empathy-framework 3.7.0__py3-none-any.whl → 3.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (274) hide show
  1. coach_wizards/code_reviewer_README.md +60 -0
  2. coach_wizards/code_reviewer_wizard.py +180 -0
  3. {empathy_framework-3.7.0.dist-info → empathy_framework-3.8.0.dist-info}/METADATA +148 -11
  4. empathy_framework-3.8.0.dist-info/RECORD +333 -0
  5. {empathy_framework-3.7.0.dist-info → empathy_framework-3.8.0.dist-info}/top_level.txt +5 -1
  6. empathy_healthcare_plugin/monitors/__init__.py +9 -0
  7. empathy_healthcare_plugin/monitors/clinical_protocol_monitor.py +315 -0
  8. empathy_healthcare_plugin/monitors/monitoring/__init__.py +44 -0
  9. empathy_healthcare_plugin/monitors/monitoring/protocol_checker.py +300 -0
  10. empathy_healthcare_plugin/monitors/monitoring/protocol_loader.py +214 -0
  11. empathy_healthcare_plugin/monitors/monitoring/sensor_parsers.py +306 -0
  12. empathy_healthcare_plugin/monitors/monitoring/trajectory_analyzer.py +389 -0
  13. empathy_llm_toolkit/agent_factory/__init__.py +53 -0
  14. empathy_llm_toolkit/agent_factory/adapters/__init__.py +85 -0
  15. empathy_llm_toolkit/agent_factory/adapters/autogen_adapter.py +312 -0
  16. empathy_llm_toolkit/agent_factory/adapters/crewai_adapter.py +454 -0
  17. empathy_llm_toolkit/agent_factory/adapters/haystack_adapter.py +298 -0
  18. empathy_llm_toolkit/agent_factory/adapters/langchain_adapter.py +362 -0
  19. empathy_llm_toolkit/agent_factory/adapters/langgraph_adapter.py +333 -0
  20. empathy_llm_toolkit/agent_factory/adapters/native.py +228 -0
  21. empathy_llm_toolkit/agent_factory/adapters/wizard_adapter.py +426 -0
  22. empathy_llm_toolkit/agent_factory/base.py +305 -0
  23. empathy_llm_toolkit/agent_factory/crews/__init__.py +67 -0
  24. empathy_llm_toolkit/agent_factory/crews/code_review.py +1113 -0
  25. empathy_llm_toolkit/agent_factory/crews/health_check.py +1246 -0
  26. empathy_llm_toolkit/agent_factory/crews/refactoring.py +1128 -0
  27. empathy_llm_toolkit/agent_factory/crews/security_audit.py +1018 -0
  28. empathy_llm_toolkit/agent_factory/decorators.py +286 -0
  29. empathy_llm_toolkit/agent_factory/factory.py +558 -0
  30. empathy_llm_toolkit/agent_factory/framework.py +192 -0
  31. empathy_llm_toolkit/agent_factory/memory_integration.py +324 -0
  32. empathy_llm_toolkit/agent_factory/resilient.py +320 -0
  33. empathy_llm_toolkit/cli/__init__.py +8 -0
  34. empathy_llm_toolkit/cli/sync_claude.py +487 -0
  35. empathy_llm_toolkit/code_health.py +150 -3
  36. empathy_llm_toolkit/config/__init__.py +29 -0
  37. empathy_llm_toolkit/config/unified.py +295 -0
  38. empathy_llm_toolkit/routing/__init__.py +32 -0
  39. empathy_llm_toolkit/routing/model_router.py +362 -0
  40. empathy_llm_toolkit/security/IMPLEMENTATION_SUMMARY.md +413 -0
  41. empathy_llm_toolkit/security/PHASE2_COMPLETE.md +384 -0
  42. empathy_llm_toolkit/security/PHASE2_SECRETS_DETECTOR_COMPLETE.md +271 -0
  43. empathy_llm_toolkit/security/QUICK_REFERENCE.md +316 -0
  44. empathy_llm_toolkit/security/README.md +262 -0
  45. empathy_llm_toolkit/security/__init__.py +62 -0
  46. empathy_llm_toolkit/security/audit_logger.py +929 -0
  47. empathy_llm_toolkit/security/audit_logger_example.py +152 -0
  48. empathy_llm_toolkit/security/pii_scrubber.py +640 -0
  49. empathy_llm_toolkit/security/secrets_detector.py +678 -0
  50. empathy_llm_toolkit/security/secrets_detector_example.py +304 -0
  51. empathy_llm_toolkit/security/secure_memdocs.py +1192 -0
  52. empathy_llm_toolkit/security/secure_memdocs_example.py +278 -0
  53. empathy_llm_toolkit/wizards/__init__.py +38 -0
  54. empathy_llm_toolkit/wizards/base_wizard.py +364 -0
  55. empathy_llm_toolkit/wizards/customer_support_wizard.py +190 -0
  56. empathy_llm_toolkit/wizards/healthcare_wizard.py +362 -0
  57. empathy_llm_toolkit/wizards/patient_assessment_README.md +64 -0
  58. empathy_llm_toolkit/wizards/patient_assessment_wizard.py +193 -0
  59. empathy_llm_toolkit/wizards/technology_wizard.py +194 -0
  60. empathy_os/__init__.py +52 -52
  61. empathy_os/adaptive/__init__.py +13 -0
  62. empathy_os/adaptive/task_complexity.py +127 -0
  63. empathy_os/cache/__init__.py +117 -0
  64. empathy_os/cache/base.py +166 -0
  65. empathy_os/cache/dependency_manager.py +253 -0
  66. empathy_os/cache/hash_only.py +248 -0
  67. empathy_os/cache/hybrid.py +390 -0
  68. empathy_os/cache/storage.py +282 -0
  69. empathy_os/cli.py +118 -8
  70. empathy_os/cli_unified.py +121 -1
  71. empathy_os/config/__init__.py +63 -0
  72. empathy_os/config/xml_config.py +239 -0
  73. empathy_os/config.py +2 -1
  74. empathy_os/dashboard/__init__.py +15 -0
  75. empathy_os/dashboard/server.py +743 -0
  76. empathy_os/memory/__init__.py +195 -0
  77. empathy_os/memory/claude_memory.py +466 -0
  78. empathy_os/memory/config.py +224 -0
  79. empathy_os/memory/control_panel.py +1298 -0
  80. empathy_os/memory/edges.py +179 -0
  81. empathy_os/memory/graph.py +567 -0
  82. empathy_os/memory/long_term.py +1194 -0
  83. empathy_os/memory/nodes.py +179 -0
  84. empathy_os/memory/redis_bootstrap.py +540 -0
  85. empathy_os/memory/security/__init__.py +31 -0
  86. empathy_os/memory/security/audit_logger.py +930 -0
  87. empathy_os/memory/security/pii_scrubber.py +640 -0
  88. empathy_os/memory/security/secrets_detector.py +678 -0
  89. empathy_os/memory/short_term.py +2119 -0
  90. empathy_os/memory/storage/__init__.py +15 -0
  91. empathy_os/memory/summary_index.py +583 -0
  92. empathy_os/memory/unified.py +619 -0
  93. empathy_os/metrics/__init__.py +12 -0
  94. empathy_os/metrics/prompt_metrics.py +190 -0
  95. empathy_os/models/__init__.py +136 -0
  96. empathy_os/models/__main__.py +13 -0
  97. empathy_os/models/cli.py +655 -0
  98. empathy_os/models/empathy_executor.py +354 -0
  99. empathy_os/models/executor.py +252 -0
  100. empathy_os/models/fallback.py +671 -0
  101. empathy_os/models/provider_config.py +563 -0
  102. empathy_os/models/registry.py +382 -0
  103. empathy_os/models/tasks.py +302 -0
  104. empathy_os/models/telemetry.py +548 -0
  105. empathy_os/models/token_estimator.py +378 -0
  106. empathy_os/models/validation.py +274 -0
  107. empathy_os/monitoring/__init__.py +52 -0
  108. empathy_os/monitoring/alerts.py +23 -0
  109. empathy_os/monitoring/alerts_cli.py +268 -0
  110. empathy_os/monitoring/multi_backend.py +271 -0
  111. empathy_os/monitoring/otel_backend.py +363 -0
  112. empathy_os/optimization/__init__.py +19 -0
  113. empathy_os/optimization/context_optimizer.py +272 -0
  114. empathy_os/plugins/__init__.py +28 -0
  115. empathy_os/plugins/base.py +361 -0
  116. empathy_os/plugins/registry.py +268 -0
  117. empathy_os/project_index/__init__.py +30 -0
  118. empathy_os/project_index/cli.py +335 -0
  119. empathy_os/project_index/crew_integration.py +430 -0
  120. empathy_os/project_index/index.py +425 -0
  121. empathy_os/project_index/models.py +501 -0
  122. empathy_os/project_index/reports.py +473 -0
  123. empathy_os/project_index/scanner.py +538 -0
  124. empathy_os/prompts/__init__.py +61 -0
  125. empathy_os/prompts/config.py +77 -0
  126. empathy_os/prompts/context.py +177 -0
  127. empathy_os/prompts/parser.py +285 -0
  128. empathy_os/prompts/registry.py +313 -0
  129. empathy_os/prompts/templates.py +208 -0
  130. empathy_os/resilience/__init__.py +56 -0
  131. empathy_os/resilience/circuit_breaker.py +256 -0
  132. empathy_os/resilience/fallback.py +179 -0
  133. empathy_os/resilience/health.py +300 -0
  134. empathy_os/resilience/retry.py +209 -0
  135. empathy_os/resilience/timeout.py +135 -0
  136. empathy_os/routing/__init__.py +43 -0
  137. empathy_os/routing/chain_executor.py +433 -0
  138. empathy_os/routing/classifier.py +217 -0
  139. empathy_os/routing/smart_router.py +234 -0
  140. empathy_os/routing/wizard_registry.py +307 -0
  141. empathy_os/trust/__init__.py +28 -0
  142. empathy_os/trust/circuit_breaker.py +579 -0
  143. empathy_os/validation/__init__.py +19 -0
  144. empathy_os/validation/xml_validator.py +281 -0
  145. empathy_os/wizard_factory_cli.py +170 -0
  146. empathy_os/workflows/__init__.py +360 -0
  147. empathy_os/workflows/base.py +1660 -0
  148. empathy_os/workflows/bug_predict.py +962 -0
  149. empathy_os/workflows/code_review.py +960 -0
  150. empathy_os/workflows/code_review_adapters.py +310 -0
  151. empathy_os/workflows/code_review_pipeline.py +720 -0
  152. empathy_os/workflows/config.py +600 -0
  153. empathy_os/workflows/dependency_check.py +648 -0
  154. empathy_os/workflows/document_gen.py +1069 -0
  155. empathy_os/workflows/documentation_orchestrator.py +1205 -0
  156. empathy_os/workflows/health_check.py +679 -0
  157. empathy_os/workflows/keyboard_shortcuts/__init__.py +39 -0
  158. empathy_os/workflows/keyboard_shortcuts/generators.py +386 -0
  159. empathy_os/workflows/keyboard_shortcuts/parsers.py +414 -0
  160. empathy_os/workflows/keyboard_shortcuts/prompts.py +295 -0
  161. empathy_os/workflows/keyboard_shortcuts/schema.py +193 -0
  162. empathy_os/workflows/keyboard_shortcuts/workflow.py +505 -0
  163. empathy_os/workflows/manage_documentation.py +804 -0
  164. empathy_os/workflows/new_sample_workflow1.py +146 -0
  165. empathy_os/workflows/new_sample_workflow1_README.md +150 -0
  166. empathy_os/workflows/perf_audit.py +687 -0
  167. empathy_os/workflows/pr_review.py +748 -0
  168. empathy_os/workflows/progress.py +445 -0
  169. empathy_os/workflows/progress_server.py +322 -0
  170. empathy_os/workflows/refactor_plan.py +693 -0
  171. empathy_os/workflows/release_prep.py +808 -0
  172. empathy_os/workflows/research_synthesis.py +404 -0
  173. empathy_os/workflows/secure_release.py +585 -0
  174. empathy_os/workflows/security_adapters.py +297 -0
  175. empathy_os/workflows/security_audit.py +1046 -0
  176. empathy_os/workflows/step_config.py +234 -0
  177. empathy_os/workflows/test5.py +125 -0
  178. empathy_os/workflows/test5_README.md +158 -0
  179. empathy_os/workflows/test_gen.py +1855 -0
  180. empathy_os/workflows/test_lifecycle.py +526 -0
  181. empathy_os/workflows/test_maintenance.py +626 -0
  182. empathy_os/workflows/test_maintenance_cli.py +590 -0
  183. empathy_os/workflows/test_maintenance_crew.py +821 -0
  184. empathy_os/workflows/xml_enhanced_crew.py +285 -0
  185. empathy_software_plugin/cli/__init__.py +120 -0
  186. empathy_software_plugin/cli/inspect.py +362 -0
  187. empathy_software_plugin/cli.py +3 -1
  188. empathy_software_plugin/wizards/__init__.py +42 -0
  189. empathy_software_plugin/wizards/advanced_debugging_wizard.py +392 -0
  190. empathy_software_plugin/wizards/agent_orchestration_wizard.py +511 -0
  191. empathy_software_plugin/wizards/ai_collaboration_wizard.py +503 -0
  192. empathy_software_plugin/wizards/ai_context_wizard.py +441 -0
  193. empathy_software_plugin/wizards/ai_documentation_wizard.py +503 -0
  194. empathy_software_plugin/wizards/base_wizard.py +288 -0
  195. empathy_software_plugin/wizards/book_chapter_wizard.py +519 -0
  196. empathy_software_plugin/wizards/code_review_wizard.py +606 -0
  197. empathy_software_plugin/wizards/debugging/__init__.py +50 -0
  198. empathy_software_plugin/wizards/debugging/bug_risk_analyzer.py +414 -0
  199. empathy_software_plugin/wizards/debugging/config_loaders.py +442 -0
  200. empathy_software_plugin/wizards/debugging/fix_applier.py +469 -0
  201. empathy_software_plugin/wizards/debugging/language_patterns.py +383 -0
  202. empathy_software_plugin/wizards/debugging/linter_parsers.py +470 -0
  203. empathy_software_plugin/wizards/debugging/verification.py +369 -0
  204. empathy_software_plugin/wizards/enhanced_testing_wizard.py +537 -0
  205. empathy_software_plugin/wizards/memory_enhanced_debugging_wizard.py +816 -0
  206. empathy_software_plugin/wizards/multi_model_wizard.py +501 -0
  207. empathy_software_plugin/wizards/pattern_extraction_wizard.py +422 -0
  208. empathy_software_plugin/wizards/pattern_retriever_wizard.py +400 -0
  209. empathy_software_plugin/wizards/performance/__init__.py +9 -0
  210. empathy_software_plugin/wizards/performance/bottleneck_detector.py +221 -0
  211. empathy_software_plugin/wizards/performance/profiler_parsers.py +278 -0
  212. empathy_software_plugin/wizards/performance/trajectory_analyzer.py +429 -0
  213. empathy_software_plugin/wizards/performance_profiling_wizard.py +305 -0
  214. empathy_software_plugin/wizards/prompt_engineering_wizard.py +425 -0
  215. empathy_software_plugin/wizards/rag_pattern_wizard.py +461 -0
  216. empathy_software_plugin/wizards/security/__init__.py +32 -0
  217. empathy_software_plugin/wizards/security/exploit_analyzer.py +290 -0
  218. empathy_software_plugin/wizards/security/owasp_patterns.py +241 -0
  219. empathy_software_plugin/wizards/security/vulnerability_scanner.py +604 -0
  220. empathy_software_plugin/wizards/security_analysis_wizard.py +322 -0
  221. empathy_software_plugin/wizards/security_learning_wizard.py +740 -0
  222. empathy_software_plugin/wizards/tech_debt_wizard.py +726 -0
  223. empathy_software_plugin/wizards/testing/__init__.py +27 -0
  224. empathy_software_plugin/wizards/testing/coverage_analyzer.py +459 -0
  225. empathy_software_plugin/wizards/testing/quality_analyzer.py +531 -0
  226. empathy_software_plugin/wizards/testing/test_suggester.py +533 -0
  227. empathy_software_plugin/wizards/testing_wizard.py +274 -0
  228. hot_reload/README.md +473 -0
  229. hot_reload/__init__.py +62 -0
  230. hot_reload/config.py +84 -0
  231. hot_reload/integration.py +228 -0
  232. hot_reload/reloader.py +298 -0
  233. hot_reload/watcher.py +179 -0
  234. hot_reload/websocket.py +176 -0
  235. scaffolding/README.md +589 -0
  236. scaffolding/__init__.py +35 -0
  237. scaffolding/__main__.py +14 -0
  238. scaffolding/cli.py +240 -0
  239. test_generator/__init__.py +38 -0
  240. test_generator/__main__.py +14 -0
  241. test_generator/cli.py +226 -0
  242. test_generator/generator.py +325 -0
  243. test_generator/risk_analyzer.py +216 -0
  244. workflow_patterns/__init__.py +33 -0
  245. workflow_patterns/behavior.py +249 -0
  246. workflow_patterns/core.py +76 -0
  247. workflow_patterns/output.py +99 -0
  248. workflow_patterns/registry.py +255 -0
  249. workflow_patterns/structural.py +288 -0
  250. workflow_scaffolding/__init__.py +11 -0
  251. workflow_scaffolding/__main__.py +12 -0
  252. workflow_scaffolding/cli.py +206 -0
  253. workflow_scaffolding/generator.py +265 -0
  254. agents/code_inspection/patterns/inspection/recurring_B112.json +0 -18
  255. agents/code_inspection/patterns/inspection/recurring_F541.json +0 -16
  256. agents/code_inspection/patterns/inspection/recurring_FORMAT.json +0 -25
  257. agents/code_inspection/patterns/inspection/recurring_bug_20250822_def456.json +0 -16
  258. agents/code_inspection/patterns/inspection/recurring_bug_20250915_abc123.json +0 -16
  259. agents/code_inspection/patterns/inspection/recurring_bug_20251212_3c5b9951.json +0 -16
  260. agents/code_inspection/patterns/inspection/recurring_bug_20251212_97c0f72f.json +0 -16
  261. agents/code_inspection/patterns/inspection/recurring_bug_20251212_a0871d53.json +0 -16
  262. agents/code_inspection/patterns/inspection/recurring_bug_20251212_a9b6ec41.json +0 -16
  263. agents/code_inspection/patterns/inspection/recurring_bug_null_001.json +0 -16
  264. agents/code_inspection/patterns/inspection/recurring_builtin.json +0 -16
  265. agents/compliance_anticipation_agent.py +0 -1422
  266. agents/compliance_db.py +0 -339
  267. agents/epic_integration_wizard.py +0 -530
  268. agents/notifications.py +0 -291
  269. agents/trust_building_behaviors.py +0 -872
  270. empathy_framework-3.7.0.dist-info/RECORD +0 -105
  271. {empathy_framework-3.7.0.dist-info → empathy_framework-3.8.0.dist-info}/WHEEL +0 -0
  272. {empathy_framework-3.7.0.dist-info → empathy_framework-3.8.0.dist-info}/entry_points.txt +0 -0
  273. {empathy_framework-3.7.0.dist-info → empathy_framework-3.8.0.dist-info}/licenses/LICENSE +0 -0
  274. /empathy_os/{monitoring.py → agent_monitoring.py} +0 -0
@@ -1,1422 +0,0 @@
1
- """Compliance Anticipation Agent - Level 4 Anticipatory Empathy
2
-
3
- Multi-step LangGraph agent that predicts regulatory audits, identifies compliance
4
- gaps, and prepares documentation proactively to achieve positive outcomes.
5
-
6
- Key Features:
7
- 1. Audit Timeline Prediction (90+ days advance notice)
8
- 2. Compliance Assessment (automated gap detection)
9
- 3. Proactive Documentation (auto-generate audit packages)
10
- 4. Stakeholder Notification (actionable alerts)
11
- 5. Continuous Monitoring (track until audit completion)
12
-
13
- Copyright 2025 Smart AI Memory, LLC
14
- Licensed under Fair Source 0.9
15
- """
16
-
17
- import logging
18
- import operator
19
- from collections.abc import Sequence
20
- from datetime import datetime, timedelta
21
- from typing import Annotated, TypedDict
22
-
23
- from langchain_core.messages import AIMessage, BaseMessage
24
- from langgraph.graph import END, StateGraph
25
-
26
- logger = logging.getLogger(__name__)
27
-
28
-
29
- # =============================================================================
30
- # Agent State Management - Level 4 Anticipatory Empathy
31
- # =============================================================================
32
-
33
-
34
- class ComplianceAgentState(TypedDict):
35
- """Level 4 Anticipatory Agent State
36
-
37
- Follows Principle #13: "Agent State as Clinical Flowsheet"
38
- Every field answers a compliance question with clear audit trail.
39
-
40
- Design Philosophy:
41
- - State fields answer specific questions ("When?", "What?", "Who?", "How?")
42
- - All predictions include confidence scores and methods
43
- - Comprehensive audit trail for legal compliance
44
- - Actionable outputs (not just status reports)
45
- """
46
-
47
- # =========================================================================
48
- # Progress Tracking
49
- # =========================================================================
50
- current_step: int # 1-5
51
- completed_steps: list[int]
52
- messages: Annotated[Sequence[BaseMessage], operator.add]
53
-
54
- # =========================================================================
55
- # Audit Prediction (Step 1) - Answers: "When is next audit?"
56
- # =========================================================================
57
- next_audit_date: str # ISO format: "2026-04-15"
58
- days_until_audit: int
59
- audit_type: str # "joint_commission", "cms", "state_board", "custom"
60
- audit_cycle_months: int # Typical cycle length (e.g., 36 for Joint Commission)
61
-
62
- # Prediction Metadata
63
- prediction_confidence: float # 0.0-1.0
64
- prediction_method: str # "historical_cycle", "regulatory_schedule", "manual_entry"
65
- prediction_generated_at: str # ISO timestamp
66
- last_audit_date: str # ISO format (basis for prediction)
67
-
68
- # =========================================================================
69
- # Anticipation Window (Step 2) - Answers: "Should we act now?"
70
- # =========================================================================
71
- anticipation_window_days: int # Optimal range: 60-120 days
72
- is_within_anticipation_window: bool
73
- time_to_act: str # "too_early", "early", "timely", "urgent", "too_late"
74
-
75
- # =========================================================================
76
- # Compliance Assessment (Step 3) - Answers: "Are we compliant?"
77
- # =========================================================================
78
- total_compliance_items: int
79
- compliant_items: int
80
- non_compliant_items: int
81
- compliance_percentage: float # 0.0-100.0
82
-
83
- # Item-Level Detail
84
- compliance_categories: list[str] # ["medication_safety", "documentation", "patient_safety"]
85
- category_scores: dict[str, float] # {"medication_safety": 95.0, "documentation": 88.0}
86
-
87
- # =========================================================================
88
- # Gap Identification (Step 3) - Answers: "What needs fixing?"
89
- # =========================================================================
90
- compliance_gaps: list[dict] # Detailed gap information
91
- gap_severity_distribution: dict[str, int] # {"critical": 2, "high": 5, "medium": 10}
92
-
93
- # Gap Structure:
94
- # {
95
- # "gap_id": "gap_001",
96
- # "category": "medication_safety",
97
- # "item": "High-risk medication double-checks",
98
- # "description": "5 high-risk meds without documented double-check",
99
- # "severity": "critical", # critical, high, medium, low
100
- # "patient_ids": ["P123", "P456"],
101
- # "incident_dates": ["2025-01-15", "2025-01-18"],
102
- # "action_required": "Review incidents, document verification",
103
- # "estimated_time_to_fix": "50 minutes",
104
- # "can_fix_retroactively": True,
105
- # "legal_risk": "high"
106
- # }
107
-
108
- # =========================================================================
109
- # Documentation Preparation (Step 4) - Answers: "What evidence do we have?"
110
- # =========================================================================
111
- documentation_prepared: bool
112
- documentation_url: str # Secure storage location
113
- documentation_files: list[str] # ["compliance_summary.pdf", "gap_analysis.xlsx"]
114
-
115
- # Documentation Package Contents:
116
- documentation_package: dict
117
- # {
118
- # "summary_report": {...},
119
- # "evidence_files": [...],
120
- # "gap_remediation_plan": {...},
121
- # "timeline": {...},
122
- # "audit_readiness_score": 85.5
123
- # }
124
-
125
- # =========================================================================
126
- # Stakeholder Notification (Step 5) - Answers: "Who needs to act?"
127
- # =========================================================================
128
- notification_sent: bool
129
- notification_recipients: list[str] # ["charge_nurse", "nurse_manager", "cno"]
130
- notification_timestamp: str # ISO timestamp
131
-
132
- # Action Items (Assigned Work)
133
- action_items: list[dict]
134
- # {
135
- # "action_id": "action_001",
136
- # "gap_id": "gap_001",
137
- # "description": "Review 5 incidents, document double-checks",
138
- # "severity": "critical",
139
- # "assignee": "charge_nurse",
140
- # "assignee_email": "charge.nurse@hospital.com",
141
- # "deadline": "2025-02-15",
142
- # "estimated_time": "50 minutes",
143
- # "status": "pending",
144
- # "created_at": "2025-01-20T10:00:00Z"
145
- # }
146
-
147
- # =========================================================================
148
- # Continuous Monitoring (Step 6) - Answers: "How do we track progress?"
149
- # =========================================================================
150
- monitoring_scheduled: bool
151
- monitoring_frequency: str # "daily", "weekly", "biweekly", "monthly"
152
- next_check_date: str # ISO format
153
- monitoring_until_date: str # ISO format (audit date)
154
-
155
- # =========================================================================
156
- # Positive Outcome Tracking - Answers: "Are we improving?"
157
- # =========================================================================
158
- baseline_compliance_percentage: float # Initial assessment
159
- current_compliance_percentage: float # After interventions
160
- compliance_improvement: float # Percentage points improved
161
- gaps_closed: int
162
- gaps_remaining: int
163
-
164
- # Trend Analysis
165
- compliance_trend: str # "improving", "stable", "declining"
166
- trend_confidence: float # 0.0-1.0
167
-
168
- # =========================================================================
169
- # Error Handling & Audit Trail
170
- # =========================================================================
171
- errors: list[str]
172
- warnings: list[str]
173
-
174
- # Full Audit Trail
175
- audit_trail: list[dict]
176
- # {
177
- # "timestamp": "2025-01-20T10:00:00Z",
178
- # "step": "predict_audit",
179
- # "action": "Generated audit prediction",
180
- # "details": {...},
181
- # "user": "system"
182
- # }
183
-
184
- # =========================================================================
185
- # Metadata
186
- # =========================================================================
187
- hospital_id: str
188
- facility_name: str
189
- agent_version: str
190
- execution_id: str # Unique ID for this agent run
191
- created_at: str # ISO timestamp
192
- last_updated: str # ISO timestamp
193
-
194
-
195
- def create_initial_state(
196
- hospital_id: str,
197
- audit_type: str = "joint_commission",
198
- ) -> ComplianceAgentState:
199
- """Create initial agent state
200
-
201
- Args:
202
- hospital_id: Unique identifier for hospital/facility
203
- audit_type: Type of audit to anticipate
204
-
205
- Returns:
206
- Initialized ComplianceAgentState
207
-
208
- """
209
- now = datetime.now()
210
- execution_id = f"compliance_{now.strftime('%Y%m%d_%H%M%S')}_{hospital_id}"
211
-
212
- return ComplianceAgentState(
213
- # Progress
214
- current_step=1,
215
- completed_steps=[],
216
- messages=[],
217
- # Audit Prediction
218
- next_audit_date="",
219
- days_until_audit=0,
220
- audit_type=audit_type,
221
- audit_cycle_months=0,
222
- prediction_confidence=0.0,
223
- prediction_method="",
224
- prediction_generated_at="",
225
- last_audit_date="",
226
- # Anticipation Window
227
- anticipation_window_days=0,
228
- is_within_anticipation_window=False,
229
- time_to_act="",
230
- # Compliance Assessment
231
- total_compliance_items=0,
232
- compliant_items=0,
233
- non_compliant_items=0,
234
- compliance_percentage=0.0,
235
- compliance_categories=[],
236
- category_scores={},
237
- # Gaps
238
- compliance_gaps=[],
239
- gap_severity_distribution={},
240
- # Documentation
241
- documentation_prepared=False,
242
- documentation_url="",
243
- documentation_files=[],
244
- documentation_package={},
245
- # Notification
246
- notification_sent=False,
247
- notification_recipients=[],
248
- notification_timestamp="",
249
- action_items=[],
250
- # Monitoring
251
- monitoring_scheduled=False,
252
- monitoring_frequency="",
253
- next_check_date="",
254
- monitoring_until_date="",
255
- # Positive Outcomes
256
- baseline_compliance_percentage=0.0,
257
- current_compliance_percentage=0.0,
258
- compliance_improvement=0.0,
259
- gaps_closed=0,
260
- gaps_remaining=0,
261
- compliance_trend="",
262
- trend_confidence=0.0,
263
- # Error Handling
264
- errors=[],
265
- warnings=[],
266
- audit_trail=[],
267
- # Metadata
268
- hospital_id=hospital_id,
269
- facility_name="",
270
- agent_version="1.0.0",
271
- execution_id=execution_id,
272
- created_at=now.isoformat(),
273
- last_updated=now.isoformat(),
274
- )
275
-
276
-
277
- # =============================================================================
278
- # LangGraph Workflow Definition
279
- # =============================================================================
280
-
281
-
282
- def create_compliance_agent() -> StateGraph:
283
- """Create Level 4 Anticipatory Compliance Agent
284
-
285
- Workflow:
286
- 1. Predict Audit Timeline → When will next audit occur?
287
- 2. Check Anticipation Window → Should we act now?
288
- 3. Assess Compliance → Are we ready?
289
- 4. Identify Gaps → What needs fixing?
290
- 5. Prepare Documentation → What evidence do we have?
291
- 6. Notify Stakeholders → Who needs to act?
292
- 7. Schedule Monitoring → How do we track progress?
293
-
294
- Level 4 Characteristics:
295
- - Predictive (acts 60-120 days before audit)
296
- - Proactive (prepares documentation without being asked)
297
- - Actionable (assigns specific tasks with deadlines)
298
- - Transparent (explains reasoning, provides confidence scores)
299
- """
300
- workflow = StateGraph(ComplianceAgentState)
301
-
302
- # Step 1: Audit Prediction
303
- workflow.add_node("predict_audit", predict_next_audit)
304
- workflow.add_node("check_window", check_anticipation_window)
305
-
306
- # Step 2-3: Assessment
307
- workflow.add_node("assess_compliance", assess_current_compliance)
308
- workflow.add_node("identify_gaps", identify_compliance_gaps)
309
-
310
- # Step 4: Documentation
311
- workflow.add_node("prepare_docs", prepare_audit_documentation)
312
-
313
- # Step 5: Notification
314
- workflow.add_node("notify", send_anticipatory_notifications)
315
-
316
- # Step 6: Monitoring
317
- workflow.add_node("schedule_monitor", schedule_continuous_monitoring)
318
-
319
- # Define edges
320
- workflow.set_entry_point("predict_audit")
321
-
322
- workflow.add_edge("predict_audit", "check_window")
323
-
324
- # Conditional: Only proceed if within anticipation window
325
- workflow.add_conditional_edges(
326
- "check_window",
327
- should_anticipate,
328
- {
329
- "anticipate": "assess_compliance",
330
- "too_early": END,
331
- "proceed_anyway": "assess_compliance", # Urgent cases
332
- },
333
- )
334
-
335
- workflow.add_edge("assess_compliance", "identify_gaps")
336
- workflow.add_edge("identify_gaps", "prepare_docs")
337
- workflow.add_edge("prepare_docs", "notify")
338
- workflow.add_edge("notify", "schedule_monitor")
339
- workflow.add_edge("schedule_monitor", END)
340
-
341
- return workflow.compile()
342
-
343
-
344
- # =============================================================================
345
- # Node Implementations
346
- # =============================================================================
347
-
348
-
349
- def predict_next_audit(state: ComplianceAgentState) -> ComplianceAgentState:
350
- """Step 1: Predict when next audit will occur
351
-
352
- Methods (in order of preference):
353
- 1. Regulatory schedule (published audit windows) - confidence: 0.95
354
- 2. Historical cycle analysis (e.g., Joint Commission every 36 months) - confidence: 0.85
355
- 3. Risk-based prediction (hospitals with violations audited more) - confidence: 0.70
356
- 4. Manual entry (user provides expected date) - confidence: 0.90
357
-
358
- For positive outcomes:
359
- - Early prediction enables proactive preparation
360
- - Reduces stress and scrambling
361
- - Allows time to fix gaps without pressure
362
- """
363
- logger.info(f"[Step 1] Predicting {state['audit_type']} audit for {state['hospital_id']}")
364
-
365
- # Add to audit trail
366
- state["audit_trail"].append(
367
- {
368
- "timestamp": datetime.now().isoformat(),
369
- "step": "predict_audit",
370
- "action": "Starting audit prediction",
371
- "details": {"audit_type": state["audit_type"]},
372
- "user": "system",
373
- },
374
- )
375
-
376
- # Get audit cycle for this type
377
- audit_cycles = {
378
- "joint_commission": 36, # months
379
- "cms": 12,
380
- "state_board": 24,
381
- "custom": 36,
382
- }
383
-
384
- cycle_months = audit_cycles.get(state["audit_type"], 36)
385
- state["audit_cycle_months"] = cycle_months
386
-
387
- # TODO: Integration point - Connect to real compliance database
388
- # IMPLEMENTATION AVAILABLE: See agents/compliance_db.py ComplianceDatabase class
389
- # Use: compliance_db.get_last_audit(audit_type=state["audit_type"])
390
- # For now, this example uses simulated data to demonstrate the workflow
391
- # last_audit = get_last_audit_date(state["hospital_id"], state["audit_type"])
392
-
393
- # Example: Last Joint Commission audit was 2023-04-15
394
- last_audit = datetime(2023, 4, 15)
395
- state["last_audit_date"] = last_audit.isoformat()
396
-
397
- # Predict next audit (add cycle duration)
398
- predicted_date = last_audit + timedelta(days=cycle_months * 30)
399
-
400
- # Calculate days until
401
- days_until = (predicted_date - datetime.now()).days
402
-
403
- # Confidence based on audit type and data quality
404
- if state["audit_type"] == "joint_commission":
405
- confidence = 0.90 # High confidence - very regular cycle
406
- elif state["audit_type"] == "cms":
407
- confidence = 0.85 # Good confidence
408
- else:
409
- confidence = 0.75 # Moderate confidence
410
-
411
- # Update state
412
- state["next_audit_date"] = predicted_date.isoformat()
413
- state["days_until_audit"] = days_until
414
- state["prediction_confidence"] = confidence
415
- state["prediction_method"] = "historical_cycle"
416
- state["prediction_generated_at"] = datetime.now().isoformat()
417
- state["last_updated"] = datetime.now().isoformat()
418
-
419
- # Mark step complete
420
- state["completed_steps"].append(1)
421
- state["current_step"] = 2
422
-
423
- # Log prediction
424
- logger.info(
425
- f"Predicted audit: {predicted_date.strftime('%Y-%m-%d')} "
426
- f"({days_until} days away, {confidence:.0%} confidence)",
427
- )
428
-
429
- # Add message
430
- state["messages"].append(
431
- AIMessage(
432
- content=f"Predicted {state['audit_type']} audit on {predicted_date.strftime('%Y-%m-%d')} "
433
- f"(in {days_until} days) with {confidence:.0%} confidence",
434
- ),
435
- )
436
-
437
- # Audit trail
438
- state["audit_trail"].append(
439
- {
440
- "timestamp": datetime.now().isoformat(),
441
- "step": "predict_audit",
442
- "action": "Prediction completed",
443
- "details": {
444
- "predicted_date": state["next_audit_date"],
445
- "days_until": days_until,
446
- "confidence": confidence,
447
- "method": "historical_cycle",
448
- },
449
- "user": "system",
450
- },
451
- )
452
-
453
- return state
454
-
455
-
456
- def check_anticipation_window(state: ComplianceAgentState) -> ComplianceAgentState:
457
- """Step 2: Check if we're within optimal anticipation window
458
-
459
- Level 4 Guardrail:
460
- - Too early (>120 days): Preparation may become outdated, waste effort
461
- - Optimal (60-120 days): Ideal time for preparation without pressure
462
- - Urgent (30-60 days): Still helpful but less time to fix issues
463
- - Too late (<30 days): Limited time for comprehensive fixes
464
-
465
- For positive outcomes:
466
- - Acting at right time maximizes effectiveness
467
- - Avoids wasted effort (too early) or crisis mode (too late)
468
- """
469
- logger.info(f"[Step 2] Checking anticipation window ({state['days_until_audit']} days)")
470
-
471
- days_until = state["days_until_audit"]
472
-
473
- if 60 <= days_until <= 120:
474
- state["is_within_anticipation_window"] = True
475
- state["time_to_act"] = "timely"
476
- state["anticipation_window_days"] = days_until
477
- message = (
478
- f"✅ Within optimal anticipation window ({days_until} days). Perfect time to prepare."
479
- )
480
-
481
- elif days_until > 120:
482
- state["is_within_anticipation_window"] = False
483
- state["time_to_act"] = "too_early"
484
- state["anticipation_window_days"] = days_until
485
- message = f"⏰ Audit is {days_until} days away. Will re-check at 120 days out."
486
- state["warnings"].append(
487
- f"Audit predicted in {days_until} days. "
488
- f"Optimal anticipation window is 60-120 days. "
489
- f"Will schedule re-check for {(datetime.now() + timedelta(days=days_until - 120)).strftime('%Y-%m-%d')}",
490
- )
491
-
492
- elif 30 <= days_until < 60:
493
- state["is_within_anticipation_window"] = True
494
- state["time_to_act"] = "urgent"
495
- state["anticipation_window_days"] = days_until
496
- message = f"⚠️ Only {days_until} days until audit. Acting now (ideally would have started at 90 days)."
497
- state["warnings"].append(
498
- "Less than 60 days until audit. "
499
- "Limited time for comprehensive remediation. "
500
- "Recommend expedited action.",
501
- )
502
-
503
- else: # < 30 days
504
- state["is_within_anticipation_window"] = True
505
- state["time_to_act"] = "too_late"
506
- state["anticipation_window_days"] = days_until
507
- message = f"🚨 URGENT: Only {days_until} days until audit. Focus on critical gaps only."
508
- state["warnings"].append(
509
- "Less than 30 days until audit. "
510
- "Very limited time. Focus on critical compliance gaps only.",
511
- )
512
-
513
- state["messages"].append(AIMessage(content=message))
514
- state["completed_steps"].append(2)
515
- state["current_step"] = 3
516
- state["last_updated"] = datetime.now().isoformat()
517
-
518
- # Audit trail
519
- state["audit_trail"].append(
520
- {
521
- "timestamp": datetime.now().isoformat(),
522
- "step": "check_window",
523
- "action": "Anticipation window assessed",
524
- "details": {
525
- "days_until": days_until,
526
- "time_to_act": state["time_to_act"],
527
- "within_window": state["is_within_anticipation_window"],
528
- },
529
- "user": "system",
530
- },
531
- )
532
-
533
- logger.info(f"Anticipation window: {state['time_to_act']}")
534
-
535
- return state
536
-
537
-
538
- def should_anticipate(state: ComplianceAgentState) -> str:
539
- """Routing function: Decide whether to proceed with anticipation
540
-
541
- Returns:
542
- "anticipate" - Within optimal window, proceed
543
- "too_early" - Too far out, schedule for later
544
- "proceed_anyway" - Urgent, proceed despite non-optimal timing
545
-
546
- """
547
- time_to_act = state["time_to_act"]
548
-
549
- if time_to_act == "too_early":
550
- return "too_early"
551
- if time_to_act in ["urgent", "too_late"]:
552
- return "proceed_anyway"
553
- return "anticipate"
554
-
555
-
556
- def assess_current_compliance(state: ComplianceAgentState) -> ComplianceAgentState:
557
- """Step 3A: Assess current compliance status
558
-
559
- Scans all compliance requirements for the audit type and determines
560
- current compliance percentage.
561
-
562
- For positive outcomes:
563
- - Comprehensive assessment identifies all issues upfront
564
- - Categorization helps prioritize remediation
565
- - Baseline measurement enables tracking improvement
566
- """
567
- logger.info(f"[Step 3A] Assessing compliance for {state['audit_type']}")
568
-
569
- # TODO: Integration point - Connect to real compliance assessment system
570
- # IMPLEMENTATION AVAILABLE: See agents/compliance_db.py for status tracking
571
- # Use: compliance_db.get_current_compliance_status(compliance_framework)
572
- # For now, this example simulates assessment to demonstrate the workflow
573
-
574
- # Get requirements for this audit type
575
- requirements = get_audit_requirements(state["audit_type"])
576
-
577
- # Example: Joint Commission has ~50 compliance items
578
- total_items = len(requirements)
579
-
580
- # Simulate compliance check
581
- # In production, this would scan actual documentation, EHR data, etc.
582
- compliant = 0
583
- non_compliant = 0
584
- category_scores = {}
585
-
586
- for req in requirements:
587
- # TODO: Integration point - Check actual compliance against requirements
588
- # IMPLEMENTATION AVAILABLE: Query from compliance_db.get_active_gaps()
589
- # Filter gaps by framework and severity to determine compliance status
590
- # For now, this example simulates compliance checks to demonstrate scoring logic
591
- # is_compliant = check_requirement_compliance(state["hospital_id"], req)
592
-
593
- # Simulated: 90% compliant
594
- import random
595
-
596
- is_compliant = random.random() < 0.90
597
-
598
- if is_compliant:
599
- compliant += 1
600
- else:
601
- non_compliant += 1
602
-
603
- # Track by category
604
- category = req["category"]
605
- if category not in category_scores:
606
- category_scores[category] = {"compliant": 0, "total": 0}
607
-
608
- category_scores[category]["total"] += 1
609
- if is_compliant:
610
- category_scores[category]["compliant"] += 1
611
-
612
- # Calculate percentages
613
- compliance_pct = (compliant / total_items * 100) if total_items > 0 else 0.0
614
-
615
- category_pct = {}
616
- for cat, scores in category_scores.items():
617
- category_pct[cat] = (
618
- (scores["compliant"] / scores["total"] * 100) if scores["total"] > 0 else 0.0
619
- )
620
-
621
- # Update state
622
- state["total_compliance_items"] = total_items
623
- state["compliant_items"] = compliant
624
- state["non_compliant_items"] = non_compliant
625
- state["compliance_percentage"] = compliance_pct
626
- state["compliance_categories"] = list(category_pct.keys())
627
- state["category_scores"] = category_pct
628
-
629
- # Set baseline if first assessment
630
- if state["baseline_compliance_percentage"] == 0.0:
631
- state["baseline_compliance_percentage"] = compliance_pct
632
-
633
- state["current_compliance_percentage"] = compliance_pct
634
-
635
- state["completed_steps"].append(3)
636
- state["current_step"] = 4
637
- state["last_updated"] = datetime.now().isoformat()
638
-
639
- # Message
640
- status_emoji = "✅" if compliance_pct >= 95 else "⚠️" if compliance_pct >= 85 else "🚨"
641
- state["messages"].append(
642
- AIMessage(
643
- content=f"{status_emoji} Compliance Assessment: {compliance_pct:.1f}% "
644
- f"({compliant}/{total_items} items compliant)",
645
- ),
646
- )
647
-
648
- # Audit trail
649
- state["audit_trail"].append(
650
- {
651
- "timestamp": datetime.now().isoformat(),
652
- "step": "assess_compliance",
653
- "action": "Compliance assessed",
654
- "details": {
655
- "total_items": total_items,
656
- "compliant": compliant,
657
- "percentage": compliance_pct,
658
- "categories": category_pct,
659
- },
660
- "user": "system",
661
- },
662
- )
663
-
664
- logger.info(f"Compliance: {compliance_pct:.1f}% ({compliant}/{total_items})")
665
-
666
- return state
667
-
668
-
669
- def identify_compliance_gaps(state: ComplianceAgentState) -> ComplianceAgentState:
670
- """Step 3B: Identify specific compliance gaps with actionable details
671
-
672
- For positive outcomes:
673
- - Specific patient IDs enable targeted remediation
674
- - Severity classification enables prioritization
675
- - Time estimates enable resource planning
676
- - Retroactive fix capability determines urgency
677
- """
678
- logger.info("[Step 3B] Identifying compliance gaps")
679
-
680
- # TODO: Integration point - Connect to real gap detection system
681
- # IMPLEMENTATION AVAILABLE: See agents/compliance_db.py ComplianceDatabase.record_gap()
682
- # Use: compliance_db.get_active_gaps(severity, framework) to retrieve detected gaps
683
- # For now, this example simulates gap detection to demonstrate remediation planning
684
-
685
- gaps = []
686
- gap_id_counter = 1
687
-
688
- # Gap 1: Missing signatures (example)
689
- if state["compliance_percentage"] < 100:
690
- gaps.append(
691
- {
692
- "gap_id": f"gap_{gap_id_counter:03d}",
693
- "category": "documentation_completeness",
694
- "item": "Patient assessment signatures",
695
- "description": "5 patient assessments missing nurse signatures",
696
- "severity": "high",
697
- "patient_ids": ["P12345", "P12367", "P12389", "P12401", "P12423"],
698
- "incident_dates": [
699
- "2025-01-15",
700
- "2025-01-16",
701
- "2025-01-18",
702
- "2025-01-19",
703
- "2025-01-20",
704
- ],
705
- "action_required": "Nurses must review and sign assessments retroactively",
706
- "estimated_time_to_fix": "25 minutes",
707
- "can_fix_retroactively": True,
708
- "legal_risk": "medium",
709
- },
710
- )
711
- gap_id_counter += 1
712
-
713
- # Gap 2: Medication double-checks
714
- if state["compliance_percentage"] < 98:
715
- gaps.append(
716
- {
717
- "gap_id": f"gap_{gap_id_counter:03d}",
718
- "category": "medication_safety",
719
- "item": "High-risk medication double-checks",
720
- "description": "2 high-risk medications administered without documented double-check",
721
- "severity": "critical",
722
- "patient_ids": ["P12350", "P12375"],
723
- "incident_dates": ["2025-01-17", "2025-01-19"],
724
- "action_required": "Review incidents, document verification process, implement reminder system",
725
- "estimated_time_to_fix": "45 minutes",
726
- "can_fix_retroactively": False, # Can document review but can't undo administration
727
- "legal_risk": "high",
728
- },
729
- )
730
- gap_id_counter += 1
731
-
732
- # Gap 3: Restraint orders
733
- if state["compliance_percentage"] < 95:
734
- gaps.append(
735
- {
736
- "gap_id": f"gap_{gap_id_counter:03d}",
737
- "category": "patient_safety",
738
- "item": "Restraint order renewals",
739
- "description": "1 restraint order requires renewal",
740
- "severity": "high",
741
- "patient_ids": ["P12390"],
742
- "incident_dates": ["2025-01-18"],
743
- "action_required": "Provider must review and renew order immediately",
744
- "estimated_time_to_fix": "15 minutes",
745
- "can_fix_retroactively": False,
746
- "legal_risk": "high",
747
- },
748
- )
749
- gap_id_counter += 1
750
-
751
- # Calculate severity distribution
752
- severity_dist = {
753
- "critical": sum(1 for g in gaps if g["severity"] == "critical"),
754
- "high": sum(1 for g in gaps if g["severity"] == "high"),
755
- "medium": sum(1 for g in gaps if g["severity"] == "medium"),
756
- "low": sum(1 for g in gaps if g["severity"] == "low"),
757
- }
758
-
759
- state["compliance_gaps"] = gaps
760
- state["gap_severity_distribution"] = severity_dist
761
- state["gaps_remaining"] = len(gaps)
762
- state["last_updated"] = datetime.now().isoformat()
763
-
764
- # Message
765
- if len(gaps) == 0:
766
- state["messages"].append(
767
- AIMessage(content="🎉 No compliance gaps identified. Excellent work!"),
768
- )
769
- else:
770
- state["messages"].append(
771
- AIMessage(
772
- content=f"⚠️ Identified {len(gaps)} compliance gaps: "
773
- f"{severity_dist['critical']} critical, "
774
- f"{severity_dist['high']} high, "
775
- f"{severity_dist['medium']} medium, "
776
- f"{severity_dist['low']} low",
777
- ),
778
- )
779
-
780
- # Audit trail
781
- state["audit_trail"].append(
782
- {
783
- "timestamp": datetime.now().isoformat(),
784
- "step": "identify_gaps",
785
- "action": "Gaps identified",
786
- "details": {
787
- "gap_count": len(gaps),
788
- "severity_distribution": severity_dist,
789
- "gaps": [{"id": g["gap_id"], "description": g["description"]} for g in gaps],
790
- },
791
- "user": "system",
792
- },
793
- )
794
-
795
- logger.info(f"Identified {len(gaps)} gaps: {severity_dist}")
796
-
797
- return state
798
-
799
-
800
- def prepare_audit_documentation(state: ComplianceAgentState) -> ComplianceAgentState:
801
- """Step 4: Prepare comprehensive audit documentation package
802
-
803
- For positive outcomes:
804
- - Pre-prepared documentation reduces audit day stress
805
- - Structured format ensures completeness
806
- - Gap remediation plan demonstrates proactive approach
807
- - Audit readiness score provides confidence metric
808
- """
809
- logger.info("[Step 4] Preparing audit documentation")
810
-
811
- # Generate documentation package
812
- doc_package = {
813
- "generated_at": datetime.now().isoformat(),
814
- "audit_type": state["audit_type"],
815
- "audit_date": state["next_audit_date"],
816
- "facility": state["hospital_id"],
817
- "summary_report": {
818
- "compliance_percentage": state["compliance_percentage"],
819
- "compliant_items": state["compliant_items"],
820
- "total_items": state["total_compliance_items"],
821
- "gap_count": len(state["compliance_gaps"]),
822
- "severity_breakdown": state["gap_severity_distribution"],
823
- "category_scores": state["category_scores"],
824
- },
825
- "evidence_files": [
826
- f"medication_administration_records_{state['hospital_id']}.pdf",
827
- f"patient_assessment_documentation_{state['hospital_id']}.pdf",
828
- f"infection_control_protocols_{state['hospital_id']}.pdf",
829
- f"emergency_equipment_checks_{state['hospital_id']}.pdf",
830
- ],
831
- "gap_remediation_plan": {
832
- "gaps": state["compliance_gaps"],
833
- "prioritization": "Critical → High → Medium → Low",
834
- "estimated_total_time": sum(
835
- int(g["estimated_time_to_fix"].split()[0])
836
- for g in state["compliance_gaps"]
837
- if g["estimated_time_to_fix"].split()[0].isdigit()
838
- ),
839
- "target_completion_date": (
840
- datetime.fromisoformat(state["next_audit_date"]) - timedelta(days=14)
841
- ).isoformat(), # 2 weeks before audit
842
- },
843
- "timeline": {
844
- "baseline_assessment": state["created_at"],
845
- "gap_identification": datetime.now().isoformat(),
846
- "target_remediation_completion": (
847
- datetime.fromisoformat(state["next_audit_date"]) - timedelta(days=14)
848
- ).isoformat(),
849
- "final_verification": (
850
- datetime.fromisoformat(state["next_audit_date"]) - timedelta(days=7)
851
- ).isoformat(),
852
- "audit_date": state["next_audit_date"],
853
- },
854
- "audit_readiness_score": calculate_audit_readiness_score(state),
855
- }
856
-
857
- # Simulate storing documentation
858
- # TODO: Integration point - Secure document storage system
859
- # RECOMMENDATION: Use cloud storage (AWS S3, Azure Blob, SharePoint) with:
860
- # - Encryption at rest (AES-256) and in transit (TLS 1.2+)
861
- # - HIPAA-compliant storage (BAA required)
862
- # - Audit logging for all access
863
- # - Retention policies per regulatory requirements
864
- # For now, this example generates simulated URLs to demonstrate the workflow
865
- doc_url = f"https://secure-docs.hospital.com/compliance/{state['execution_id']}"
866
- doc_files = [
867
- "compliance_summary_report.pdf",
868
- "gap_analysis_detailed.xlsx",
869
- "remediation_plan.pdf",
870
- "evidence_package.zip",
871
- ]
872
-
873
- state["documentation_prepared"] = True
874
- state["documentation_url"] = doc_url
875
- state["documentation_files"] = doc_files
876
- state["documentation_package"] = doc_package
877
- state["last_updated"] = datetime.now().isoformat()
878
-
879
- # Message
880
- state["messages"].append(
881
- AIMessage(
882
- content=f"📄 Documentation package prepared: {len(doc_files)} files ready at {doc_url}",
883
- ),
884
- )
885
-
886
- # Audit trail
887
- state["audit_trail"].append(
888
- {
889
- "timestamp": datetime.now().isoformat(),
890
- "step": "prepare_docs",
891
- "action": "Documentation prepared",
892
- "details": {
893
- "file_count": len(doc_files),
894
- "url": doc_url,
895
- "readiness_score": doc_package["audit_readiness_score"],
896
- },
897
- "user": "system",
898
- },
899
- )
900
-
901
- logger.info(f"Documentation prepared: {doc_url}")
902
-
903
- return state
904
-
905
-
906
- def send_anticipatory_notifications(
907
- state: ComplianceAgentState,
908
- ) -> ComplianceAgentState:
909
- """Step 5: Send notifications to stakeholders with actionable information
910
-
911
- For positive outcomes:
912
- - Early notification enables calm, planned response
913
- - Specific assignments clarify responsibilities
914
- - Deadlines provide urgency without panic
915
- - Transparent reasoning builds trust in AI system
916
- """
917
- logger.info("[Step 5] Sending notifications to stakeholders")
918
-
919
- # Create action items from gaps
920
- action_items = []
921
- action_id = 1
922
-
923
- for gap in state["compliance_gaps"]:
924
- assignee = determine_assignee(gap)
925
- deadline = calculate_deadline(gap, state["days_until_audit"], state["next_audit_date"])
926
-
927
- action_items.append(
928
- {
929
- "action_id": f"action_{action_id:03d}",
930
- "gap_id": gap["gap_id"],
931
- "description": gap["description"],
932
- "action_required": gap["action_required"],
933
- "severity": gap["severity"],
934
- "assignee": assignee,
935
- "assignee_email": get_assignee_email(assignee, state["hospital_id"]),
936
- "deadline": deadline,
937
- "estimated_time": gap["estimated_time_to_fix"],
938
- "status": "pending",
939
- "created_at": datetime.now().isoformat(),
940
- },
941
- )
942
- action_id += 1
943
-
944
- state["action_items"] = action_items
945
-
946
- # Determine recipients based on severity
947
- recipients = ["charge_nurse"]
948
- if state["gap_severity_distribution"].get("critical", 0) > 0:
949
- recipients.append("nurse_manager")
950
- if state["gap_severity_distribution"].get("critical", 0) > 2:
951
- recipients.append("cno") # Chief Nursing Officer for multiple critical issues
952
-
953
- # Compose notification
954
- notification = compose_notification(state, action_items)
955
-
956
- # Send notification
957
- # TODO: Integration point - Multi-channel notification delivery
958
- # IMPLEMENTATION AVAILABLE: See agents/notifications.py NotificationService class
959
- # Use: notification_service.send_compliance_alert(severity, title, description, recipients)
960
- # Supports Email (SMTP), Slack (webhooks), and SMS (Twilio) with graceful fallback
961
- # For now, this example simulates notification to demonstrate stakeholder communication
962
- send_notification_to_recipients(notification, recipients, state["hospital_id"])
963
-
964
- state["notification_sent"] = True
965
- state["notification_recipients"] = recipients
966
- state["notification_timestamp"] = datetime.now().isoformat()
967
- state["last_updated"] = datetime.now().isoformat()
968
-
969
- # Message
970
- state["messages"].append(
971
- AIMessage(
972
- content=f"📧 Notifications sent to {len(recipients)} recipients: {', '.join(recipients)}",
973
- ),
974
- )
975
-
976
- # Audit trail
977
- state["audit_trail"].append(
978
- {
979
- "timestamp": datetime.now().isoformat(),
980
- "step": "notify",
981
- "action": "Notifications sent",
982
- "details": {
983
- "recipients": recipients,
984
- "action_item_count": len(action_items),
985
- },
986
- "user": "system",
987
- },
988
- )
989
-
990
- logger.info(f"Notifications sent to: {recipients}")
991
-
992
- return state
993
-
994
-
995
- def schedule_continuous_monitoring(state: ComplianceAgentState) -> ComplianceAgentState:
996
- """Step 6: Schedule periodic re-checks until audit
997
-
998
- For positive outcomes:
999
- - Regular monitoring tracks progress toward compliance
1000
- - Early detection of new gaps prevents last-minute scrambling
1001
- - Trend analysis predicts audit readiness
1002
- - Automated reminders keep team accountable
1003
- """
1004
- logger.info("[Step 6] Scheduling continuous monitoring")
1005
-
1006
- days_until = state["days_until_audit"]
1007
-
1008
- # Determine monitoring frequency based on time remaining
1009
- if days_until > 90:
1010
- frequency = "monthly"
1011
- next_check_days = 30
1012
- elif days_until > 60:
1013
- frequency = "biweekly"
1014
- next_check_days = 14
1015
- elif days_until > 30:
1016
- frequency = "weekly"
1017
- next_check_days = 7
1018
- else:
1019
- frequency = "daily"
1020
- next_check_days = 1
1021
-
1022
- next_check_date = (datetime.now() + timedelta(days=next_check_days)).isoformat()
1023
-
1024
- state["monitoring_scheduled"] = True
1025
- state["monitoring_frequency"] = frequency
1026
- state["next_check_date"] = next_check_date
1027
- state["monitoring_until_date"] = state["next_audit_date"]
1028
- state["last_updated"] = datetime.now().isoformat()
1029
-
1030
- # Message
1031
- state["messages"].append(
1032
- AIMessage(
1033
- content=f"⏰ Scheduled {frequency} monitoring until {state['next_audit_date']} "
1034
- f"(next check: {next_check_date[:10]})",
1035
- ),
1036
- )
1037
-
1038
- # Audit trail
1039
- state["audit_trail"].append(
1040
- {
1041
- "timestamp": datetime.now().isoformat(),
1042
- "step": "schedule_monitor",
1043
- "action": "Monitoring scheduled",
1044
- "details": {
1045
- "frequency": frequency,
1046
- "next_check": next_check_date,
1047
- "until_date": state["next_audit_date"],
1048
- },
1049
- "user": "system",
1050
- },
1051
- )
1052
-
1053
- logger.info(f"Monitoring scheduled: {frequency} until {state['next_audit_date']}")
1054
-
1055
- return state
1056
-
1057
-
1058
- # =============================================================================
1059
- # Helper Functions
1060
- # =============================================================================
1061
-
1062
-
1063
- def get_audit_requirements(audit_type: str) -> list[dict]:
1064
- """Get compliance requirements for audit type
1065
-
1066
- TODO: Load from database or configuration file
1067
- """
1068
- # Example requirements for Joint Commission
1069
- if audit_type == "joint_commission":
1070
- return [
1071
- {
1072
- "id": "JC_MED_001",
1073
- "category": "medication_safety",
1074
- "description": "Medication administration records",
1075
- },
1076
- {
1077
- "id": "JC_MED_002",
1078
- "category": "medication_safety",
1079
- "description": "High-risk medication double-checks",
1080
- },
1081
- {
1082
- "id": "JC_DOC_001",
1083
- "category": "documentation",
1084
- "description": "Patient assessment documentation",
1085
- },
1086
- {
1087
- "id": "JC_DOC_002",
1088
- "category": "documentation",
1089
- "description": "Nurse signature completeness",
1090
- },
1091
- {
1092
- "id": "JC_SAF_001",
1093
- "category": "patient_safety",
1094
- "description": "Restraint order renewals",
1095
- },
1096
- {
1097
- "id": "JC_SAF_002",
1098
- "category": "patient_safety",
1099
- "description": "Fall risk assessments",
1100
- },
1101
- {
1102
- "id": "JC_INF_001",
1103
- "category": "infection_control",
1104
- "description": "Hand hygiene compliance",
1105
- },
1106
- {
1107
- "id": "JC_INF_002",
1108
- "category": "infection_control",
1109
- "description": "Isolation protocol adherence",
1110
- },
1111
- # ... would have ~50 total requirements
1112
- ]
1113
-
1114
- # Add other audit types as needed
1115
- return []
1116
-
1117
-
1118
- def calculate_audit_readiness_score(state: ComplianceAgentState) -> float:
1119
- """Calculate overall audit readiness score (0-100)
1120
-
1121
- Factors:
1122
- - Compliance percentage (60% weight)
1123
- - Gap severity (20% weight)
1124
- - Time remaining (20% weight)
1125
- """
1126
- # Factor 1: Compliance percentage
1127
- compliance_score = state["compliance_percentage"]
1128
-
1129
- # Factor 2: Gap severity penalty
1130
- severity_penalties = {
1131
- "critical": 10, # -10 points per critical gap
1132
- "high": 5,
1133
- "medium": 2,
1134
- "low": 0.5,
1135
- }
1136
-
1137
- severity_penalty = sum(
1138
- count * severity_penalties.get(severity, 0)
1139
- for severity, count in state["gap_severity_distribution"].items()
1140
- )
1141
-
1142
- gap_score = max(0, 100 - severity_penalty)
1143
-
1144
- # Factor 3: Time remaining score
1145
- days_until = state["days_until_audit"]
1146
- if days_until >= 90:
1147
- time_score = 100
1148
- elif days_until >= 60:
1149
- time_score = 80
1150
- elif days_until >= 30:
1151
- time_score = 60
1152
- else:
1153
- time_score = 40
1154
-
1155
- # Weighted average
1156
- readiness_score = compliance_score * 0.6 + gap_score * 0.2 + time_score * 0.2
1157
-
1158
- return round(readiness_score, 1)
1159
-
1160
-
1161
- def determine_assignee(gap: dict) -> str:
1162
- """Determine who should be assigned to fix this gap
1163
-
1164
- Based on category and severity
1165
- """
1166
- category = gap["category"]
1167
- severity = gap["severity"]
1168
-
1169
- if category == "medication_safety":
1170
- if severity == "critical":
1171
- return "nurse_manager" # Manager handles critical safety issues
1172
- return "charge_nurse"
1173
-
1174
- if category == "documentation":
1175
- return "charge_nurse" # Charge nurse coordinates documentation fixes
1176
-
1177
- if category == "patient_safety":
1178
- if "restraint" in gap["item"].lower():
1179
- return "provider" # Restraint orders require provider
1180
- return "charge_nurse"
1181
-
1182
- if category == "infection_control":
1183
- return "infection_control_nurse"
1184
-
1185
- return "charge_nurse" # Default
1186
-
1187
-
1188
- def calculate_deadline(gap: dict, days_until_audit: int, audit_date: str) -> str:
1189
- """Calculate appropriate deadline for fixing gap
1190
-
1191
- - Critical: 1 week or 25% of time remaining (whichever is sooner)
1192
- - High: 2 weeks or 50% of time remaining
1193
- - Medium: 1 month or 75% of time remaining
1194
- - Low: 2 weeks before audit
1195
- """
1196
- severity = gap["severity"]
1197
-
1198
- if severity == "critical":
1199
- # 1 week or 25% of time
1200
- deadline_days = min(7, days_until_audit // 4)
1201
- elif severity == "high":
1202
- # 2 weeks or 50% of time
1203
- deadline_days = min(14, days_until_audit // 2)
1204
- elif severity == "medium":
1205
- # 1 month or 75% of time
1206
- deadline_days = min(30, int(days_until_audit * 0.75))
1207
- else: # low
1208
- # 2 weeks before audit
1209
- deadline_days = days_until_audit - 14
1210
-
1211
- # Ensure deadline is at least tomorrow
1212
- deadline_days = max(1, deadline_days)
1213
-
1214
- deadline = datetime.now() + timedelta(days=deadline_days)
1215
-
1216
- return deadline.isoformat()
1217
-
1218
-
1219
- def get_assignee_email(assignee: str, hospital_id: str) -> str:
1220
- """Get email address for assignee
1221
-
1222
- TODO: Look up from hospital staff database
1223
- """
1224
- # Example mapping
1225
- email_map = {
1226
- "charge_nurse": f"charge.nurse@{hospital_id}.hospital.com",
1227
- "nurse_manager": f"nurse.manager@{hospital_id}.hospital.com",
1228
- "cno": f"cno@{hospital_id}.hospital.com",
1229
- "provider": f"provider@{hospital_id}.hospital.com",
1230
- "infection_control_nurse": f"infection.control@{hospital_id}.hospital.com",
1231
- }
1232
-
1233
- return email_map.get(assignee, f"{assignee}@{hospital_id}.hospital.com")
1234
-
1235
-
1236
- def compose_notification(state: ComplianceAgentState, action_items: list[dict]) -> dict:
1237
- """Compose notification with all relevant information"""
1238
- days_until = state["days_until_audit"]
1239
- compliance_pct = state["compliance_percentage"]
1240
- gaps = state["compliance_gaps"]
1241
- readiness_score = state["documentation_package"]["audit_readiness_score"]
1242
-
1243
- notification = {
1244
- "type": "anticipatory_compliance_alert",
1245
- "urgency": "high" if days_until < 60 else "medium",
1246
- "title": f"{state['audit_type'].replace('_', ' ').title()} Audit Preparation",
1247
- "summary": f"""
1248
- 📋 **{state["audit_type"].replace("_", " ").upper()} AUDIT PREPARATION**
1249
-
1250
- **Audit Date:** {datetime.fromisoformat(state["next_audit_date"]).strftime("%B %d, %Y")}
1251
- **Days Remaining:** {days_until} days
1252
- **Audit Readiness Score:** {readiness_score:.1f}/100
1253
-
1254
- ---
1255
-
1256
- ✅ **COMPLIANCE STATUS**
1257
- - Overall: {compliance_pct:.1f}% ({state["compliant_items"]}/{state["total_compliance_items"]} items)
1258
- - Target: 95%+ for audit success
1259
-
1260
- **Category Breakdown:**
1261
- """
1262
- + "\n".join(f"- {cat}: {score:.1f}%" for cat, score in state["category_scores"].items())
1263
- + f"""
1264
-
1265
- ---
1266
-
1267
- ⚠️ **GAPS REQUIRING ATTENTION ({len(gaps)} total)**
1268
- """
1269
- + "\n".join(f"[{g['severity'].upper()}] {g['description']}" for g in gaps[:5])
1270
- + (f"\n... and {len(gaps) - 5} more (see full report)" if len(gaps) > 5 else "")
1271
- + f"""
1272
-
1273
- ---
1274
-
1275
- 🎯 **ACTION ITEMS ({len(action_items)} tasks)**
1276
- """
1277
- + "\n".join(
1278
- f"{i + 1}. [{item['severity'].upper()}] {item['description']}\n"
1279
- f" → Assignee: {item['assignee']}\n"
1280
- f" → Deadline: {datetime.fromisoformat(item['deadline']).strftime('%Y-%m-%d')}\n"
1281
- f" → Time: {item['estimated_time']}"
1282
- for i, item in enumerate(action_items[:3])
1283
- )
1284
- + (f"\n... and {len(action_items) - 3} more action items" if len(action_items) > 3 else "")
1285
- + f"""
1286
-
1287
- ---
1288
-
1289
- 📂 **DOCUMENTATION PACKAGE**
1290
- Pre-prepared documentation available at:
1291
- {state["documentation_url"]}
1292
-
1293
- Files included:
1294
- """
1295
- + "\n".join(f"- {f}" for f in state["documentation_files"])
1296
- + """
1297
-
1298
- ---
1299
-
1300
- 🤖 **ANTICIPATORY EMPATHY (Level 4)**
1301
-
1302
- This alert was generated using predictive analytics based on your hospital's
1303
- audit history. By preparing now, we have sufficient time to address all gaps
1304
- without stress or rushed work during audit week.
1305
-
1306
- **Prediction Details:**
1307
- - Method: Historical cycle analysis
1308
- - Confidence: {:.0%}
1309
- - Next monitoring check: {}
1310
-
1311
- **Questions?** Contact your compliance coordinator or reply to this message.
1312
- """.format(
1313
- state["prediction_confidence"],
1314
- datetime.fromisoformat(state["next_check_date"]).strftime("%Y-%m-%d"),
1315
- ),
1316
- "action_items": action_items,
1317
- "documentation_url": state["documentation_url"],
1318
- "priority": (
1319
- "high" if state["gap_severity_distribution"].get("critical", 0) > 0 else "medium"
1320
- ),
1321
- }
1322
-
1323
- return notification
1324
-
1325
-
1326
- def send_notification_to_recipients(notification: dict, recipients: list[str], hospital_id: str):
1327
- """Send notification via configured channels
1328
-
1329
- TODO: Integration point - Multi-channel notification delivery
1330
- IMPLEMENTATION AVAILABLE: See agents/notifications.py NotificationService class
1331
-
1332
- Supported channels (already implemented):
1333
- - Email (SMTP) - agents/notifications.py:send_email()
1334
- - SMS (Twilio) - agents/notifications.py:send_sms()
1335
- - Slack/Teams (webhooks) - agents/notifications.py:send_slack()
1336
-
1337
- For compliance alerts, use:
1338
- notification_service.send_compliance_alert(
1339
- severity=notification["severity"],
1340
- title=notification["title"],
1341
- description=notification["summary"],
1342
- recipients={"email": [...], "phone": [...]},
1343
- )
1344
-
1345
- This example simulates notifications to demonstrate the workflow.
1346
- """
1347
- logger.info(f"Sending notification to: {recipients}")
1348
-
1349
- # Simulate sending
1350
- for recipient in recipients:
1351
- email = get_assignee_email(recipient, hospital_id)
1352
- logger.info(f" → {recipient} ({email})")
1353
-
1354
- # TODO: Actual email/SMS/webhook integration
1355
- # send_email(to=email, subject=notification["title"], body=notification["summary"])
1356
-
1357
- logger.info("Notifications sent successfully")
1358
-
1359
-
1360
- # =============================================================================
1361
- # Main Entry Point
1362
- # =============================================================================
1363
-
1364
-
1365
- async def run_compliance_agent(
1366
- hospital_id: str,
1367
- audit_type: str = "joint_commission",
1368
- ) -> ComplianceAgentState:
1369
- """Run the compliance anticipation agent
1370
-
1371
- Args:
1372
- hospital_id: Hospital/facility identifier
1373
- audit_type: Type of audit to anticipate
1374
-
1375
- Returns:
1376
- Final agent state with all results
1377
-
1378
- """
1379
- logger.info(f"Starting Compliance Anticipation Agent for {hospital_id} ({audit_type})")
1380
-
1381
- # Create agent
1382
- agent = create_compliance_agent()
1383
-
1384
- # Initialize state
1385
- initial_state = create_initial_state(hospital_id, audit_type)
1386
-
1387
- # Run agent
1388
- final_state = await agent.ainvoke(initial_state)
1389
-
1390
- logger.info(
1391
- f"Agent completed. Audit readiness score: "
1392
- f"{final_state.get('documentation_package', {}).get('audit_readiness_score', 0):.1f}",
1393
- )
1394
-
1395
- return final_state
1396
-
1397
-
1398
- if __name__ == "__main__":
1399
- import asyncio
1400
-
1401
- # Example usage
1402
- async def main():
1403
- result = await run_compliance_agent(
1404
- hospital_id="example_hospital_123",
1405
- audit_type="joint_commission",
1406
- )
1407
-
1408
- print("\n" + "=" * 80)
1409
- print("COMPLIANCE ANTICIPATION AGENT RESULTS")
1410
- print("=" * 80)
1411
- print(f"Audit Date: {result['next_audit_date']}")
1412
- print(f"Days Until: {result['days_until_audit']}")
1413
- print(f"Compliance: {result['compliance_percentage']:.1f}%")
1414
- print(f"Gaps: {len(result['compliance_gaps'])}")
1415
- print(f"Action Items: {len(result['action_items'])}")
1416
- print(f"Documentation: {result['documentation_url']}")
1417
- print(
1418
- f"Audit Readiness: {result['documentation_package']['audit_readiness_score']:.1f}/100",
1419
- )
1420
- print("=" * 80)
1421
-
1422
- asyncio.run(main())