empathy-framework 5.0.3__py3-none-any.whl → 5.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {empathy_framework-5.0.3.dist-info → empathy_framework-5.1.0.dist-info}/METADATA +259 -142
- {empathy_framework-5.0.3.dist-info → empathy_framework-5.1.0.dist-info}/RECORD +56 -26
- empathy_framework-5.1.0.dist-info/licenses/LICENSE +201 -0
- empathy_framework-5.1.0.dist-info/licenses/LICENSE_CHANGE_ANNOUNCEMENT.md +101 -0
- empathy_os/__init__.py +1 -1
- empathy_os/cli/commands/batch.py +5 -5
- empathy_os/cli/commands/routing.py +1 -1
- empathy_os/cli/commands/workflow.py +2 -1
- empathy_os/cli/parsers/cache 2.py +65 -0
- empathy_os/cli_minimal.py +3 -3
- empathy_os/cli_router 2.py +416 -0
- empathy_os/dashboard/__init__.py +1 -2
- empathy_os/dashboard/app 2.py +512 -0
- empathy_os/dashboard/app.py +1 -1
- empathy_os/dashboard/simple_server 2.py +403 -0
- empathy_os/dashboard/standalone_server 2.py +536 -0
- empathy_os/memory/types 2.py +441 -0
- empathy_os/models/__init__.py +19 -0
- empathy_os/models/adaptive_routing 2.py +437 -0
- empathy_os/models/auth_cli.py +444 -0
- empathy_os/models/auth_strategy.py +450 -0
- empathy_os/project_index/scanner_parallel 2.py +291 -0
- empathy_os/telemetry/agent_coordination 2.py +478 -0
- empathy_os/telemetry/agent_coordination.py +3 -3
- empathy_os/telemetry/agent_tracking 2.py +350 -0
- empathy_os/telemetry/agent_tracking.py +1 -2
- empathy_os/telemetry/approval_gates 2.py +563 -0
- empathy_os/telemetry/event_streaming 2.py +405 -0
- empathy_os/telemetry/event_streaming.py +3 -3
- empathy_os/telemetry/feedback_loop 2.py +557 -0
- empathy_os/telemetry/feedback_loop.py +1 -1
- empathy_os/vscode_bridge 2.py +173 -0
- empathy_os/workflows/__init__.py +8 -0
- empathy_os/workflows/autonomous_test_gen.py +569 -0
- empathy_os/workflows/bug_predict.py +45 -0
- empathy_os/workflows/code_review.py +92 -22
- empathy_os/workflows/document_gen.py +594 -62
- empathy_os/workflows/llm_base.py +363 -0
- empathy_os/workflows/perf_audit.py +69 -0
- empathy_os/workflows/progressive/README 2.md +454 -0
- empathy_os/workflows/progressive/__init__ 2.py +92 -0
- empathy_os/workflows/progressive/cli 2.py +242 -0
- empathy_os/workflows/progressive/core 2.py +488 -0
- empathy_os/workflows/progressive/orchestrator 2.py +701 -0
- empathy_os/workflows/progressive/reports 2.py +528 -0
- empathy_os/workflows/progressive/telemetry 2.py +280 -0
- empathy_os/workflows/progressive/test_gen 2.py +514 -0
- empathy_os/workflows/progressive/workflow 2.py +628 -0
- empathy_os/workflows/release_prep.py +54 -0
- empathy_os/workflows/security_audit.py +154 -79
- empathy_os/workflows/test_gen.py +60 -0
- empathy_os/workflows/test_gen_behavioral.py +477 -0
- empathy_os/workflows/test_gen_parallel.py +341 -0
- empathy_framework-5.0.3.dist-info/licenses/LICENSE +0 -139
- {empathy_framework-5.0.3.dist-info → empathy_framework-5.1.0.dist-info}/WHEEL +0 -0
- {empathy_framework-5.0.3.dist-info → empathy_framework-5.1.0.dist-info}/entry_points.txt +0 -0
- {empathy_framework-5.0.3.dist-info → empathy_framework-5.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,363 @@
|
|
|
1
|
+
"""Base class for LLM-enhanced workflow generation.
|
|
2
|
+
|
|
3
|
+
Provides reusable patterns for hybrid LLM + template generation with:
|
|
4
|
+
- Smart caching for expensive operations
|
|
5
|
+
- Fallback to templates when LLM fails
|
|
6
|
+
- Quality validation
|
|
7
|
+
- Dashboard integration
|
|
8
|
+
- Cost tracking
|
|
9
|
+
|
|
10
|
+
Copyright 2026 Smart-AI-Memory
|
|
11
|
+
Licensed under Apache 2.0
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
import hashlib
|
|
15
|
+
import json
|
|
16
|
+
import logging
|
|
17
|
+
import os
|
|
18
|
+
from abc import ABC, abstractmethod
|
|
19
|
+
from datetime import datetime, timedelta
|
|
20
|
+
from typing import Any
|
|
21
|
+
|
|
22
|
+
logger = logging.getLogger(__name__)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class LLMWorkflowGenerator(ABC):
|
|
26
|
+
"""Base class for LLM-enhanced workflow generation.
|
|
27
|
+
|
|
28
|
+
Provides hybrid approach: intelligent LLM generation with fallback templates.
|
|
29
|
+
|
|
30
|
+
Usage:
|
|
31
|
+
class TestGeneratorLLM(LLMWorkflowGenerator):
|
|
32
|
+
def _generate_with_template(self, context: dict) -> str:
|
|
33
|
+
return create_template(context)
|
|
34
|
+
|
|
35
|
+
def _validate(self, result: str) -> bool:
|
|
36
|
+
return validate_python_syntax(result)
|
|
37
|
+
|
|
38
|
+
generator = TestGeneratorLLM(model_tier="capable")
|
|
39
|
+
output = generator.generate(context, prompt)
|
|
40
|
+
"""
|
|
41
|
+
|
|
42
|
+
def __init__(
|
|
43
|
+
self,
|
|
44
|
+
model_tier: str = "capable",
|
|
45
|
+
enable_cache: bool = True,
|
|
46
|
+
cache_ttl_hours: int = 24,
|
|
47
|
+
):
|
|
48
|
+
"""Initialize LLM workflow generator.
|
|
49
|
+
|
|
50
|
+
Args:
|
|
51
|
+
model_tier: Model tier to use (cheap, capable, premium)
|
|
52
|
+
enable_cache: Whether to cache LLM responses
|
|
53
|
+
cache_ttl_hours: Cache time-to-live in hours
|
|
54
|
+
"""
|
|
55
|
+
self.model_tier = model_tier
|
|
56
|
+
self.enable_cache = enable_cache
|
|
57
|
+
self.cache_ttl = timedelta(hours=cache_ttl_hours)
|
|
58
|
+
self._cache: dict[str, tuple[str, datetime]] = {}
|
|
59
|
+
self._stats = {
|
|
60
|
+
"llm_requests": 0,
|
|
61
|
+
"llm_failures": 0,
|
|
62
|
+
"template_fallbacks": 0,
|
|
63
|
+
"cache_hits": 0,
|
|
64
|
+
"cache_misses": 0,
|
|
65
|
+
"total_tokens": 0,
|
|
66
|
+
"total_cost_usd": 0.0,
|
|
67
|
+
}
|
|
68
|
+
|
|
69
|
+
def generate(self, context: dict[str, Any], prompt: str) -> str:
|
|
70
|
+
"""Generate output with LLM, fallback to template.
|
|
71
|
+
|
|
72
|
+
Args:
|
|
73
|
+
context: Context dict for generation
|
|
74
|
+
prompt: LLM prompt
|
|
75
|
+
|
|
76
|
+
Returns:
|
|
77
|
+
Generated output (from LLM or template)
|
|
78
|
+
"""
|
|
79
|
+
# Check cache first
|
|
80
|
+
if self.enable_cache:
|
|
81
|
+
cache_key = self._make_cache_key(context, prompt)
|
|
82
|
+
cached = self._get_from_cache(cache_key)
|
|
83
|
+
if cached:
|
|
84
|
+
self._stats["cache_hits"] += 1
|
|
85
|
+
logger.debug(f"Cache hit for {cache_key[:16]}...")
|
|
86
|
+
return cached
|
|
87
|
+
self._stats["cache_misses"] += 1
|
|
88
|
+
|
|
89
|
+
# Try LLM generation
|
|
90
|
+
try:
|
|
91
|
+
self._stats["llm_requests"] += 1
|
|
92
|
+
result = self._generate_with_llm(prompt)
|
|
93
|
+
|
|
94
|
+
# Validate result
|
|
95
|
+
if self._validate(result):
|
|
96
|
+
# Cache successful result
|
|
97
|
+
if self.enable_cache:
|
|
98
|
+
self._put_in_cache(cache_key, result)
|
|
99
|
+
|
|
100
|
+
# Track tokens and cost
|
|
101
|
+
self._update_usage_stats(result)
|
|
102
|
+
|
|
103
|
+
logger.info("LLM generation successful")
|
|
104
|
+
return result
|
|
105
|
+
else:
|
|
106
|
+
logger.warning("LLM result failed validation")
|
|
107
|
+
|
|
108
|
+
except Exception as e:
|
|
109
|
+
self._stats["llm_failures"] += 1
|
|
110
|
+
logger.warning(f"LLM generation failed: {e}")
|
|
111
|
+
|
|
112
|
+
# Fallback to template
|
|
113
|
+
self._stats["template_fallbacks"] += 1
|
|
114
|
+
logger.info("Falling back to template generation")
|
|
115
|
+
return self._generate_with_template(context)
|
|
116
|
+
|
|
117
|
+
def _generate_with_llm(self, prompt: str) -> str:
|
|
118
|
+
"""Generate using LLM API.
|
|
119
|
+
|
|
120
|
+
Args:
|
|
121
|
+
prompt: LLM prompt
|
|
122
|
+
|
|
123
|
+
Returns:
|
|
124
|
+
Generated content
|
|
125
|
+
|
|
126
|
+
Raises:
|
|
127
|
+
Exception: If LLM generation fails
|
|
128
|
+
"""
|
|
129
|
+
try:
|
|
130
|
+
import anthropic
|
|
131
|
+
except ImportError:
|
|
132
|
+
raise ImportError("anthropic package not installed")
|
|
133
|
+
|
|
134
|
+
# Get API key
|
|
135
|
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
136
|
+
if not api_key:
|
|
137
|
+
raise ValueError("ANTHROPIC_API_KEY not set")
|
|
138
|
+
|
|
139
|
+
# Get model ID for tier
|
|
140
|
+
model_id = self._get_model_id(self.model_tier)
|
|
141
|
+
|
|
142
|
+
# Call Anthropic API
|
|
143
|
+
logger.debug(f"Calling LLM with {self.model_tier} tier (model: {model_id})")
|
|
144
|
+
client = anthropic.Anthropic(api_key=api_key)
|
|
145
|
+
response = client.messages.create(
|
|
146
|
+
model=model_id,
|
|
147
|
+
max_tokens=4000,
|
|
148
|
+
messages=[{"role": "user", "content": prompt}],
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
if not response.content:
|
|
152
|
+
raise ValueError("Empty LLM response")
|
|
153
|
+
|
|
154
|
+
result = response.content[0].text.strip()
|
|
155
|
+
|
|
156
|
+
# Clean up markdown fences if present
|
|
157
|
+
if result.startswith("```python"):
|
|
158
|
+
result = result[len("```python") :].strip()
|
|
159
|
+
elif result.startswith("```"):
|
|
160
|
+
result = result[3:].strip()
|
|
161
|
+
if result.endswith("```"):
|
|
162
|
+
result = result[:-3].strip()
|
|
163
|
+
|
|
164
|
+
return result
|
|
165
|
+
|
|
166
|
+
def _get_model_id(self, tier: str) -> str:
|
|
167
|
+
"""Get model ID for tier.
|
|
168
|
+
|
|
169
|
+
Args:
|
|
170
|
+
tier: Model tier (cheap, capable, premium)
|
|
171
|
+
|
|
172
|
+
Returns:
|
|
173
|
+
Model ID string
|
|
174
|
+
"""
|
|
175
|
+
from empathy_os.models.registry import get_model
|
|
176
|
+
|
|
177
|
+
model_info = get_model("anthropic", tier)
|
|
178
|
+
if not model_info:
|
|
179
|
+
raise ValueError(f"No model found for tier: {tier}")
|
|
180
|
+
|
|
181
|
+
return model_info.model_id
|
|
182
|
+
|
|
183
|
+
def _make_cache_key(self, context: dict[str, Any], prompt: str) -> str:
|
|
184
|
+
"""Create cache key from context and prompt.
|
|
185
|
+
|
|
186
|
+
Args:
|
|
187
|
+
context: Context dict
|
|
188
|
+
prompt: Prompt string
|
|
189
|
+
|
|
190
|
+
Returns:
|
|
191
|
+
Cache key (hex hash)
|
|
192
|
+
"""
|
|
193
|
+
# Combine context and prompt for cache key
|
|
194
|
+
cache_data = {
|
|
195
|
+
"context": context,
|
|
196
|
+
"prompt": prompt,
|
|
197
|
+
"model_tier": self.model_tier,
|
|
198
|
+
}
|
|
199
|
+
cache_json = json.dumps(cache_data, sort_keys=True)
|
|
200
|
+
return hashlib.sha256(cache_json.encode()).hexdigest()
|
|
201
|
+
|
|
202
|
+
def _get_from_cache(self, cache_key: str) -> str | None:
|
|
203
|
+
"""Get item from cache if not expired.
|
|
204
|
+
|
|
205
|
+
Args:
|
|
206
|
+
cache_key: Cache key
|
|
207
|
+
|
|
208
|
+
Returns:
|
|
209
|
+
Cached value or None if not found/expired
|
|
210
|
+
"""
|
|
211
|
+
if cache_key not in self._cache:
|
|
212
|
+
return None
|
|
213
|
+
|
|
214
|
+
value, timestamp = self._cache[cache_key]
|
|
215
|
+
|
|
216
|
+
# Check if expired
|
|
217
|
+
if datetime.now() - timestamp > self.cache_ttl:
|
|
218
|
+
del self._cache[cache_key]
|
|
219
|
+
return None
|
|
220
|
+
|
|
221
|
+
return value
|
|
222
|
+
|
|
223
|
+
def _put_in_cache(self, cache_key: str, value: str):
|
|
224
|
+
"""Put item in cache with current timestamp.
|
|
225
|
+
|
|
226
|
+
Args:
|
|
227
|
+
cache_key: Cache key
|
|
228
|
+
value: Value to cache
|
|
229
|
+
"""
|
|
230
|
+
self._cache[cache_key] = (value, datetime.now())
|
|
231
|
+
|
|
232
|
+
def _update_usage_stats(self, result: str):
|
|
233
|
+
"""Update token and cost statistics.
|
|
234
|
+
|
|
235
|
+
Args:
|
|
236
|
+
result: Generated result
|
|
237
|
+
"""
|
|
238
|
+
# Rough token estimate (4 chars per token)
|
|
239
|
+
estimated_tokens = len(result) // 4
|
|
240
|
+
self._stats["total_tokens"] += estimated_tokens
|
|
241
|
+
|
|
242
|
+
# Cost estimation (based on capable tier: $3/M input, $15/M output)
|
|
243
|
+
if self.model_tier == "cheap":
|
|
244
|
+
cost_per_token = 1.0 / 1_000_000 # $1/M tokens
|
|
245
|
+
elif self.model_tier == "capable":
|
|
246
|
+
cost_per_token = 15.0 / 1_000_000 # $15/M output tokens
|
|
247
|
+
elif self.model_tier == "premium":
|
|
248
|
+
cost_per_token = 75.0 / 1_000_000 # $75/M output tokens
|
|
249
|
+
else:
|
|
250
|
+
cost_per_token = 15.0 / 1_000_000
|
|
251
|
+
|
|
252
|
+
self._stats["total_cost_usd"] += estimated_tokens * cost_per_token
|
|
253
|
+
|
|
254
|
+
def get_stats(self) -> dict[str, Any]:
|
|
255
|
+
"""Get generation statistics.
|
|
256
|
+
|
|
257
|
+
Returns:
|
|
258
|
+
Dict with usage stats
|
|
259
|
+
"""
|
|
260
|
+
stats = self._stats.copy()
|
|
261
|
+
|
|
262
|
+
# Calculate rates
|
|
263
|
+
total_requests = stats["llm_requests"]
|
|
264
|
+
if total_requests > 0:
|
|
265
|
+
stats["llm_success_rate"] = (
|
|
266
|
+
total_requests - stats["llm_failures"]
|
|
267
|
+
) / total_requests
|
|
268
|
+
stats["template_fallback_rate"] = stats["template_fallbacks"] / total_requests
|
|
269
|
+
else:
|
|
270
|
+
stats["llm_success_rate"] = 0.0
|
|
271
|
+
stats["template_fallback_rate"] = 0.0
|
|
272
|
+
|
|
273
|
+
# Cache performance
|
|
274
|
+
total_cache_ops = stats["cache_hits"] + stats["cache_misses"]
|
|
275
|
+
if total_cache_ops > 0:
|
|
276
|
+
stats["cache_hit_rate"] = stats["cache_hits"] / total_cache_ops
|
|
277
|
+
else:
|
|
278
|
+
stats["cache_hit_rate"] = 0.0
|
|
279
|
+
|
|
280
|
+
return stats
|
|
281
|
+
|
|
282
|
+
def clear_cache(self):
|
|
283
|
+
"""Clear the cache."""
|
|
284
|
+
self._cache.clear()
|
|
285
|
+
logger.info("Cache cleared")
|
|
286
|
+
|
|
287
|
+
@abstractmethod
|
|
288
|
+
def _generate_with_template(self, context: dict[str, Any]) -> str:
|
|
289
|
+
"""Generate using template fallback.
|
|
290
|
+
|
|
291
|
+
Args:
|
|
292
|
+
context: Context dict with generation data
|
|
293
|
+
|
|
294
|
+
Returns:
|
|
295
|
+
Generated output from template
|
|
296
|
+
|
|
297
|
+
Note:
|
|
298
|
+
Subclasses must implement this method.
|
|
299
|
+
"""
|
|
300
|
+
raise NotImplementedError("Subclass must implement _generate_with_template")
|
|
301
|
+
|
|
302
|
+
@abstractmethod
|
|
303
|
+
def _validate(self, result: str) -> bool:
|
|
304
|
+
"""Validate generated output.
|
|
305
|
+
|
|
306
|
+
Args:
|
|
307
|
+
result: Generated output to validate
|
|
308
|
+
|
|
309
|
+
Returns:
|
|
310
|
+
True if valid, False otherwise
|
|
311
|
+
|
|
312
|
+
Note:
|
|
313
|
+
Subclasses must implement this method.
|
|
314
|
+
"""
|
|
315
|
+
raise NotImplementedError("Subclass must implement _validate")
|
|
316
|
+
|
|
317
|
+
|
|
318
|
+
class TestGeneratorLLM(LLMWorkflowGenerator):
|
|
319
|
+
"""Example LLM-enhanced test generator.
|
|
320
|
+
|
|
321
|
+
Shows how to use the base class for test generation.
|
|
322
|
+
"""
|
|
323
|
+
|
|
324
|
+
def _generate_with_template(self, context: dict[str, Any]) -> str:
|
|
325
|
+
"""Fallback template generation.
|
|
326
|
+
|
|
327
|
+
Args:
|
|
328
|
+
context: Must contain 'module_name', 'module_path'
|
|
329
|
+
|
|
330
|
+
Returns:
|
|
331
|
+
Template test file
|
|
332
|
+
"""
|
|
333
|
+
module_name = context.get("module_name", "unknown")
|
|
334
|
+
module_path = context.get("module_path", "unknown")
|
|
335
|
+
|
|
336
|
+
return f'''"""Behavioral tests for {module_name}.
|
|
337
|
+
|
|
338
|
+
Generated by template fallback.
|
|
339
|
+
|
|
340
|
+
Copyright 2026 Smart-AI-Memory
|
|
341
|
+
Licensed under Apache 2.0
|
|
342
|
+
"""
|
|
343
|
+
|
|
344
|
+
import pytest
|
|
345
|
+
|
|
346
|
+
def test_{module_name}_placeholder():
|
|
347
|
+
"""Placeholder test - implement actual tests."""
|
|
348
|
+
# TODO: Implement comprehensive tests
|
|
349
|
+
pass
|
|
350
|
+
'''
|
|
351
|
+
|
|
352
|
+
def _validate(self, result: str) -> bool:
|
|
353
|
+
"""Validate test file has basic structure.
|
|
354
|
+
|
|
355
|
+
Args:
|
|
356
|
+
result: Generated test file content
|
|
357
|
+
|
|
358
|
+
Returns:
|
|
359
|
+
True if valid test file structure
|
|
360
|
+
"""
|
|
361
|
+
# Check for basic test file structure
|
|
362
|
+
required = ["import pytest", "def test_", '"""']
|
|
363
|
+
return all(req in result for req in required) and len(result) > 100
|
|
@@ -140,18 +140,22 @@ class PerformanceAuditWorkflow(BaseWorkflow):
|
|
|
140
140
|
def __init__(
|
|
141
141
|
self,
|
|
142
142
|
min_hotspots_for_premium: int = 3,
|
|
143
|
+
enable_auth_strategy: bool = True,
|
|
143
144
|
**kwargs: Any,
|
|
144
145
|
):
|
|
145
146
|
"""Initialize performance audit workflow.
|
|
146
147
|
|
|
147
148
|
Args:
|
|
148
149
|
min_hotspots_for_premium: Minimum hotspots to trigger premium optimization
|
|
150
|
+
enable_auth_strategy: Enable intelligent auth routing (default: True)
|
|
149
151
|
**kwargs: Additional arguments passed to BaseWorkflow
|
|
150
152
|
|
|
151
153
|
"""
|
|
152
154
|
super().__init__(**kwargs)
|
|
153
155
|
self.min_hotspots_for_premium = min_hotspots_for_premium
|
|
156
|
+
self.enable_auth_strategy = enable_auth_strategy
|
|
154
157
|
self._hotspot_count: int = 0
|
|
158
|
+
self._auth_mode_used: str | None = None
|
|
155
159
|
|
|
156
160
|
def should_skip_stage(self, stage_name: str, input_data: Any) -> tuple[bool, str | None]:
|
|
157
161
|
"""Downgrade optimize stage if few hotspots.
|
|
@@ -199,6 +203,70 @@ class PerformanceAuditWorkflow(BaseWorkflow):
|
|
|
199
203
|
files_scanned = 0
|
|
200
204
|
|
|
201
205
|
target = Path(target_path)
|
|
206
|
+
|
|
207
|
+
# === AUTH STRATEGY INTEGRATION ===
|
|
208
|
+
if self.enable_auth_strategy:
|
|
209
|
+
try:
|
|
210
|
+
import logging
|
|
211
|
+
|
|
212
|
+
from empathy_os.models import (
|
|
213
|
+
count_lines_of_code,
|
|
214
|
+
get_auth_strategy,
|
|
215
|
+
get_module_size_category,
|
|
216
|
+
)
|
|
217
|
+
|
|
218
|
+
logger = logging.getLogger(__name__)
|
|
219
|
+
|
|
220
|
+
# Calculate total LOC for the project/path
|
|
221
|
+
total_lines = 0
|
|
222
|
+
if target.is_file():
|
|
223
|
+
total_lines = count_lines_of_code(target)
|
|
224
|
+
elif target.is_dir():
|
|
225
|
+
# Estimate total lines for directory
|
|
226
|
+
for ext in file_types:
|
|
227
|
+
for file_path in target.rglob(f"*{ext}"):
|
|
228
|
+
if any(
|
|
229
|
+
skip in str(file_path)
|
|
230
|
+
for skip in [".git", "node_modules", "__pycache__", "venv", "test"]
|
|
231
|
+
):
|
|
232
|
+
continue
|
|
233
|
+
try:
|
|
234
|
+
total_lines += count_lines_of_code(file_path)
|
|
235
|
+
except Exception:
|
|
236
|
+
pass
|
|
237
|
+
|
|
238
|
+
if total_lines > 0:
|
|
239
|
+
strategy = get_auth_strategy()
|
|
240
|
+
recommended_mode = strategy.get_recommended_mode(total_lines)
|
|
241
|
+
self._auth_mode_used = recommended_mode.value
|
|
242
|
+
|
|
243
|
+
size_category = get_module_size_category(total_lines)
|
|
244
|
+
logger.info(
|
|
245
|
+
f"Performance audit target: {target_path} "
|
|
246
|
+
f"({total_lines:,} LOC, {size_category})"
|
|
247
|
+
)
|
|
248
|
+
logger.info(f"Recommended auth mode: {recommended_mode.value}")
|
|
249
|
+
|
|
250
|
+
cost_estimate = strategy.estimate_cost(total_lines, recommended_mode)
|
|
251
|
+
if recommended_mode.value == "subscription":
|
|
252
|
+
logger.info(
|
|
253
|
+
f"Cost estimate: ~${cost_estimate:.4f} "
|
|
254
|
+
"(significantly cheaper with subscription)"
|
|
255
|
+
)
|
|
256
|
+
else:
|
|
257
|
+
logger.info(f"Cost estimate: ~${cost_estimate:.4f} (API-based)")
|
|
258
|
+
|
|
259
|
+
except ImportError as e:
|
|
260
|
+
import logging
|
|
261
|
+
|
|
262
|
+
logger = logging.getLogger(__name__)
|
|
263
|
+
logger.debug(f"Auth strategy not available: {e}")
|
|
264
|
+
except Exception as e:
|
|
265
|
+
import logging
|
|
266
|
+
|
|
267
|
+
logger = logging.getLogger(__name__)
|
|
268
|
+
logger.warning(f"Auth strategy detection failed: {e}")
|
|
269
|
+
# === END AUTH STRATEGY INTEGRATION ===
|
|
202
270
|
if target.exists():
|
|
203
271
|
for ext in file_types:
|
|
204
272
|
for file_path in target.rglob(f"*{ext}"):
|
|
@@ -468,6 +536,7 @@ Provide detailed optimization strategies."""
|
|
|
468
536
|
"perf_score": hotspot_result.get("perf_score", 0),
|
|
469
537
|
"perf_level": hotspot_result.get("perf_level", "unknown"),
|
|
470
538
|
"model_tier_used": tier.value,
|
|
539
|
+
"auth_mode_used": self._auth_mode_used,
|
|
471
540
|
}
|
|
472
541
|
|
|
473
542
|
# Merge parsed XML data if available
|