.0.dist-info}/WHEEL +0 -0
@@ -1,967 +0,0 @@
1
- """LLM Provider Adapters
2
-
3
- Unified interface for different LLM providers (OpenAI, Anthropic, local models).
4
-
5
- Copyright 2025 Smart AI Memory, LLC
6
- Licensed under Fair Source 0.9
7
- """
8
-
9
- import asyncio
10
- import logging
11
- from abc import ABC, abstractmethod
12
- from dataclasses import dataclass
13
- from datetime import datetime
14
- from typing import Any
15
-
16
- logger = logging.getLogger(__name__)
17
-
18
-
19
- @dataclass
20
- class LLMResponse:
21
- """Standardized response from any LLM provider"""
22
-
23
- content: str
24
- model: str
25
- tokens_used: int
26
- finish_reason: str
27
- metadata: dict[str, Any]
28
-
29
-
30
- class BaseLLMProvider(ABC):
31
- """Base class for all LLM providers.
32
-
33
- Provides unified interface regardless of backend.
34
- """
35
-
36
- def __init__(self, api_key: str | None = None, **kwargs):
37
- self.api_key = api_key
38
- self.config = kwargs
39
-
40
- @abstractmethod
41
- async def generate(
42
- self,
43
- messages: list[dict[str, str]],
44
- system_prompt: str | None = None,
45
- temperature: float = 0.7,
46
- max_tokens: int = 1024,
47
- **kwargs,
48
- ) -> LLMResponse:
49
- """Generate response from LLM.
50
-
51
- Args:
52
- messages: List of {"role": "user/assistant", "content": "..."}
53
- system_prompt: Optional system prompt
54
- temperature: Sampling temperature
55
- max_tokens: Maximum tokens in response
56
- **kwargs: Provider-specific options
57
-
58
- Returns:
59
- LLMResponse with standardized format
60
-
61
- """
62
-
63
- @abstractmethod
64
- def get_model_info(self) -> dict[str, Any]:
65
- """Get information about the model being used"""
66
-
67
- def estimate_tokens(self, text: str) -> int:
68
- """Estimate token count for text.
69
-
70
- Rough approximation: ~4 chars per token
71
- """
72
- return len(text) // 4
73
-
74
-
75
- class AnthropicProvider(BaseLLMProvider):
76
- """Anthropic (Claude) provider with enhanced features.
77
-
78
- Supports Claude 3 family models with advanced capabilities:
79
- - Extended context windows (200K tokens)
80
- - Prompt caching for faster repeated queries
81
- - Thinking mode for complex reasoning
82
- - Batch processing for cost optimization
83
- """
84
-
85
- def __init__(
86
- self,
87
- api_key: str | None = None,
88
- model: str = "claude-sonnet-4-5-20250929",
89
- use_prompt_caching: bool = True, # CHANGED: Default to True for 20-30% cost savings
90
- use_thinking: bool = False,
91
- use_batch: bool = False,
92
- **kwargs,
93
- ):
94
- super().__init__(api_key, **kwargs)
95
- self.model = model
96
- self.use_prompt_caching = use_prompt_caching
97
- self.use_thinking = use_thinking
98
- self.use_batch = use_batch
99
-
100
- # Validate API key is provided
101
- if not api_key or not api_key.strip():
102
- raise ValueError(
103
- "API key is required for Anthropic provider. "
104
- "Provide via api_key parameter or ANTHROPIC_API_KEY environment variable",
105
- )
106
-
107
- # Lazy import to avoid requiring anthropic if not used
108
- # v4.6.3: Use AsyncAnthropic for true async I/O (prevents event loop blocking)
109
- try:
110
- import anthropic
111
-
112
- self.client = anthropic.AsyncAnthropic(api_key=api_key)
113
- except ImportError as e:
114
- raise ImportError(
115
- "anthropic package required. Install with: pip install anthropic",
116
- ) from e
117
-
118
- # Initialize batch provider if needed
119
- if use_batch:
120
- self.batch_provider = AnthropicBatchProvider(api_key=api_key)
121
- else:
122
- self.batch_provider = None
123
-
124
- async def generate(
125
- self,
126
- messages: list[dict[str, str]],
127
- system_prompt: str | None = None,
128
- temperature: float = 0.7,
129
- max_tokens: int = 1024,
130
- **kwargs,
131
- ) -> LLMResponse:
132
- """Generate response using Anthropic API with enhanced features.
133
-
134
- Claude-specific enhancements:
135
- - Prompt caching for repeated system prompts (90% cost reduction)
136
- - Extended context (200K tokens) for large codebase analysis
137
- - Thinking mode for complex reasoning tasks
138
-
139
- Prompt caching is enabled by default (use_prompt_caching=True).
140
- This marks system prompts with cache_control for Anthropic's cache.
141
- Break-even: ~3 requests with same context, 5-minute TTL.
142
- """
143
- # Build kwargs for Anthropic
144
- api_kwargs = {
145
- "model": self.model,
146
- "max_tokens": max_tokens,
147
- "temperature": temperature,
148
- "messages": messages,
149
- }
150
-
151
- # Enable prompt caching for system prompts (Claude-specific)
152
- if system_prompt and self.use_prompt_caching:
153
- api_kwargs["system"] = [
154
- {
155
- "type": "text",
156
- "text": system_prompt,
157
- "cache_control": {"type": "ephemeral"}, # Cache for 5 minutes
158
- },
159
- ]
160
- elif system_prompt:
161
- api_kwargs["system"] = system_prompt
162
-
163
- # Enable extended thinking for complex tasks (Claude-specific)
164
- if self.use_thinking:
165
- api_kwargs["thinking"] = {
166
- "type": "enabled",
167
- "budget_tokens": 2000, # Allow 2K tokens for reasoning
168
- }
169
-
170
- # Add any additional kwargs
171
- api_kwargs.update(kwargs)
172
-
173
- # Call Anthropic API (async with AsyncAnthropic)
174
- response = await self.client.messages.create(**api_kwargs) # type: ignore[call-overload]
175
-
176
- # Extract thinking content if present
177
- thinking_content = None
178
- response_content = ""
179
-
180
- for block in response.content:
181
- if hasattr(block, "type"):
182
- if block.type == "thinking":
183
- thinking_content = block.thinking
184
- elif block.type == "text":
185
- response_content = block.text
186
- else:
187
- response_content = block.text
188
-
189
- # Convert to standardized format
190
- metadata = {
191
- "input_tokens": response.usage.input_tokens,
192
- "output_tokens": response.usage.output_tokens,
193
- "provider": "anthropic",
194
- "model_family": "claude-3",
195
- }
196
-
197
- # Add cache performance metrics if available
198
- if hasattr(response.usage, "cache_creation_input_tokens"):
199
- cache_creation = getattr(response.usage, "cache_creation_input_tokens", 0)
200
- cache_read = getattr(response.usage, "cache_read_input_tokens", 0)
201
-
202
- # Ensure values are numeric (handle mock objects in tests)
203
- if isinstance(cache_creation, int) and isinstance(cache_read, int):
204
- metadata["cache_creation_tokens"] = cache_creation
205
- metadata["cache_read_tokens"] = cache_read
206
-
207
- # Log cache performance for monitoring with detailed cost savings
208
- # Cache reads cost 90% less than regular input tokens
209
- # Cache writes cost 25% more than regular input tokens
210
- if cache_read > 0:
211
- # Sonnet 4.5 input: $3/M tokens, cache read: $0.30/M tokens (90% discount)
212
- savings_per_token = 0.003 / 1000 * 0.9 # 90% of regular cost
213
- total_savings = cache_read * savings_per_token
214
- logger.info(
215
- f"Cache HIT: {cache_read:,} tokens read from cache "
216
- f"(saved ${total_savings:.4f} vs full price)"
217
- )
218
- if cache_creation > 0:
219
- # Cache write cost: $3.75/M tokens (25% markup)
220
- write_cost = cache_creation * 0.00375 / 1000
221
- logger.debug(
222
- f"Cache WRITE: {cache_creation:,} tokens written to cache "
223
- f"(cost ${write_cost:.4f})"
224
- )
225
-
226
- # Add thinking content if present
227
- if thinking_content:
228
- metadata["thinking"] = thinking_content
229
-
230
- return LLMResponse(
231
- content=response_content,
232
- model=response.model,
233
- tokens_used=response.usage.input_tokens + response.usage.output_tokens,
234
- finish_reason=response.stop_reason,
235
- metadata=metadata,
236
- )
237
-
238
- async def analyze_large_codebase(
239
- self,
240
- codebase_files: list[dict[str, str]],
241
- analysis_prompt: str,
242
- **kwargs,
243
- ) -> LLMResponse:
244
- """Analyze large codebases using Claude's 200K context window.
245
-
246
- Claude-specific feature: Can process entire repositories in one call.
247
-
248
- Args:
249
- codebase_files: List of {"path": "...", "content": "..."} dicts
250
- analysis_prompt: What to analyze for
251
- **kwargs: Additional generation parameters
252
-
253
- Returns:
254
- LLMResponse with analysis results
255
-
256
- """
257
- # Build context from all files
258
- file_context = "\n\n".join(
259
- [f"# File: {file['path']}\n{file['content']}" for file in codebase_files],
260
- )
261
-
262
- # Create system prompt with caching for file context
263
- system_parts = [
264
- {
265
- "type": "text",
266
- "text": "You are a code analysis expert using the Empathy Framework.",
267
- },
268
- {
269
- "type": "text",
270
- "text": f"Codebase files:\n\n{file_context}",
271
- "cache_control": {"type": "ephemeral"}, # Cache the codebase
272
- },
273
- ]
274
-
275
- messages = [{"role": "user", "content": analysis_prompt}]
276
-
277
- # Use extended max_tokens for comprehensive analysis
278
- return await self.generate(
279
- messages=messages,
280
- system_prompt=None, # We'll pass it directly in api_kwargs
281
- max_tokens=kwargs.pop("max_tokens", 4096),
282
- **{**kwargs, "system": system_parts},
283
- )
284
-
285
- def get_model_info(self) -> dict[str, Any]:
286
- """Get Claude model information with extended context capabilities"""
287
- model_info = {
288
- "claude-3-opus-20240229": {
289
- "max_tokens": 200000,
290
- "cost_per_1m_input": 15.00,
291
- "cost_per_1m_output": 75.00,
292
- "supports_prompt_caching": True,
293
- "supports_thinking": True,
294
- "ideal_for": "Complex reasoning, large codebases",
295
- },
296
- "claude-3-5-sonnet-20241022": {
297
- "max_tokens": 200000,
298
- "cost_per_1m_input": 3.00,
299
- "cost_per_1m_output": 15.00,
300
- "supports_prompt_caching": True,
301
- "supports_thinking": True,
302
- "ideal_for": "General development, balanced cost/performance",
303
- },
304
- "claude-3-haiku-20240307": {
305
- "max_tokens": 200000,
306
- "cost_per_1m_input": 0.25,
307
- "cost_per_1m_output": 1.25,
308
- "supports_prompt_caching": True,
309
- "supports_thinking": False,
310
- "ideal_for": "Fast responses, simple tasks",
311
- },
312
- }
313
-
314
- return model_info.get(
315
- self.model,
316
- {
317
- "max_tokens": 200000,
318
- "cost_per_1m_input": 3.00,
319
- "cost_per_1m_output": 15.00,
320
- "supports_prompt_caching": True,
321
- "supports_thinking": True,
322
- },
323
- )
324
-
325
- def estimate_tokens(self, text: str) -> int:
326
- """Estimate token count using accurate token counter (overrides base class).
327
-
328
- Uses tiktoken for fast local estimation (~98% accurate).
329
- Falls back to heuristic if tiktoken unavailable.
330
-
331
- Args:
332
- text: Text to count tokens for
333
-
334
- Returns:
335
- Estimated token count
336
- """
337
- try:
338
- from .utils.tokens import count_tokens
339
-
340
- return count_tokens(text, model=self.model, use_api=False)
341
- except ImportError:
342
- # Fallback to base class heuristic if utils not available
343
- return super().estimate_tokens(text)
344
-
345
- def calculate_actual_cost(
346
- self,
347
- input_tokens: int,
348
- output_tokens: int,
349
- cache_creation_tokens: int = 0,
350
- cache_read_tokens: int = 0,
351
- ) -> dict[str, Any]:
352
- """Calculate actual cost based on precise token counts.
353
-
354
- Includes Anthropic prompt caching cost adjustments:
355
- - Cache writes: 25% markup over standard input pricing
356
- - Cache reads: 90% discount from standard input pricing
357
-
358
- Args:
359
- input_tokens: Regular input tokens (not cached)
360
- output_tokens: Output tokens
361
- cache_creation_tokens: Tokens written to cache
362
- cache_read_tokens: Tokens read from cache
363
-
364
- Returns:
365
- Dictionary with cost breakdown:
366
- - base_cost: Cost for regular input/output tokens
367
- - cache_write_cost: Cost for cache creation (if any)
368
- - cache_read_cost: Cost for cache reads (if any)
369
- - total_cost: Total cost including all components
370
- - savings: Amount saved by cache reads vs. full price
371
-
372
- Example:
373
- >>> provider = AnthropicProvider(api_key="...")
374
- >>> cost = provider.calculate_actual_cost(
375
- ... input_tokens=1000,
376
- ... output_tokens=500,
377
- ... cache_read_tokens=10000
378
- ... )
379
- >>> cost["total_cost"]
380
- 0.0105 # Significantly less than without cache
381
- """
382
- # Get pricing for this model
383
- model_info = self.get_model_info()
384
- input_price_per_million = model_info["cost_per_1m_input"]
385
- output_price_per_million = model_info["cost_per_1m_output"]
386
-
387
- # Base cost (non-cached tokens)
388
- base_cost = (input_tokens / 1_000_000) * input_price_per_million
389
- base_cost += (output_tokens / 1_000_000) * output_price_per_million
390
-
391
- # Cache write cost (25% markup)
392
- cache_write_price = input_price_per_million * 1.25
393
- cache_write_cost = (cache_creation_tokens / 1_000_000) * cache_write_price
394
-
395
- # Cache read cost (90% discount = 10% of input price)
396
- cache_read_price = input_price_per_million * 0.1
397
- cache_read_cost = (cache_read_tokens / 1_000_000) * cache_read_price
398
-
399
- # Calculate savings from cache reads
400
- full_price_for_cached = (cache_read_tokens / 1_000_000) * input_price_per_million
401
- savings = full_price_for_cached - cache_read_cost
402
-
403
- return {
404
- "base_cost": round(base_cost, 6),
405
- "cache_write_cost": round(cache_write_cost, 6),
406
- "cache_read_cost": round(cache_read_cost, 6),
407
- "total_cost": round(base_cost + cache_write_cost + cache_read_cost, 6),
408
- "savings": round(savings, 6),
409
- "currency": "USD",
410
- }
411
-
412
-
413
- class AnthropicBatchProvider:
414
- """Provider for Anthropic Batch API (50% cost reduction).
415
-
416
- The Batch API processes requests asynchronously within 24 hours
417
- at 50% of the standard API cost. Ideal for non-urgent, bulk tasks.
418
-
419
- Example:
420
- >>> provider = AnthropicBatchProvider(api_key="sk-ant-...")
421
- >>> requests = [
422
- ... {
423
- ... "custom_id": "task_1",
424
- ... "model": "claude-sonnet-4-5",
425
- ... "messages": [{"role": "user", "content": "Analyze X"}],
426
- ... "max_tokens": 1024
427
- ... }
428
- ... ]
429
- >>> batch_id = provider.create_batch(requests)
430
- >>> # Wait for processing (up to 24 hours)
431
- >>> results = await provider.wait_for_batch(batch_id)
432
- """
433
-
434
- def __init__(self, api_key: str | None = None):
435
- """Initialize batch provider.
436
-
437
- Args:
438
- api_key: Anthropic API key (defaults to ANTHROPIC_API_KEY env var)
439
- """
440
- if not api_key or not api_key.strip():
441
- raise ValueError(
442
- "API key is required for Anthropic Batch API. "
443
- "Provide via api_key parameter or ANTHROPIC_API_KEY environment variable"
444
- )
445
-
446
- try:
447
- import anthropic
448
-
449
- self.client = anthropic.Anthropic(api_key=api_key)
450
- self._batch_jobs: dict[str, Any] = {}
451
- except ImportError as e:
452
- raise ImportError(
453
- "anthropic package required for Batch API. Install with: pip install anthropic"
454
- ) from e
455
-
456
- def create_batch(self, requests: list[dict[str, Any]], job_id: str | None = None) -> str:
457
- """Create a batch job.
458
-
459
- Args:
460
- requests: List of request dicts with 'custom_id' and 'params' containing message creation parameters.
461
- Format: [{"custom_id": "id1", "params": {"model": "...", "messages": [...], "max_tokens": 1024}}]
462
- job_id: Optional job identifier for tracking (unused, for API compatibility)
463
-
464
- Returns:
465
- Batch job ID for polling status
466
-
467
- Raises:
468
- ValueError: If requests is empty or invalid
469
- RuntimeError: If API call fails
470
-
471
- Example:
472
- >>> requests = [
473
- ... {
474
- ... "custom_id": "task_1",
475
- ... "params": {
476
- ... "model": "claude-sonnet-4-5-20250929",
477
- ... "messages": [{"role": "user", "content": "Test"}],
478
- ... "max_tokens": 1024
479
- ... }
480
- ... }
481
- ... ]
482
- >>> batch_id = provider.create_batch(requests)
483
- >>> print(f"Batch created: {batch_id}")
484
- Batch created: msgbatch_abc123
485
- """
486
- if not requests:
487
- raise ValueError("requests cannot be empty")
488
-
489
- # Validate and convert old format to new format if needed
490
- formatted_requests = []
491
- for req in requests:
492
- if "params" not in req:
493
- # Old format: convert to new format with params wrapper
494
- formatted_req = {
495
- "custom_id": req.get("custom_id", f"req_{id(req)}"),
496
- "params": {
497
- "model": req.get("model", "claude-sonnet-4-5-20250929"),
498
- "messages": req.get("messages", []),
499
- "max_tokens": req.get("max_tokens", 4096),
500
- },
501
- }
502
- # Copy other optional params
503
- for key in ["temperature", "system", "stop_sequences"]:
504
- if key in req:
505
- formatted_req["params"][key] = req[key]
506
- formatted_requests.append(formatted_req)
507
- else:
508
- formatted_requests.append(req)
509
-
510
- try:
511
- # Use correct Message Batches API endpoint
512
- batch = self.client.messages.batches.create(requests=formatted_requests)
513
- self._batch_jobs[batch.id] = batch
514
- logger.info(f"Created batch {batch.id} with {len(formatted_requests)} requests")
515
- return batch.id
516
- except Exception as e:
517
- logger.error(f"Failed to create batch: {e}")
518
- raise RuntimeError(f"Batch creation failed: {e}") from e
519
-
520
- def get_batch_status(self, batch_id: str) -> Any:
521
- """Get status of batch job.
522
-
523
- Args:
524
- batch_id: Batch job ID
525
-
526
- Returns:
527
- MessageBatch object with processing_status field:
528
- - "in_progress": Batch is being processed
529
- - "canceling": Cancellation initiated
530
- - "ended": Batch processing ended (check request_counts for success/errors)
531
-
532
- Example:
533
- >>> status = provider.get_batch_status("msgbatch_abc123")
534
- >>> print(status.processing_status)
535
- in_progress
536
- >>> print(f"Succeeded: {status.request_counts.succeeded}")
537
- """
538
- try:
539
- # Use correct Message Batches API endpoint
540
- batch = self.client.messages.batches.retrieve(batch_id)
541
- self._batch_jobs[batch_id] = batch
542
- return batch
543
- except Exception as e:
544
- logger.error(f"Failed to get batch status for {batch_id}: {e}")
545
- raise RuntimeError(f"Failed to get batch status: {e}") from e
546
-
547
- def get_batch_results(self, batch_id: str) -> list[dict[str, Any]]:
548
- """Get results from completed batch.
549
-
550
- Args:
551
- batch_id: Batch job ID
552
-
553
- Returns:
554
- List of result dicts. Each dict contains:
555
- - custom_id: Request identifier
556
- - result: Either {"type": "succeeded", "message": {...}} or {"type": "errored", "error": {...}}
557
-
558
- Raises:
559
- ValueError: If batch has not ended processing
560
- RuntimeError: If API call fails
561
-
562
- Example:
563
- >>> results = provider.get_batch_results("msgbatch_abc123")
564
- >>> for result in results:
565
- ... if result['result']['type'] == 'succeeded':
566
- ... message = result['result']['message']
567
- ... print(f"{result['custom_id']}: {message.content[0].text}")
568
- ... else:
569
- ... error = result['result']['error']
570
- ... print(f"{result['custom_id']}: Error {error['type']}")
571
- """
572
- status = self.get_batch_status(batch_id)
573
-
574
- # Check processing_status instead of status
575
- if status.processing_status != "ended":
576
- raise ValueError(
577
- f"Batch {batch_id} has not ended processing (status: {status.processing_status})"
578
- )
579
-
580
- try:
581
- # Use correct Message Batches API endpoint
582
- # results() returns an iterator, convert to list
583
- results_iterator = self.client.messages.batches.results(batch_id)
584
- return list(results_iterator)
585
- except Exception as e:
586
- logger.error(f"Failed to get batch results for {batch_id}: {e}")
587
- raise RuntimeError(f"Failed to get batch results: {e}") from e
588
-
589
- async def wait_for_batch(
590
- self,
591
- batch_id: str,
592
- poll_interval: int = 60,
593
- timeout: int = 86400, # 24 hours
594
- ) -> list[dict[str, Any]]:
595
- """Wait for batch to complete with polling.
596
-
597
- Args:
598
- batch_id: Batch job ID
599
- poll_interval: Seconds between status checks (default: 60)
600
- timeout: Maximum wait time in seconds (default: 86400 = 24 hours)
601
-
602
- Returns:
603
- Batch results when processing ends
604
-
605
- Raises:
606
- TimeoutError: If batch doesn't complete within timeout
607
- RuntimeError: If batch had errors during processing
608
-
609
- Example:
610
- >>> results = await provider.wait_for_batch(
611
- ... "msgbatch_abc123",
612
- ... poll_interval=300, # Check every 5 minutes
613
- ... )
614
- >>> print(f"Batch completed: {len(results)} results")
615
- """
616
-
617
- start_time = datetime.now()
618
-
619
- while True:
620
- status = self.get_batch_status(batch_id)
621
-
622
- # Check if batch processing has ended
623
- if status.processing_status == "ended":
624
- # Check request counts to see if there were errors
625
- counts = status.request_counts
626
- logger.info(
627
- f"Batch {batch_id} ended: "
628
- f"{counts.succeeded} succeeded, {counts.errored} errored, "
629
- f"{counts.canceled} canceled, {counts.expired} expired"
630
- )
631
-
632
- # Return results even if some requests failed
633
- # The caller can inspect individual results for errors
634
- return self.get_batch_results(batch_id)
635
-
636
- # Check timeout
637
- elapsed = (datetime.now() - start_time).total_seconds()
638
- if elapsed > timeout:
639
- raise TimeoutError(f"Batch {batch_id} did not complete within {timeout}s")
640
-
641
- # Log progress with request counts
642
- try:
643
- counts = status.request_counts
644
- logger.debug(
645
- f"Batch {batch_id} status: {status.processing_status} "
646
- f"(processing: {counts.processing}, elapsed: {elapsed:.0f}s)"
647
- )
648
- except AttributeError:
649
- logger.debug(
650
- f"Batch {batch_id} status: {status.processing_status} (elapsed: {elapsed:.0f}s)"
651
- )
652
-
653
- # Wait before next poll
654
- await asyncio.sleep(poll_interval)
655
-
656
-
657
- class OpenAIProvider(BaseLLMProvider):
658
- """OpenAI provider.
659
-
660
- Supports GPT-4, GPT-3.5, and other OpenAI models.
661
- """
662
-
663
- def __init__(self, api_key: str | None = None, model: str = "gpt-4-turbo-preview", **kwargs):
664
- super().__init__(api_key, **kwargs)
665
- self.model = model
666
-
667
- # Validate API key is provided
668
- if not api_key or not api_key.strip():
669
- raise ValueError(
670
- "API key is required for OpenAI provider. "
671
- "Provide via api_key parameter or OPENAI_API_KEY environment variable",
672
- )
673
-
674
- # Lazy import
675
- try:
676
- import openai
677
-
678
- self.client = openai.AsyncOpenAI(api_key=api_key)
679
- except ImportError as e:
680
- raise ImportError("openai package required. Install with: pip install openai") from e
681
-
682
- async def generate(
683
- self,
684
- messages: list[dict[str, str]],
685
- system_prompt: str | None = None,
686
- temperature: float = 0.7,
687
- max_tokens: int = 1024,
688
- **kwargs,
689
- ) -> LLMResponse:
690
- """Generate response using OpenAI API"""
691
- # Add system prompt if provided
692
- if system_prompt:
693
- messages = [{"role": "system", "content": system_prompt}] + messages
694
-
695
- # Call OpenAI API
696
- response = await self.client.chat.completions.create(
697
- model=self.model,
698
- messages=messages, # type: ignore[arg-type]
699
- temperature=temperature,
700
- max_tokens=max_tokens,
701
- **kwargs,
702
- )
703
-
704
- # Convert to standardized format
705
- content = response.choices[0].message.content or ""
706
- usage = response.usage
707
- return LLMResponse(
708
- content=content,
709
- model=response.model,
710
- tokens_used=usage.total_tokens if usage else 0,
711
- finish_reason=response.choices[0].finish_reason,
712
- metadata={
713
- "input_tokens": usage.prompt_tokens if usage else 0,
714
- "output_tokens": usage.completion_tokens if usage else 0,
715
- "provider": "openai",
716
- },
717
- )
718
-
719
- def get_model_info(self) -> dict[str, Any]:
720
- """Get OpenAI model information"""
721
- model_info = {
722
- "gpt-4-turbo-preview": {
723
- "max_tokens": 128000,
724
- "cost_per_1m_input": 10.00,
725
- "cost_per_1m_output": 30.00,
726
- },
727
- "gpt-4": {"max_tokens": 8192, "cost_per_1m_input": 30.00, "cost_per_1m_output": 60.00},
728
- "gpt-3.5-turbo": {
729
- "max_tokens": 16385,
730
- "cost_per_1m_input": 0.50,
731
- "cost_per_1m_output": 1.50,
732
- },
733
- }
734
-
735
- return model_info.get(
736
- self.model,
737
- {"max_tokens": 128000, "cost_per_1m_input": 10.00, "cost_per_1m_output": 30.00},
738
- )
739
-
740
-
741
- class GeminiProvider(BaseLLMProvider):
742
- """Google Gemini provider with cost tracking integration.
743
-
744
- Supports Gemini models:
745
- - gemini-2.0-flash-exp: Fast, cheap tier (1M context)
746
- - gemini-1.5-pro: Balanced, capable tier (2M context)
747
- - gemini-2.5-pro: Premium reasoning tier
748
- """
749
-
750
- def __init__(
751
- self,
752
- api_key: str | None = None,
753
- model: str = "gemini-1.5-pro",
754
- **kwargs,
755
- ):
756
- super().__init__(api_key, **kwargs)
757
- self.model = model
758
-
759
- # Validate API key is provided
760
- if not api_key or not api_key.strip():
761
- raise ValueError(
762
- "API key is required for Gemini provider. "
763
- "Provide via api_key parameter or GOOGLE_API_KEY environment variable",
764
- )
765
-
766
- # Lazy import to avoid requiring google-generativeai if not used
767
- try:
768
- import google.generativeai as genai
769
-
770
- genai.configure(api_key=api_key)
771
- self.genai = genai
772
- self.client = genai.GenerativeModel(model)
773
- except ImportError as e:
774
- raise ImportError(
775
- "google-generativeai package required. Install with: pip install google-generativeai",
776
- ) from e
777
-
778
- async def generate(
779
- self,
780
- messages: list[dict[str, str]],
781
- system_prompt: str | None = None,
782
- temperature: float = 0.7,
783
- max_tokens: int = 1024,
784
- **kwargs,
785
- ) -> LLMResponse:
786
- """Generate response using Google Gemini API.
787
-
788
- Gemini-specific features:
789
- - Large context windows (1M-2M tokens)
790
- - Multimodal support
791
- - Grounding with Google Search
792
- """
793
- import asyncio
794
-
795
- # Convert messages to Gemini format
796
- gemini_messages = []
797
- for msg in messages:
798
- role = "user" if msg["role"] == "user" else "model"
799
- gemini_messages.append({"role": role, "parts": [msg["content"]]})
800
-
801
- # Build generation config
802
- generation_config = self.genai.GenerationConfig(
803
- temperature=temperature,
804
- max_output_tokens=max_tokens,
805
- )
806
-
807
- # Create model with system instruction if provided
808
- if system_prompt:
809
- model = self.genai.GenerativeModel(
810
- self.model,
811
- system_instruction=system_prompt,
812
- )
813
- else:
814
- model = self.client
815
-
816
- # Call Gemini API (run sync in thread pool for async compatibility)
817
- loop = asyncio.get_event_loop()
818
- response = await loop.run_in_executor(
819
- None,
820
- lambda: model.generate_content(
821
- gemini_messages, # type: ignore[arg-type]
822
- generation_config=generation_config,
823
- ),
824
- )
825
-
826
- # Extract token counts from usage metadata
827
- input_tokens = 0
828
- output_tokens = 0
829
- if hasattr(response, "usage_metadata"):
830
- input_tokens = getattr(response.usage_metadata, "prompt_token_count", 0)
831
- output_tokens = getattr(response.usage_metadata, "candidates_token_count", 0)
832
-
833
- # Log to cost tracker
834
- try:
835
- from empathy_os.cost_tracker import log_request
836
-
837
- tier = self._get_tier()
838
- log_request(
839
- model=self.model,
840
- input_tokens=input_tokens,
841
- output_tokens=output_tokens,
842
- task_type=kwargs.get("task_type", "gemini_generate"),
843
- tier=tier,
844
- )
845
- except ImportError:
846
- pass # Cost tracking not available
847
-
848
- # Convert to standardized format
849
- content = ""
850
- if response.candidates:
851
- content = response.candidates[0].content.parts[0].text
852
-
853
- finish_reason = "stop"
854
- if response.candidates and hasattr(response.candidates[0], "finish_reason"):
855
- finish_reason = str(response.candidates[0].finish_reason.name).lower()
856
-
857
- return LLMResponse(
858
- content=content,
859
- model=self.model,
860
- tokens_used=input_tokens + output_tokens,
861
- finish_reason=finish_reason,
862
- metadata={
863
- "input_tokens": input_tokens,
864
- "output_tokens": output_tokens,
865
- "provider": "google",
866
- "model_family": "gemini",
867
- },
868
- )
869
-
870
- def _get_tier(self) -> str:
871
- """Determine tier from model name."""
872
- if "flash" in self.model.lower():
873
- return "cheap"
874
- if "2.5" in self.model or "ultra" in self.model.lower():
875
- return "premium"
876
- return "capable"
877
-
878
- def get_model_info(self) -> dict[str, Any]:
879
- """Get Gemini model information"""
880
- model_info = {
881
- "gemini-2.0-flash-exp": {
882
- "max_tokens": 1000000,
883
- "cost_per_1m_input": 0.075,
884
- "cost_per_1m_output": 0.30,
885
- "supports_vision": True,
886
- "ideal_for": "Fast responses, simple tasks, large context",
887
- },
888
- "gemini-1.5-pro": {
889
- "max_tokens": 2000000,
890
- "cost_per_1m_input": 1.25,
891
- "cost_per_1m_output": 5.00,
892
- "supports_vision": True,
893
- "ideal_for": "Complex reasoning, large codebases",
894
- },
895
- "gemini-2.5-pro": {
896
- "max_tokens": 1000000,
897
- "cost_per_1m_input": 2.50,
898
- "cost_per_1m_output": 10.00,
899
- "supports_vision": True,
900
- "ideal_for": "Advanced reasoning, complex tasks",
901
- },
902
- }
903
-
904
- return model_info.get(
905
- self.model,
906
- {
907
- "max_tokens": 1000000,
908
- "cost_per_1m_input": 1.25,
909
- "cost_per_1m_output": 5.00,
910
- "supports_vision": True,
911
- },
912
- )
913
-
914
-
915
- class LocalProvider(BaseLLMProvider):
916
- """Local model provider (Ollama, LM Studio, etc.).
917
-
918
- For running models locally.
919
- """
920
-
921
- def __init__(self, endpoint: str = "http://localhost:11434", model: str = "llama2", **kwargs):
922
- super().__init__(api_key=None, **kwargs)
923
- self.endpoint = endpoint
924
- self.model = model
925
-
926
- async def generate(
927
- self,
928
- messages: list[dict[str, str]],
929
- system_prompt: str | None = None,
930
- temperature: float = 0.7,
931
- max_tokens: int = 1024,
932
- **kwargs,
933
- ) -> LLMResponse:
934
- """Generate response using local model"""
935
- import aiohttp
936
-
937
- # Format for Ollama-style API
938
- payload = {
939
- "model": self.model,
940
- "messages": messages,
941
- "stream": False,
942
- "options": {"temperature": temperature, "num_predict": max_tokens},
943
- }
944
-
945
- if system_prompt:
946
- payload["system"] = system_prompt
947
-
948
- async with aiohttp.ClientSession() as session:
949
- async with session.post(f"{self.endpoint}/api/chat", json=payload) as response:
950
- result = await response.json()
951
-
952
- return LLMResponse(
953
- content=result.get("message", {}).get("content", ""),
954
- model=self.model,
955
- tokens_used=result.get("eval_count", 0) + result.get("prompt_eval_count", 0),
956
- finish_reason="stop",
957
- metadata={"provider": "local", "endpoint": self.endpoint},
958
- )
959
-
960
- def get_model_info(self) -> dict[str, Any]:
961
- """Get local model information"""
962
- return {
963
- "max_tokens": 4096, # Depends on model
964
- "cost_per_1m_input": 0.0, # Free (local)
965
- "cost_per_1m_output": 0.0,
966
- "endpoint": self.endpoint,
967
- }